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Abstract- Geometrical and building parameters have a strong influence on magnetic
performance of toroidal wound cores made from grain oriented 3% SiFe electrical steel.
From a sample of 40 cores with dimensions ranging from 35 to 160 mm outer diameter,
25 to 100 mm inner diameter and 10 to 70 mm strip width and a flux density range of
0.1 to 1.7 T have been obtained and used as training data to a generalised feedforward
neural network.
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1. INTRODUCTION

Thousands of tons of electrical steel are used annually in toroidal wound cores for
ultimate use in electromagnetic devices. The cores, although simple in' geometry are
subjected to various parameters which influence their magnetic permeability and the
power loss [1]. Because performance of toroidal wound cores is determined by various
distinct parameters of the core and knowledge on the corresponding physical processes
is quite restricted, analytical descriptions are extremely difficult making the analytical
prediction of power loss and permeability impractical.

Artificial neural networks are increasingly becoming useful in the predlctlon of
magnetic performance in electromagnetic devices [2] [3]. This paper presents a neural
network used genetic algorithm to predict power losses and relative permeability of
grain oriented 3% SiFe toroidal wound cores induction frequency at 50 Hz. Previous
measurements from a sample of 40 cores with dimensions ranging from 35 to 160 mm
outer diameter, 25 to 100 mm inner diameter and 10 to 70 mm strip width, and a
magnetic flux density range of 0.2 to 1.7 T, have been obtained and used as training
data to a generalized feedforward neural network, which has 4 input neurons, 2 output
neurons model with four hidden layers, and full connectivity between neurons was
developed. The input parameters were outer and inner diameters, strip width of toroidal
sample and magnetising flux density. The network has been trained using genetic
algorithm with the hyperbolic tangent transfer function in hidden layer and output layer.
After the network was tested with training data set, the linear correlation coefficient was
found to be 99,43% for power loss and 97,88% for permeability. The network outputs
are within the acceptable error limits.

2. NEURAL NETWORK

A neural network is an interconnected assembly of simple processing elements,
upits or neuron, whose functionality is loosely based on the humin neuron [4]. The
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processing ability of the network is stored in the inter-unit conmection strengths or
weights, obtained by a process of adaptation to, or learning from, a set of training
patterns. Models usually assume that computation is distributed over several processing
units, which are interconnected and operate in parallel. The most popular neural
network is the multi-layer perceptron, which is a feedforward network, i.e., all signals
flow in a single direction from the input to the output of the network.

2.1 Multi-Layer Perception and Generalized Feedforward Networks

Muilti-layer perceptions (MLPs) are layered feedforward networks typically
trained with static back-propagation. These networks have found their way into
countless applications requiring static ‘pattern classification. Their main advantage is
that they are easy to use, and that they can approximate any input/output map. The key
disadvantages are that they train slowly, and require lots of training data (typically three
times more training samples than network weights).

The perception and the multi-layer perception are trained with error
correction learning, which means that the desired response for the system must be
known. This is normally the case with pattern recognition. Error correction learning
waorks in the following way: From the system response at PE i at iteration n, and the
desired response for a given input pattern an instantaneous error is defined by

ei(n)=di(n)-yi(n) - (D

Using the theory of gradient descent learning, each weight in the network can be
adapted by cotrecting the present value of the weight with a term that is proportional to
the present input at the weight and the present error at the weight

-wij(n+1)mwij(n)+nai(n)xj(n) | (2) -

Momentum learning is an improvement to the straight gradient descent in the
sense that a memory term (the past increment to the weight) is utilized to speed up and
stabilize convergence. In momentum learning the equation to update the weights
becomes: = o

win+1)=wii()+n0, (n)x; (n) +alw, (n)-w, (0 -1)) (3)
where o is the momentum. Normally the o should be set between 0.1 and 0.9. The
training can be implemented in two ways: Either we present a pattern and update the
weights (on-line learning); or we present all the patterns in the input file (an epoch),
store the weight update for each pattern, and then update the weights with the average
weight update (batch learning). They are equivalent theoretically, but the former
sometimes has advantages in tough problems (ones with many similar input-output
pairs), . . o o

To start back-propagation, an initial value needs to be loaded for each weight
(normally a small random value), and proceed until some stopping criteria is met. Three
most common criteria are: The number of iterations, the mean square error of the
training set. ‘

Generalized feedforward networks are a generalization of the MLP such that
connections can jump over one or more layers. In theory, a MLP can solve any problem
that a generalized feed-forward network can solve. In practice, however, generalized
feedforward networks often solve the problem much more efficiently. A classic example
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of this is the two-spiral problem. Without describing the problem, it suffices to say that
a standard MLP requires hundreds of times more training epochs than the generalized
feedforward network containing the same number of processing elements [5].

3. GENETIC ALGORITHM

The concept of GAs was first proposed by Holland and then described by
Goldberg [6]. GAs are stochastic search techniques based on the mechanism of natural
selection and natural genetics. The GAs, differing from conventional search techniques,
start with an initial set of solutions called a population. Each individual in the
population is called a chromosome, and in our context, represent a solution to the
problem at hand. A chromosome is a string of symbols; it is usually, but not necessarily,
a binary bit string. The chromosomes evolve through successive iterations, called
generations, During each generation, the chromosomes are evaluated, using some
measures of fitness . To create the next generation, new chromosomes, called offspring,
are formed by either (a) merging two chromosomes from the current generation using a
crossover operation, or (b) modifying a chromosome using a mutation operator. A new
generation is formed from this intermediate population by (a) selecting, according to the
fitness values, some of the parents and offspring, and (b) rejecting others so as to keep
the population size constant. Fitter chromosomes have higher probabilities of being

