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Abstract- The multipie objective version of the tabu search (TS) algorithm was initially
developed by Baykasoglu et al [1-3]. The idea of applying tabu search to multiple objective
optimization, inspired from its solution structure, in which tabu search works with more than
one solution (neighborhood solutions) at a time. This situation creates the opportunify to
evaludte multiple objectives simultaneously in one run. To enable the original tabu search
algorithm to work with more than one objective the selection and updating stages were
redefined. Other stages are identical to the original tabu search algorithm. In this paper, multiple
objective tabu search algorithm is used to solve mechanical component design probfems“ with
multiple objectives. Although there exists a number of classical techniques, meta-heuristic
algorithms including TS have an edge over the classical methods in that they can find multiple
Pareto-optimal solutions in one single run. In the paper four mechanical component design
- problems borrowed from the literatur: are solved. The results are compared with several other
solution techniques including multiple objective genetic algorithms. 1t is observed that in many
of the cases the multiple objective tabu search algorithm can find better and much wider spread
of solutiuns than the compared algorithms.
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1. INTRODUCTION

Many engineering design problems involve multiple objectives. In operational
research literature these problems are known as ‘Multiple Objective Optimization’
(MOQO) problems. Generally a MOO problem is of the following form:

min or max F(X)

such that; ' 1
XeS=[X|XeA"g(X)<a, hj(X)=b;] i=12...m, j=12,..n

where: X is an n-dimensional vector of the decision variables; F(X)={f}(X), f~(X},...,
fiX)} is the set of objective functions; and § is the set of feasible solutions, bounded by
m inequality constraints (g;) and n equality (k) constraints, ¢; and b; are constants. For
continuous variables A= 9, for discrete variables A contains set of permissible values.

In MOO problems including engineering design problems objectives are
generally conflicting objectives. In general, existence of conflicting objectives results in
a number of optimal solutions. The concept of Pareto optimality is generally used to
characterize optimal solutions to a MOO problem. The Pareto-optimal (non-dominated)
solution is defined as follows: a solution X* & § is Pareto optimal if and only if there
exists no X & S such that fi(X) sf(X*) for i=1,2,3,....k with fi{X) < f{X*) for at least one
value of i, In other words, the solution X* is Pareto optimal if no objective function can
be improved without worsening at least one other objective function. Since no one
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Pareto-optimal solution can be said better than another without further consideration, it
is desired to find as many such Pareto-optimal solutions as possible,

Unfortunately, classical techniques impose several limitations on solving
mathematical programming models including the multiple objective ones [1-3]. The
problem is mainly related to inherent solution mechanisms of these techniques. Their
solution strategies are generally depended on the type of objective and constraint
functions (linear, non-linear etc.) and the type of variables used in the problem
modeling (integer, real etc.)[3]. Their efficiency is also dependent on the size of the
solution space, number of variables and constraints used in the problem modeling, and
the structure of the solution space (convex, non-convex, etc.) [1,2]. They also do not
offer a general solution strategy that can be applied to problem formulations where,
different type of variables, objective and constraint functions are used [3]. For example,
simplex Algorithm can be used to solve models with linear objective and constraint
functions; geometric programming can be used to solve non-linear models with a
posynomial or signomial objective function etc. However, most of the engineering
design problems require different types of variables, objective and constraint functions
simultaneously in their formulation. Therefore, classic optimization pracedures are
generally not adequate or easy to use for their solution [3,4]. _

Researchers have spent a great deal of effort in order to adapt many engineering
design problems to the classic optimization procedures. Many examples can easily be
found in the literature. An interesting application from the author's previous research,
which was related to cutting conditions optimization using geometric and dynamic
programming might be an interesting example [5]. It is not easy to formulate a real life
problem that suits a specific solution procedure. In order to achieve this, it is necessary
to make some modifications and/or assumptions on the original problem parameters
(rounding variables, softening constraints etc.)[3]. This certainly affects the solution
quality. A new set of problem and model independent heuristic optimization techniques
were proposed by researchers to overcome drawbacks of the classical optimization
procedures. These techniques are efficient and flexible [3,4]. They can be modified
and/or adapted to suit specific problem requirements. Three of these widely accepted
and applied techniques are known as Genetic Algorithms [6], Tabu Search [7] and
Simulated Annealing {8). ‘

