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Abstract- We construct an optimal system of one-dimensional subalgebras for a class
of soil water equations and then use it to obtain an optimal system of two-dimensional
subalgebras. We also present a few group-invariant solutions of rank one corresponding
to an optimal system of two-dimensional subalgebras.
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1. INTRODUCTION

A mathernaucal model was developed to simulate soil water infiltration, redxstrlbutzon
and extraction in a bedded soil profile overlaying a shallow water table and irrigated by
a line source drip irrigation system. The governing partial differential equation can be
written as :

clw)y, = (Kww,) + K@), - D), - Sw), (1.1)

where . is soil moisture pressure head, C(y) is speciﬁc water capacity, K() is
unsaturated hydraulic conductivity, S() is a sink or source term, x is the honzontal
and z is the vertical axis which is considered positive downward (see [1] and | 21). This
equation has been studied by many researchers (see, e.g., [2] and references therein)
and analytic and numerical solutions have been obtained for particular functions C, K
and §. Group classification of these equations with respect to admitted point
transformation group was done by Baikov et al [3]. Conservation laws for some classes
of equation (11) were obtained and their association with the generators of Lie
symmetries were given in Kara and Khalique [4]. '

Soil water equation (L1) is linked with the heat conduction type equation

X

M, = (k(u)ux) + (}'c(u)uz)z + lwu, + plu), : (1.2)
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For the proof see [3].

In their paper, Baikov et af [3] utilized the procedure for the construction of solutions
which are invariant with respect to two-dimensional subalgebras that reduces equation -
(1.1) to an ordinary differential equation. Two particular equations of form (1.1) were
considered and their invariant solutions were obtained.

The problem of constructmg the optimal system of subalgebras plays a very important
role in the group analysis of differential equations, It can be used in the classification of
group-invariant solutions of differential equations (see Ovsiannikov 5], [6] and {7hH.
The method is also described in detail in the papers by Ibragimov er al [8] and
Chupakhin [9]. For the definitions of optimal system of subalgebras and optimal system
of group invariant solutions the reader is referred to Ovsiannikov [6], Ibragimov [10] or
Olver [11]. Optimal system of one-dimensional subalgebras for the one-dimensional
heat equation can be found in Olver [11]. Recently, Pooe et al [12] obtained two classes
of optimal systems of group-invariant solutions for the Black-Scholes equation.

In this paper, following Ovsiannikov [6], we will construct optimal system of one-
dimensional subalgebras for equation (1.2) for a particular type of coefficients
k(u), l(u)and p(u). Using this result we will then compute optimal system of two-

dimensional subalgebras. Lastly, we present optimal system of group-invariant solutlons
of rank one for that parﬂcular equation.

2. CONSTRUCTION OF OPTIMAL SYSTEM OF ONE AND TWO-
DIMENSIONAL SUBALGEBRAS

In this section we use the method given in Ovsiannikov [6] and first construct an
optimal system of one-dimensional subalgebras for a particular case of equatlon (1.2)

when k(u) ut ,w) =0 and p(u) u, namely,

u,m(ﬁtj +[—b—ti) U, ' 2.0

According to the classification result (see Ibragimov [10]), equations (1.2) admits the
principal Lie algebra L, (i.e, the Lie algebra of the Lie transformation group admitted

by equation (1.2} for arbitrary functions k(u), I(u) and p(u)) of (translations) point
© symmetries |
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and equation (2.1) admits, in addition to (2.2), the rotation symmetry
X,=z 9 x—a— |
Y oz
and the two symmetries .
d d g d d
Xez=xo—tz—=-2u— and X, =¢ —+e'u—=.
TR Y M M
The commutator table for these six operators is given below.
Table
[ X, X 4] X, X, X, X, X, X
X, 0 0 0 0 0 X,
X, 0 0 0 - X, X, 0
X, 0 0 0 X, X, 0
X4 0 X3 - X2 0 0 O '
X, 0 -X, -X, 0 0 0
X - X, 0 0. 0 0 0

Consider now the algebra L with basis X s X,,..., X4 Then the Lie algebra L] is
spanned by the following operators:

o
A v —
E#mcwe 5;-’1_’ ,u—I,Z,...,6

where cjv are the structure constants (see e.g., Ibragimov [10]). Using the commutator

table we calculate the structure constants. Hence the algebra L{is spanned by

0
E =¢"—,
l de® .
0 ¢
E, = —¢* +e° ,
: 2¢* 26
E, = 94@@%4_35 ~—§-
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By solving the Lie equations for the above operators, we obtain the corresponding
transformations for each of these six operators. Taking their composition, we obtain the

following six-parameter group G* of inner automorphisms of [, or the adjoint group
of G:

1 j
¢ =&,

e’ =he’ —b,e’ +he* +he’,
: ;?_m be’ +be’ —be* +b,e’,
(2.3}

e* =—bse' +be’.