‘selected. After several generations, the best solution converges, which hopefully
represents the optimum or sub optimal solution to the problem. Let P (¢t ) and C (t ) be
parents and offspring in current generation t ;the general structure of GAs is illustrated
in Fig. 1 and described as follows:

Step 1: Set t=0

Step 2: Generate initial population, P (t)

Step 3: Evaluate P (f) to create values

Step 4: While (not termination condition) do

Step 5. Recombine P (1) to yield C (t ),selecting from P (t )according to the values
Step 6: Evaluate C (t)

Step 7: Generate P (t+1) from P {tYand C (1)

Step 8: Set t=t-+1

Step 9: End

Step 10: Stop

4. ESTABLISHMENT OF TRAINING DATA and MODEL
IMPLEMENTATION

A wide range of strip wound cores varied dimensions at 50 Hz magnetizing
frequencies have been magnetically characterized [7]. With 40 different combinations
of core dimensions and magnetic flux density sweep from 0.2 T-1.7 T, a total of 360
input vectors were available in the training data set.

A developed generalized feed-forward network, which has 4 input neurons, 2
output neurons, 6 neurons of first hidden layer, 4 neurons second, third and fourth
hidden layers, and full connectivity between neurons was as shown in Figure 2. The
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input parameters were outer diameter (d;), inner diameter (dy), strip width (h) and the
peak value of flux density (B) when the core -magnetized at 50 Hz. The output
parameters were power loss (P) and relative permeability (j).
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Figure 1. The general structure of genetic algorithm

An evaluation mode of NeuroSolations 4.01, a commercial neural network
package has been used for training the networks, giving the advantage of rapid network
development through flexible choices of algorithms, network type, transfer functions
and other training parameters, thereby enhancing accuracy.

The network in the Fig. 2 has been trained using genetic algorithm with the
hyperbolic tangent transfer function in hidden layer and output layer, 1000 epochs, 50
population size and 100 maximum generations. After the network was trained, best
fitness (mean squared error) was found to be 0.00248 as shown Fig. 3, Furthermore, the
network was also trained with 1, 2, 3 and 5 hidden layers. But, correlation coefficient in
these networks was smaller than the correlation coefficient of the network with 4 hidden
layers.

When the network has been tested with training data set, the linear correlation
coefficient was found to be 99.43% for the power loss and 97.88% for the permeability.
Fig 4 shows the measurement power loss versus the network outputs, for all 360
training data set. The diagonal line in this graph shows perfect match between
measurement and network output. Fig. 5 shows the measurement permeability versus
the network output for all 360 training data set.
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Figure 2. Developed generalized feedforward network with four input, four hidden
layers and two output neurons

After the network was trained and the network outputs are within the acceptable
error limits, a new data set was tested to clarify the network learned well enough or not.
The data set was included original data obtained experimentally from 2 different size
toroidal cores. The properties of these cores were as the following
1) The core dimensions are within the limit of trained core data and it was not
included the training data set (70x50x 10).

2)  The core dimensions are out of the limit of trained data and it was not included the
training data set (160x100x25),

Table 1 and Table 2 show the predicted power loss and relative permeability for
these cores (70x50x10 and 160x100x25) outside training data. In Table 1 and Table 2

the results show excellent predicting capability with maximum error being 17% for
power foss and permeability.
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Figure 4. Plot of the measurement power loss versus the network output
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Figure 5. Plot of the measurement permeability versus the network output

Table 1. Comparison between network output and measured power loss

Power Loss
& | & | n | B (W/Kg)
(mmy) | (mm) | (mm) | (T) | Network | Measurement
Output
70 50 10 102} 0017 0.014
70 50 10 10.51 0.082 0.083
70 50 10 1071 0.145 |- 0.158
70 50 10 (1.2} 0414 0.460
70 50 10 11.51 0.691 0.711
70 50 10 |1.6] 0.882 0.903
70 50 10 11L.7) 1077 1104
160 | 100 | 25 |02 0010 0.011
160 ] 100 | 25 (0.5) 0.053 0.060
160 | 100 | 25 10.7| 0.117 0.134
160 | 100 | 25 j1.2] 0358 0.392
160 | 100 | 25 J1.5| 0.567 0.600
160 | 100 | 25 (1.6] 0.729 0.800
160 | 100 { 25 {17} 1.008 1.052

5. CONCLUSIONS

A new neural network mode] with 4 input neurons, 2 output neurons and four level of
‘hidden layer with 18-neuron was developed for magnetic performance prediction of
toroidal wound cores at 50 Hz. After training the network with 360 input vectors the
linear correlation coefficient was found to be 99,43% for power loss and 97,88 for
permeability. The results shows the artificial neural network and genetic algorithm can
be successfully used for magnetic performance prediction of toroidal wound cores. The
obtained results have also indicated this to be a promising tool with potential industrial
applications.
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Table 2. Comparison between network output and measured relative permeability

Relative
d; d, h B Permeability
(mm) | (mm) (mm) () Network | Measurement
Cutput

70 50 10 0.2 ] 29979 24845
70 50 10 0.5 1 37010 33301
70 50 10 0.7 | 40398 37071
70 50 10 1.2 1 41715 40593
70 50 10 1.5 31810 31120
70 50 10 161 25372 24268
70 50 10 1.7 | 20015 18685
160 | 100 25 02 ] 28401 28142
160 | 100 25 051 35324 37031
160 1 100 25 0.7 | 39349 40344
160 | 100 25 1.2 | 41762 43159
160 | 100 25 1.5 ] 28623 30056
160 | 100 25 1.6 21941 22439
160 1 100 25 1.7 1 14758 14971
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