ON SOME SEQUENCE SPACES AND LACUNARY σ-STATISTICAL CONVERGENCE

Ekrem Savaş and Rahmet Savaş

Yüzüncü Yıl University, Department of Mathematics, Van /Turkey Indiana University, Department of Mathematics, Bloomington, IN47405 ekremsavas@yahoo.com, rsavas@indiana.edu.

Abstract: In this note, we define and study two concepts which arise from the notion of lacunary strong convergence, and invariant means, namely lacunary strong σ -convergence with respect to an Orlicz function and lacunary σ -statistical convergence and established the relationship between these two concepts.

Keywords: Orlicz functions, Invariant Means, lacunary strong convergence, statistical convergence.

1. INTRODUCTION

Let ℓ_{∞} and c respectively be the Banach space of bounded and convergent sequences $x = (x_n)$ with norm $||x|| = \sup_{k \ge 0} |x_k|$, respectively.

A sequence $x=(x_k)\in \ell_\infty$ is said to be almost convergent if all of its Banach limits [1] coincide. Let \hat{c} denote the space of all almost convergent sequences. Lorentz [9] proved that

$$\hat{c} = \{x_k \in \ell_{\infty} : \lim_{m \to \infty} d_{mn}(x) \text{ exists, uniformly in } n\}$$

where
$$d_{mn}(x) = \frac{x_n + x_{n+1} + ... + x_{n+m}}{m+1}$$

The space $[\hat{c}]$ of strongly almost convergent sequences was introduced by Maddox [10] as follows

$$[\hat{c}] = \{x_k \in \ell_\infty : \lim_m d_{mn}(/x-le/) = 0, \text{ uniformly in n for some } l \},$$

where $e = (1, 1, ...).$

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on ℓ_{∞} is said to be an invariant mean or a σ -mean if and only if

(i) $\phi(x) \ge 0$, when the sequence $x = (x_n)$ has $x_n \ge 0$ for each n;

(ii)
$$\phi(x)=1$$
, where $e=(1,1,1,...)$ and

(iii)
$$\phi((x_{\sigma(n)})) = \phi(x)$$
, for all $x \in \ell_{\infty}$.

The mapping is one-to-one such that $\sigma^m(n) \neq n$ for all positive integers n and m, where $\sigma^m(n)$ denotes the m th iterate of mapping σ at n.

Thus, ϕ extends the limit functional on c in the sense that $\phi(x) = \lim x$ for $x \in c$. In case σ is the translation mapping $\sigma(n) = n + 1$, the σ -mean is often called a Banach limit on ℓ_{∞} and V_{σ} , the set of all bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences \hat{c} , [8].

If
$$x = (x_n)$$
, write $Tx = (Tx_n) = (x_{\sigma(n)})$, it can be shown that (see, [19])
$$V_{\sigma} = \left\{ x \in \ell_{\infty} : \lim_{m \to \infty} t_{m,n}(x) = L \text{ uniformly in } n, L = \sigma - \lim_{m \to \infty} t_{m,n}(x) \right\},$$

where
$$t_{m,n}(x) = (m+1)^{-1}(x_n + Tx_n + ... + T^mx_n)$$
.

Just as the concept of almost convergence led naturally to the concept of strong almost convergence, σ - convergence leads naturally to the concept of strong σ -convergence.

A sequence $x = (x_k)$ is said to be strongly σ -convergent(see, [12]) if there exists a number ℓ such that

$$\frac{1}{m} \sum_{k=1}^{m} \left| x_{\sigma^k(n)} - \ell \right| \to 0. \tag{1}$$

as $m\to\infty$, uniformly in n. We write $[V_\sigma]$ as the set of all strongly σ -convergent sequences. When (1) holds we write $[V_\sigma]-\lim x=\ell$. Taking $\sigma(n)=n+1$, we have $[V_\sigma]=[\hat c]$. So that strong σ -convergence generalized the concept of strong almost convergence. Note that $c\subset [V_\sigma]\subset V_\sigma\subset \ell_\infty$.

