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RECOVERING IMAGES FROM TRAVELTIME DATA
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Abstract- We study here a mathematical problem of retrieving slowness (reciprocal of
velocity) distribution of a medium from a set of the measured first arrivals traveltimes
data between sources and receivers within the medium.
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‘ 1. INTRODUCTION
Classical methods of tomography provide information for reconstruction of function
from a set of line integrals. In medical X-ray tomography, such integrals are provided
by a measurement of the amplitude attenvation for X-rays passing through the body.
When backprojected along the known ray path, the attenuation data provide a picture of
an inhomogeneous density distribution that can be interpreted for purpose of diagnosis.
Outside of the field of medicine, tomography has many uses [2]. In seismic
tomography, rays can be used to probe the earth, analogously to X-rays in medical
tomography [11]. However, there are some major differences. In medical tomography
both the source and receiver positions are known to high accuracy, and the X- rays
traverse straight p'aths from source to receiver. In contrast, only the receiver location is
known to high accuracy for seismic ray. This is because the epicentre (the projection of
the earthquake source on the surface of the Earth) is not ofter known to sufficient
accuracy. Moreover, the rays traverse curved paths whose shape depends on the
wavespeed structure of the Earth. Therefore, medical tomography techniques are not
directly applicable to the study of the Earth, due to often-cited problems of limited
coverage, nonlinearity and low signal to noise ratio. The effect of noisy traveltime data
on tomographic images, and useful methods for dealing with this, are subjects of this
study. o
When a sound wave or seismic wave is sent into a medium, it takes time for the
influence of the wave to progress from a point close to the source to a more distant
point. The time taken by the wave to travel from one point of interest to the next is
called the traveltime. For a medium in which there are no physical or chemical changes
during the passage of the wave, it has a definite speed when it travels between any two
points in the medium. This speed is called the average wave speed or wave velocity.
Let P denote arbitrary paths connecting a given source and receiver in a slowness

model s . We shall refer to p as a trial ray path. We define a functional 17 that yields
the traveltime along path p . Letting s be the continuous slowness distribution s(x), we
have ‘

" (s)= js(x)dlp_ | 1)

where dl” denotes the infinitesimal distance along p . Fermat's principle (Fermat, 1891)
states that the correct ray path between two points is the one of least overall traveltime,
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i.e. it minimizes 7% (s) with respect to path p. Let us define T° to be the functional that
yields the traveltime along the Fermat ray path: :
# . r . .
T =mi S ¢
min” (s) | @
where p denotes the set of all continuous paths connécting the given source and
receiver. If more than one path produces the same minimum traveltime value, then p’

denotes any particular member in this set of minimizing paths. Substituting Equation
(1) into Equation (2), we have Fermat’s principle of least time

T = J}u Jai” = min [s(x)dl” 3)
» ’ i

The traveltime functional T is stationary with respect to small variations in the path p".
The task of tomography is to find a function s(x) given the integrals T° over a family of
manifold p. -
Tomography, or more generally, the inversion for varying velocity structures using dafa
collected on bounding surface, had been firstly developed in medical field [11].
L “iqueness of recovery of s from T was established by Radon in 1917 [3]. But in 1960s,
Cormack and Hounsfield, who developed an effective numerical and medical technique
for exploring the interior of the human body for diagnostic purposes, have made the
appliec” ‘mportance of this problem clear. Aki [4] was first to use seismic data in their 3-
D study of the earth's crust. After this study, the inversion for varying velocity
structures using seismic traveltime data has become an important geophysical tool {8, 9,
10]. :

2. MATHEMATICAL PROBLEM
Let t be the measured travel time m-vector such that t” = {rl,zz,...,rm , where ¢, is the
traveltime along the i” ray path (a superscript 7 implies transpose of a vector). W

form our model of two-dimensions by dividing the rectangular region enclosed by our
sources and receivers into rectangular cells of constant slowness.

Then, s is the model slowness n-vector such that s" ={s,5,,5,,.,5, }. The relationship
between s and t is generally given by Equation (3). Let I, be the length of the i" ray
path passing through the j " cell and be defined in the form:

I, = jdl ¢ @
. Pryeelt |
Then, Equation (3) becomes .

=y L, (i=12,,m). (5)

J=l :
In the vector- matrix notation, this equation can be written in the following form:
t = Ms (6)

where the matrix M is a (mxn ) matrix whose the {* row and <he j” column is given
by I;. Then this is the basic equation of forward modelling for rgi equation analysis. In

L3
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other words, it can be considered as a numerical approximation to Equation (3). The
mathematical problem is therefore to find s from t and it is called mathematical
inversion. i :

3. RAY-TRACING

The most expensive step in any traveltime inversion or tomography algorithm is the

forward modelling step associated with ray tracing through the current best estimate of

the wave speed model. It is therefore essential to make a good choice of ray tracing

algorithm for the particular application under consideration. However, the choice of the

ray-tracing algorithm depends on a model of slowness. The model representation of the
slowness chosen in this paper is cells of constant slowness. Therefore, we shall consider

a bending method as a ray-tracing method [6].