Here b,,b,, ..., b, are arbitrary real parameters with b, > 0, b7 +b; # 0 and b, # 0.

Because we want to construct one dimensional subalgebras we now have to see how an
arbitrary operator '

X =§Ee*“Xﬂ
=1

of the algebra L is transformed to its simplest form using the above transformations.

After some calculations it turns out that the optimal system of one-dimensional
subalgebras is '

(X, X0 X X X, £ X, X, 2 X, X, 2 X X b X X2 X, X, +0X, X, +0X  + XS,
X, + X, X fe R}. Now using the discrete symmetries x — —x andz — —zof
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equation (2.1) we can delete the operators X, —X,, X, - X;, X, - X, X, - X, from
the above set. We also note that the operators X,and X, belong to the same class of
one-dimensional subalgebras. Same is also true for the operators X, +X, and
X, + X, . Hence finally, the optimal system of one-dimensional subalgebras is

(X, X X, X, + X, X, + X, X £ X, X, +0X 5, X, +0X, + X, X, + Xt X, fe R}

We now use the above optimal system of one-dimensional subalgebras to construct
optimal system of two-dimensional subalgebras. Consider an operator ¥, = X +X,,
say, form the optimal system of one-dimensional subalgebras and let
Y, =e'X, +..+e°X,. Using the commutator table we simplify ¥, such that ¥, and ¥,
form a two-dimensional subalgebra, The following two subalgebras arise:
<X, +X,; X, +X,>and <X + X5 X > ‘
We now simplify the first subalgebra. Under the general transformations (2.3), this
subalgebra is transformed to _
<X, +b,X, +b, X, ~bXg; (bse® by’ )X, +(bye” +bse’ )Xy >
One now chooses the arbitrary parameters such that the subalgebra has the simplest '
form. It can be shown that two subalgebras, namely,
<X +X,;3X;> and <X3X, >,

are obtained. Thus by considering X, +X, we obtain the following three twd-
dimensional subalgebras:
<X +X; X, >, <X +X;X> <XppX, >

Likewise, by taking the remaining operators of the optimal system of one-dimensional
subalgebras and proceeding in the above manner, we obtain the following optimal
system of two dimensional subalgebras:

CX); Xy > < Xy K> <Xgs Xy > <Xy Xy>, <Xy X% X >,
<X X +aXsm< X, + Xy X, - X2 < X X+ X, > < X X+ X >,
<X X > < X, + 0K X+ B> < X+ oy Xt X >, < X, +oX,, Xi>,
<X+ X Xst X< X, o E X X5 > < X Xe> < Xgy X, +0X, >,
<Xy X, + X,> < X3 X, +0X o+ X5 >

(2.4) |

We now show how one constructs the group-invariant solutions corresponding to the
two-dimensional subalgebras of the optimal system (2.4). Consider, for example, the
subalgebra < X, + X3 X, >. We calculate a basis of invariants I(t, x,z,u) by solving
the equations h |
(X,+X)I=0, X,0=0. (2.5)
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The second equation gives us three functionally independent solutions
Jo=tr . Jy=x, J,=u.

Writing the action of X, + X on the space of J,, J,, J, and using the first equation
of system (2.5), we obtain the following two functionally independent invariants:.

Ii=x+e”, I,=ue”.
Hence we obtain the invariant solution

u=e'dlx+e’)

where ¢ salisfies the second-order ordinary differential equation

00" () + 9’9" =0
whose solution is given by
. €6

me{xre™y

¢ =

c,—¢€
Thus the group-invariant solution under the subalgebra < X s X Xy > s

N I3
€€

~¢{x4e™")

C, —¢
Similarly, the  group-invariant  solution = under the  two-dimensional
subalgebra< X,; X, > can be calculated and the solution is given by

ce' —2

z 2

However, in many cases the reduced ordinary differential equation for ¢ is not easily
solved. For example, in the case of the two-dimensional subalgebra
<X, + XX, ~ X, > the equation satistied by ¢ is

s

Hown

4 ) , B -~
(1+§2)(£} 268 L p1=0, g=FRE
¢ ¢ oz
It would be of interest to look at the other cases that arise and to obtain solutions of the

reduced equation. This would then give us all group-invariant solutions of rank one
- corresponding to optimal system (2.4) of two-dimensional subalgebras.
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