In this study the focus is on solving multiple objective design of mechanical
components using the multiple objective tabu search algorithm (MOTS). MOTS
algorithm was initially proposed by the author [1,3]. The idea of applying tabu search to
MOO comes from its solution structure, in working with more than one solution
(neighborhood solutions) at a time. In fact, any solution methodology that works with
more than one solution vector at a time can be effectively used for MOO like genetic
algorithms [1]. Due to its population-based search characteristic, the genetic algorithms
are frequently applied to MOO problems. To enable the TS algorithm to work with
more than one objective, selection and updating stages of the basic TS are redefined.
Other stages are similar to the original tabu search algorithm. In contrast to original TS
algorithm, MOTS algorithm has two more lists in addition to the tabu list. The first one
is the Parefo list, which collects selected non-dominated solutions found by the
algorithm. The second one is the candidate list, which collects all other non-dominated
solutions, which are not selected as Pareto optimal solutions in the current iteration.
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These solutions may become seed solutions if they maintain their non-dominated status
in later iterations. The candidates list plays also an important role, it gives the
opportunity to diversify the search [1,3]. : : N

In this research paper, the efficiency of MOTS is investigated in finding diverse
Pareto-optimal front in a number of engineering design problems. The first design
problem is the design of machine tool spinidles. The second problem is gear train design
problem. The third problem is I-'beam design problem and the final problem is two-bar
truss design problem. The quality of solutions obtained from the MOTS is compared
with the results of several other technigues including genetic algorithms in the paper. It
is observed that MOTS is eligible to solve engineering design problems. In most of the
cases MOTS converged solutions, which are better or not worse than the solutions
generated by the other algorithms. '

2. AN OVERVIEW OF THE MOTS ALGORITHM

The elements of the MOTS algorithm for finding Pareto-optimal solutions in
MOO problems with any type of variables (integer, zero-one, discrete or continuous)
and performance functions (linear, non-linear, convex, non-convex) are defined as
follows [1.3]: -
Initial Solution: A randomly generated or feasible solution vector is initial solution.
Generation of neighborhood solutions: To generate a neighbor for any type of
variable, new values are formulated as [1-3]:

s
Integer variable xi = xl. + integcr[(,’l*random() - 1)*Stepii]
Zero-One variable o Lif %=0 : ' ‘ ;
f. O if x,- =1 ) ) . . . ‘ . '2
. * . .
Discrete variable T . X :d(l&integer[(z*ramfon( )—1)’*’.5‘[@;1'1,]) UC X ﬂdl
Continuous variable : x: =x; + (% ranhfom( )= 1) * stepc; |

Where; x;: Value of the " variable prior to the neighborhood move. xf* : Value of the i
variable after the neighborhood move. random( )."Random number generator, where
random( e (0,1). stepi;, stepd; , stepc;: Step size for integer, discrete and real variables.
d;: The 1™ element of the discrete variable subset X% integer| |: Function to convert a
real value to an integer value. According to the types of variables used in the model, the
appropriate movement strategies are used to generate a previously determined number
of feasible, non-tabu, neighborhood solutions from the current -seed solution.
‘Neighborhood solutions must also be non-dominated by the current seed solution. .

Selection of the seed solution: Selection of the seed solution is performed using the
Pareto optimality logic (domination and non-domination). Pareto optimality is an
economics term for describing a solution for multiple objectives. It is generally used to
characterize optimal solutions to a MOO problem. The Pareto optimal (non-dominated)
solution is defined as follows: a solution x*& s is Pareto optimal if and only if there
exists no x& s such that fi(x) <fi(x*) for i=1,2,3,...,m with fi(x)< fi(x*) for at least one
value of i. In other words, the solution x* is Pareto optimal if no objective function can
be improved without worsening at least one other objective function. Based on the
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Pareto optimality logic, the selection of the best neighborhood solution as the new seed
solution is performed in the following manner:

i) For each neighborhood solution vector, the corresponding objectlve function values
are calculated. In the example given below, the neighborhood size is three and there are
two real variables and two objective functions to be maximized. '

) ) 3 Neighborhood solutions {non- Corresponding objective
Seed solution followed by objective function tabu, feasible and not dominated Juncrion values of
values ‘ by the seed solution) neighborhood solutions -
{6.36.1) - {60.08 47.09)
4.84.6) (52.4 40.93) - 66) -y (58.79 46.54)
: ’ (6.4 6) ’ = (60.39 46.86)
Variable values  Objective values Variable values Objective values

if) Candidate seed solutions within the neighborhood solutions are identified. Candidate
“seed solutions should not be dominated by other neighborhood solutions, solutions in
the Pareto list or solutions in the candidate list. This process is illustrated below.