Let (xg,v,) and(xR,yR) be coordinates of a kmown source and receiver pair,

tespectively. We are interested in the ith ray path p’ that connects the source - receiver
pair while safisfying Fermat’s principle (the first arrival necessarily follows the path of
minimum traveltime). We therefore seek the ray path p' that minimizes

= [sal” a (7)

P ' | '
Let L be the horizontal distance between two vertical boreholes. Call the abscissa x
and the ordinate y. We assumed that the ray path connecting the source -receiver pairs
can be expressed by a single valued function y(x) (or x(y)). In ray bending, we begin
with an initial ray y,(x) and seek a perturbation Sy(x) to the initial ray such that the

traveltime along the perturbed ray is reduced. Typically, the initial ray is taken to be a
straight line: ' :

yo(x) = (222
X

D-x)rys. ®

Xp X
The perturbation is to be a harmonic series of the form:

< kmx | -
Oy(%5a,, 8,08 )= D a, sm(——gi). _ )
k=1

Only sine and not cosine terms are used because the eﬁ"d_points of the ray remain
unperturbed. The i" travel time along the i" perturbed ray path, defined by

. Y 60y )= 3, (0 + 0y (60,0 ay ),
is given by the traveltime functional:

Xg . d i e
t (2,808 ) = Js(x,y’<x>>1/1+<l&—gi)-)2dx. (10)

The problem is now reduced to the determination of the coefficients a,’s that minimize

t;. 'The value for K in Equation (9) for calculating the traveltime of the ray depends
only on the resolution of our tomographic model. For a relatively 1é)w resolution, it is
necessary to seek the general bend in rays, so we only need to determine a few a,
coefficients. However, the determination of these coefficients is difficult since they
depend nonlinearly on the traveltimes t,. To simplify this problem, we chose to ighore
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the Snell's law at cells boundaries and assumed that K = 2. Then, the problem is simply
to minimize the traveltime functional given in Equation (10) with respect to the
coefficients a, and a,. To implement this, we used the Simplex method [5]. Starting

with three points which have traveltimes t',t* and t°, the algorithm seeks to replace the
point with the largest traveltime by a smaller one and then other moves are made such
as checking values between the original vertex and the reflected vertex or expansion
(contraction) of the triangle. When an improved vertex is found, the vertices are
relabelled and “the process starts over for the new triangle. If no improvement (or
improvement less than a preset threshold) is attained or a fixed number of iterations is
executed, the process terminates for this ray path.

4. THE METHOD

In agréement with Berryman [1,2], the forward problem in (6) can be replaced with the
following feasibility constraints:

Ms), 2, (=123,.,m) - (12)
This arises from Fermat’s principle and it implies that first arrival rays follow the path
with minimum traveltimes for a model s. Thus, if s is a true model then any ray path
matrix M must satisfy these constraints. Therefore, set of models. that violate (12)
along any path matrix M is called a nonfeasible set. The true solution to the inverse
problem in (6) is then obtained if and only if all inequalities in (12) become identities
for some choice of the model s. Moreover, for the m -feasible constraints the limiting
equality is an equation for the hyperplane in the n-dimensional model space. The
feasible region is bounded by these hyperplanes and by the planes.determined by the
positivity constraint, ‘ o

$,>0, (j=123,..,n). ' (13)

It can easily be shown that the constraints in (12) and (13) imply that the feasible region
of the model space is convex [2]. Hence, for a fixed ray path matrix M the set of all
feasible models includes all models either in the feasible region or on the feasibility
boundary determined by M and t.
For any combination of the ray-path matrix M, slowness vector s and the measured

traveltimes t, the number of rays violating the constraints (12) is called the feasibility
violation number, determined by .

0, 9= 350l - i) o (14

where d1is a step function. Following Lanzcos {7], a generalised eigenvalue probiem‘ is

given in the form:
0 Mju] [L 0Tu
M™ olv| |0 c|v] - (15)

where w and v are m and n vectors of ones, respectively. The matrix on the right is
defined in terms of diagonal matrices L and C whose diagonal elements are the row
sum L, and the column sum C ; of the matrix M, respectively. The quantity L, is the

total length of the path i. The quantity C ; is the total ray path segments passing
through the cell j. It is called the coverage of cell j. Any cell with C ;=0 1is
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uncovered and therefore lies outside the span of the data for the current choice of ray
paths. We retain only covered cells in the reduced slowness vector § with # <n. By
deleting the corresponding columns in the matrix M, the size of the ray path matrix M
is reduced. For the simplicity, it is assumed that # = n in the following discussions. An -
analogous eigenvalue problem pxowdmg for high contrast reconstruction is given in the

form: _
e M}[""*HT 305 IR,
MY 0| x, 0 D x,

where, for A=1, w, =u and x| =s,,

l.
Zlusj and D, Z»f"fw . - an
By writing (16) in the canomcal form, we have

-1

: ot ald
'OA,TZO 0 M|T> 0 | 0 DZMTZ
AT ol Sl o Yl I | (18)
0 D2 0 D2| [T:M™D®* 0
and
: 1
mz e W
Z Dz .