By a lacunary sequence $\theta=(k_r)$, r=0,1,2,... where $k_0=0$, we shall mean an increasing sequence of non-negative integers with $k_r-k_{r-1}\to\infty$. The intervals determined by θ will be denoted by $I_r=(k_r-k_{r-1}]$, and we let $h_r=k_r-k_{r-1}$. The ratio k_r/k_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_θ was defined by Freedman et al. [5] as follows

$$N_{\theta} = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_k - \ell| = 0 \quad \text{for some } \ell \right\}.$$

The space N_{θ} is a BK-space with the norm

$$||x|| = \sup \left(\frac{1}{h_r} \sum_{k \in I_r} |x_k|\right).$$

 N_{θ}^{0} denotes the subset of those sequences in N_{θ} for which $\ell=0$. $\left(N_{\theta}^{0},||.||_{\theta}\right)$ is also a BK-space. There is a strong connection between N_{θ} and the space w of strongly Cesaro summable sequences, which is defined by

$$w = \left\{ x = (x_k) : \lim_n \frac{1}{n} \sum_{k=1}^n |x_k - \ell| = 0, \text{ for some } \ell \right\}.$$

In the special case where $\theta = (2^r)$, we have $N_{\theta} = w$.

Recently, the concept of lacunary strong σ - convergence was introduced by Savaş[18] which is a generalization of the idea of lacunary strong almost convergence due to Das and Mishra [3]. If $[V_{\sigma}^{\theta}]$ denotes the set of all lacunary strongly σ -convergent sequences, then Savaş [15] defined

$$[V_{\sigma}^{\theta}] = \left\{ x = (x_n) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left| x_{\sigma^k(n)} - \ell \right| = 0, \text{ for some ℓ, uniformly in n} \right\}.$$

Note that for $\sigma(n) = n+1$, the space $[V_{\sigma}^{\theta}]$ in the same as $[AC_{\theta}]$ which is defined as following by Das and Patel[3].

$$[AC_{\theta}] = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_{k+n} - \ell| = 0, \text{ for some } \ell, \text{uniformly in } n \right\}$$

We write $[V_{\sigma}^{\theta}] = [V_{\sigma}^{\theta}]_0$ in case $\ell = 0$.

An Orlicz function is a function $M:[0,\infty)\to[0,\infty)$, which is continuous, non-decreasing and convex with M(0)=0, M(x)>0 for x>0 and $M(x)\to\infty$ as $x\to\infty$. If convexity of Orlicz function M is replaced by $M(x+y)\le M(x)+M(y)$, the function is called a Modulus function defined and discussed by Ruckle [15] and Maddox [11].

Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \left\{ x : \sum_{k=1}^{\infty} [M(|z|/\rho)] < \infty, \text{ for some } \rho > 0 \right\}$$

The space ℓ_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : x : \sum_{k=1}^{\infty} [M(|x_k|/\rho)] \le 1 \right\}$$

becomes a Banach space which is called an Orlicz sequence space. An Orlicz function M can always be represented (see, Krounoselskii and Rutitsky [7]) in the general form $M(x) = \int_0^x q(t)dt$, where q, known as the kernel of M, is right differentiable for $t \ge 0$, q(0) = 0, q(t) > 0 for t > 0, q is non-decreasing, $q(t) \to \infty$ as $t \to \infty$. The space ℓ_M is closely related to the sphere ℓ_p which is an Orlicz sequence space with $M(x) = x^p$; $1 \le p < \infty$.