Thus, the eigenvalue problem given in (16) is transformcd into

ool e

As seen above, with normalisation the current slowness model ‘s, gives rise to the
unigue eigenvector with the highest eigenvalue and that eigenvalue is unity. Given a set
of transmitter-receiver pairs and any model slowness s, , Fermat’s principle can be used
to find the ray-path matrix M associated with s b and with any slowness ys (y >0)in
the same direction as s b If the normalised data i is given by

-l
- y=T 2 : 2n
then the probiem is to find y such that SR B
o) =y~ Ayz, [y - Ayz, | @
acmeves its minimum. This value is found to be

z, Ay _z,/ATy ‘
y= - , (23
z, A"Az, 2,7z, : . _)

since A" Az, =z,. Having found optimal slowness s » =78, in the given direction, an

attempt is made to improve the model by finding another direction in the slowness
vector space that gives better fit to the traveltime data. To do this, we consider a second
weighted least-squares problem:
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oz =[y - Az] [y-Az]+pz-2,) (z-2,), e
where u is a damping parameter. The minimum of (24) occurs at 2=2, where z,

satisfies

-

(ATA+pul)z, —2,)= A"y -z, (25)

The matrix (A"A + uI) is nonsingular for g >0, so we use conjugate-gradient method
‘ -

[12] to solve (26) for z,, . Thus, the point s =D *z,, in the slowness vector space is

obtained. It can be shown that both of points, s, and s, lie in the nonfeasible part of

the vector space. If the solution of (6) exists, it must li¢ on the feasibility boundary. So
s, and s, are used to find a point on this boundary that is optimum in the sense that it

is as consistent as possible with the ray path matrix, with the travel time measurements
and with the feasibility constraints. As mentioned previously, the feasible region is

convex. Therefore, there exists a point s, between points s, and s, that is closer to the

feasible region than the either of two end points. This can easily be found by computing
the feasﬂ)ﬁny violation number and by choosing the model that gives a minimum
violation number when we move in the direction (s ‘= s,,) from s,. Then, we get

[s,]'=s, + s, -5, O
As o gets smaller, it is expected that the inversion method is not providing any further-

improvement so that a threshold for a of 0.25 is used to stop searching. Once we find
s, and then scale it up to the point, denoted as s, in the same direction lying in the

feasibility boundary. It is not hard to see that these three points, 8,,8, and S, are

distinct unless we found the exact solution of the inverse problem. We conclude that
y =8, if and only if s, is an exact solution of (6). So unless we have already solved

the probiem these three points form a triangle and the size of the triangle gives us an
estimate how far we are from the solution.

An iterative method that uses above ideas is implemented and it is used for retrieving
slowness distribution from artificially generated traveltime data in the following section.

5. COMPUTER SIMULATIONS
We assumed. that a model slowness structure consists of 8x16 cells that have
normalised slowness one and allowed that the model slowness has a low speed anomaly
on bottom and a high-speed anomaly on the top. We then parameterised the model by
v, where the slow region had a slowness of 1+ and the fast region had a slowness of

%‘{ Thus, changes in the value of y will prov1de changes in the contrast of the model

slowness. Hence, 256 rays travelimg from left to right and 64 rays travelling from
bottom to top were used for computmg the traveltime data shown in Figures 1 2 (b) by
using ray-tracing method introduced in the paper,

Then, our computer progtam, written in C++ programming language, ran on a personai
computer and used the data to retrieve the slowness structures in Figures 1 -2(a). After
about 20 iterations, the reconstructed slowness distributions were plotted and they are
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shown in Figures 1-2(c). Visually, reconstructed slowness has similar structure with
mode! slowness. High and low speed anomalies were detected and their boundaries
were clearly recovered. These results agree with that of Berryman.

As expected, the greater contrast in the model increases bending of the ray-paths so that
it leads to deteriorate the reconstructions.

6. CONCLUSIONS
In agreement with Berryman, the results presented in this paper indicate that the method
can be a useful tool for retrieving slowness distributions from the traveltimes for the
first arrivals. However, an increase in the contrast will deteriorate the results. In
addition, ray tracing process consumes a large amount of CPU time. Therefore, new
developments in the ray-tracing algorithm and incorporating the present algorithm with
a principle of maximum entropy will be subject to our future work.
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