Quite recently Bhardwaj and Singh [2] introduced the following sequence spaces defined by Orlicz function M and for the sequence $p = (p_k)$ of positive real numbers.

$$[V_{\sigma}^{\theta}, M, p] = \left\{ x : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M \left(\frac{|x_{\sigma^k(n)} - \ell|}{\rho} \right) \right]^{p_k} = 0, \text{ uniformly in } n \text{ for some } \ell > 0, \rho > 0 \right\}$$

$$[V_{\sigma}^{\theta}, M, p]_{0} = \left\{ x : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|x_{\sigma^{k}(n)}|}{\rho} \right) \right]^{\rho_{k}} = 0, \text{ uniformly in } n, \text{ for some } \rho > 0 \right\}$$

$$[V_{\sigma}^{\theta}, M, p]_{\infty} = \left\{ x : \sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} \left[M \left(\frac{|x_{\sigma^k(n)}|}{\rho} \right) \right]^{p_k} < \infty, \text{ for some } \rho > 0 \right\}.$$

If $p_k = 1$ for all k, then the above spaces are reduced to $[V_{\sigma}^{\theta}, M]$, $[V_{\sigma}^{\theta}, M]_{\theta}$ and $[V_{\sigma}^{\theta}, M]_{\infty}$. If $x \in [V_{\sigma}^{\theta}, M]$ we say that x is lacunary strongly σ -convergent with respect to the Orlicz function M.

Some well – known spaces are obtained by specializing M, θ and p.

- (i) If M(x) = x, $p_k = I$ for all k and $\theta = (2^r)$ then $[V_{\sigma}^{\theta}, M, p] = [V_{\sigma}]$, (Mursaleen, [12]).
- (ii) If $\theta = (2^r)$, then $[V_{\sigma}^{\theta}, M, p] = [V_{\sigma}, M, p]$, $[V_{\sigma}^{\theta}, M, p]_0 = [V_{\sigma}, M, p]_0$ and $[V_{\sigma}^{\theta}, M, p]_{\infty}$ = $[V_{\sigma}, M, p]_{\infty}$, (see, Nuray and Gülcü [13])
- (iii) If M(x) = x, $p_k = 1$ for all k, then $[V_{\sigma}^{\theta}, M, p] = [V_{\sigma}^{\theta}]$ (see, Savaş [17]).

In this paper we study and examine the above sequence spaces defined by Orlicz function M and established some new result.

2. MAIN RESULTS

We now have

Theorem 1. $[V_{\sigma}^{\theta}, M, p]_{0} \subset [V_{\sigma}^{\theta}, M, p] \subset [V_{\sigma}^{\theta}, M, p]_{\infty}$.

Proof. Obviously, $[V_{\sigma}^{\theta}, M, p]_{0} \subset [V_{\sigma}^{\theta}, M, p]$. We have

$$|x_k + y_k|^{\rho_k} \le C(|x_k|^{\rho_k} + |y_k|^{\rho_k}) \tag{1}$$

where $C = max(1,2^{H-1})$, $H = sup p_k$. Let $x \in [V_{\sigma}^{\theta}, M, p]$. From (1)

$$\frac{1}{h_r} \sum_{k \in I_r} M \left(\frac{\mid x_{\sigma^k(n)} \mid}{\rho} \right)^{p_k} \leq \frac{C}{h_r} \sum_{k \in I_r} M \left(\frac{\mid x_{\sigma^k(n)} - \ell \mid}{\rho} \right)^{p_k} + \frac{C}{h_r} \sum_{k \in I_r} M \left(\frac{\mid \ell \mid}{\rho} \right)^{p_k}.$$

There exists an integer K_L such that $|\ell| \le K_L$. Hence we have

$$\frac{1}{h_r} \sum_{k \in I_r} M \left(\frac{\left| \left. x_{\sigma^k(n)} \right| \right|}{\rho} \right)^{p_k} \leq \frac{C}{h_r} \sum_{k \in I_r} M \left(\frac{\left| \left. x_{\sigma^k(n)} - \ell \right| \right|}{\rho} \right)^{p_k} + C \left[\left. K_L M \left(\frac{1}{\rho} \right) \right]^H \right].$$

Thus we get $x \in [V_{\sigma}^{\theta}, M, p]_{\infty}$.

This completes the proof.

Theorem 2. Let M be an Orlicz function and $p=(p_k)$ be any bounded sequence of strictly positive real numbers, then $[V_{\sigma}, M, p] \subset [V_{\sigma}^{\theta}, M, p]$ for every lacunary sequence θ .

Proof. Let $x \in [V_{\sigma}, M, p]$ and $\varepsilon > 0$. There exists a positive integer m_0 , number ℓ and $\rho > 0$ such that

$$\frac{1}{m}\sum_{k=1}^{m}\left[M(\frac{\left|x_{\sigma^{k}(n)}-\ell\right|}{\rho})\right]^{\rho_{k}}<\varepsilon$$

for $m>m_0$, m=0, 1, 2, Since θ is lacunary, we can choose R>0 such that $r \ge R$ implies $h_r>m_0$ and consequently, $T_r = \frac{1}{h_r} \sum_{k \in I_r} \left[M(\frac{\left|x_{\sigma^k(n)} - \ell\right|}{\rho}) \right]^{p_k} < \varepsilon$. Thus

 $x \in [V_{\sigma}^{\theta}, M, p].$

This completes the proof.

A complex number sequence $x = (x_k)$ is said to be statistically convergent to the number ℓ if for every $\epsilon > 0$, (see, [4]),

$$\lim_{n} \frac{1}{n} \Big| \Big\{ k \le n : \big| x_k - \ell \big| \ge \varepsilon \Big\} \Big| = 0.$$

The set of statistically convergent sequences is denoted by s.

Recently, Savaş and Nuray [16] introduced the concept of lacunary σ -statistical convergence as follows:

Definition 1. Let θ be a lacunary sequence. Then a sequence $x = (x_k)$ is said to be lacunary σ - statistically convergent to a number ℓ if for every $\varepsilon > 0$,

$$\lim_{r} \frac{1}{h_{r}} \max_{n \ge 0} \left| \left\{ k \in I_{r} : \mid x_{\sigma^{k}(n)} - \ell \mid \ge \varepsilon \right\} \right| = 0$$

In this case we write S^{θ}_{σ} - $limx = \ell$ or $x_k \rightarrow (S^{\theta}_{\sigma})$ and we define

$$S_{\sigma}^{\theta} = \{ x = x_k : for some \ \ell, \ S_{\sigma}^{\theta} - limx = \ell \}.$$

The set of all lacunary σ -statistically convergent sequences is denoted by S^{θ}_{σ} .

Theorem 3. Let M be an Orlicz function. Then $[V_{\sigma}^{\theta}, M]_{o} \subset (S_{\sigma}^{\theta})_{o}$. **Proof.** Suppose $x \in [V_{\sigma}^{\theta}, M]_{o}$ and $\varepsilon > 0$. Then we have for every n,

$$\sum_{k \in I_{r}} M\left(\frac{\left|x_{\sigma^{k}(n)}\right|}{\rho}\right) \geq \sum_{\substack{k \in I_{r} \\ \left|x_{\sigma^{k}(n)}\right| \geq \varepsilon}} M\left(\frac{\left|x_{\sigma^{k}(n)}\right|}{\rho}\right) \\ > M\left(\frac{\varepsilon}{\rho}\right) . max_{n \geq 0} \left|\left\{k \in I_{r} : \left|x_{\sigma^{k}(n)}\right| \geq \varepsilon\right\}\right|$$

from which it follows that $x \in (S_{\sigma}^{\theta})_{o}$.

Theorem 4. $(S_{\sigma}^{\theta})_o = [V_{\sigma}^{\theta}, M]_o$ if and only if M is bounded.

Proof. Suppose that M is bounded and that $x \in (S^{\theta}_{\sigma})_o$. Since M is bounded there exists an integer K such that M(x) < K, for all $x \ge 0$. Then for each n,

$$\begin{split} \frac{1}{h_{r}} \sum_{k \in I_{r}} M \left(\frac{\left| x_{\sigma^{k}(n)} \right|}{\rho} \right) &= \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ \left| x_{\sigma^{k}(n)} \right| \geq \varepsilon}} M \left(\frac{\left| x_{\sigma^{k}(n)} \right|}{\rho} \right) + \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ \left| x_{\sigma^{k}(n)} \right| < \varepsilon}} M \left(\frac{\left| x_{\sigma^{k}(n)} - \ell \right|}{\rho} \right) \\ &\leq \frac{1}{h_{r}} K.max_{n \geq 0} \left| \left\{ k \in I_{r} : \left| x_{\sigma^{k}(n)} \right| \geq \varepsilon \right. \right\} + M \left(\frac{\varepsilon}{\rho} \right) \end{split}$$

and so taking the limit as $r \rightarrow \infty$, the result follows.

Conversely, suppose that M is unbounded so that there is a positive sequence $0 < s_1 < s_2 < ... < s_i < ...$ such that $M(s_i) \ge h_i$. Define the sequence $x = (x_i)$ by putting $x_{k_i} = s_i$ for $i = 1, 2, ..., x_i = 0$, otherwise. Then, we have $x \in (S_\sigma^\theta)_o$, but $x \notin [V_\sigma^\theta, M]_o$, contradicting, $(S_\sigma^\theta)_o = [V_\sigma^\theta, M]_o$.

This completes the proof.

REFERENCES

- 1. [1] S.Banach, Theorie des Operations linearies, Warszawa, 1932.
- 2. [2] V.K. Bhardwaj and N. Singh, On some new spaces of lacunary strongly σ-convergent sequences defined by Orlicz functions, *Indian J. Pure. Appl. Math.* 31 (11), (2000), 1515-1526.
- 3. [3] G.Das and S. K. Mishra, Banach limits and lacunary strong almost convergence, *J.Orissa Math.Soc.*2(2) (1983),61-70.
- 4. [4] H. Fast, Sur la convergence statistique, Colloq.Math. 2(1951), 241-244.
- 5. [5] A. R. Freedman, J.J. Sember and M. Raphael, Some Cesaro type summability spaces, *Proc. London Math. Soc.*, 37 (1978), 508-520.
- 6. [6] P. K. Kampthan and M. Gupta, Sequence spaces and series, Marcel Dekker, New York, 1981.
- 7. M.A. Krasnoselskii and Y.B. Rutitsky, *Convex functions and Orlicz spaces*, Groningen, Netherlands, 1961.
- 8. J. Lindenstrauss and L. Tzafriri, On orlicz sequence spaces, *Israel J. Math.*, 10 (3), (1971), 379-390.
- 9. G.G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math.80(1948),167-190.
- 10. I.J. Maddox, Spaces of strongly summable sequences, *Quart. J. Math.*, Oxford (2), 18 (1967), 345-355.

- 11. I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986), 161-166.
- 12. Mursaleen, Matrix transformations between some new sequence spaces, *Houston J. Math.* 9 (1983), 505-509.
- 13. F. Nuray and A. Gülcü, Some new sequence spaces defined by Orlicz function, *Indian J. Pure and Appl. Math.*, 26 (1995), 419-428.
- 14. S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, *Indian J. Pure and Appl. Math.*, 25(4), (1994), 419-428.
- 15. W. H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, 25 (1973), 973-978.
- 16. E. Savaş and F.Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, *Math. Slovaca* 43(1993), 309-315.
- 17. E.Savaş, Strongly σ-convergent sequences, *Bull. Calcutta Math.Soc.*, 81(1989),295-300.
- 18. -----, On lacunary strong σ-convergence, *Indian J.Pure. Appl. Math.* 21 (4), (1990), 359-365.
- 19. P. Schaefer, Infinite matrices and invariant means, *Proc. Amer. Math. Soc.36* (1972), 104-110.