Seed solution followed by Neighborhood salutions (non-tabu, feasible Objective function valnes of
abjective function values and not dominated by the seed solution) neighborhaod solutions
) 4.3 6.1} ' =3 {60.08 4709 C
(4.8 4.6) (524 4093) - 6 6 : - (58.79 46.54)
: : ' 6.4 6). oL - (60.39 46.86) O
Pareto List L Candidate Llst . :

O 00 0y % o T (4 3){46.93 33.98) %'
(0.5 0.5)(16.97 13.44) % (3 4)(42.64 36.93) %
(1124 19) % : R

(2 2)(33.94 2687) %

(3 3)(41.57 3291) %

(3.8 3.6) (46.57 36.26) ¥

(4.8 4.6) (52.4 40.93)

(O: Candidate solutions, %: El:mmated solution from previous iterations) :

iif) One of the candidate solutions is randomly selected as the new seed solution. If
there are no candidate solutions in the current. nelghborhood the oldest solutwn from
the candidate list is selected as the seed solution, -

It can be seen from the above selection strategy that the dominated solutlons are
not taken into consideration, because the purpose is to find the Pareto optlmal solutio
which do not dominate each other. MOTS dlgorithm works with two more. dynamic,
lists namely Pareto list and Candidate list, the Candidate list (which collects potential
candidate Pareto optimal solutions and updates their status' dynamically) enables. the
search proeess to avoid abandening while searchmg and diversify-the search (this case
can also be imagined” as avoiding to fall into" the trap ‘of local optima in global
optimization). Pareto list collects the seed ‘(or -currently: selected) potentlal Pareto
- optimal soliitions and dynamically updates their status, '

Updating the lists: The initial feasible solution vector is recorded as the ﬁrst k.m)wn

" Pareto solution vector. .The solutions, which .are deminated by any neighborhood .
solution, are removed from both Pareto and candidate lists in each iteration, Then the -

. seed solution is added to the Pareto list, and other candidate solut;ons are put mto the'
candldate hst This process is shown on the same example- below :

B

t Paretofist ' ggg__gdatghst e e
ooy - T L @3@6933305) % o '
(0505)(!6971344)8 ‘ (34)(42643693}8
anesmx o L (636!)(60984739}

(22)(33.9426.87) X

.| (383:6)(46.5736.26) X . "
. [4846) (5244093 % "

GHELSTIRIN X . LT T
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Figure 1. The flowchart of the MOTS algorithm {3]

Selected seed solutions for an arbitrarily defined number of previous moves are
considered as tabu, since reusing one of them may trap the algorithm into cycling
through recent, moves. In our algorithm, the tabu list contains m solutions,
corresponding to the last m seed solutions. The tabu list is circular, i.e. when it is full a
new item replaces the head of the list. :

Aspiration criteria: In combinatorial optimization problems, solution vectors are
generally generated indirectly using several features of the problem at hand. For
* example in a manufacturing cell formation problem a new solution can be generated by
randomly reassigning part-machine pairs to different cells in each iteration in order to
obtain a new solution [9]. In such a case instead of putting the whole solution vector in
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the tabu list as tabu solution only indices (features) of randomly selected and reassigned
part-machine pairs are put into the tabu list. However, reselection of these features for
new solution generation in later iterations might generate different solution vectors, as
these features themselves are not the solution vectors. Therefore, optimal solutions may
be missed if these features are considered strictly as tabu. In order to prevent this
situation in TS applications an aspiration criterion needs to be defined to override the
tabu status of features when necessary. But, if the entire solution vector is put into to the
tabu list then it is not necessary to define an aspiration criterion, which is generally the
case in design optimization problems.

Termination: If a previously determined number of iterations is reached, or if the
candidate list is empty and the algorithm cannot find any new candidate solutions, the
program terminates. The general flowchart of the algorithm is given in Figure 1 [3].

3. MULTIPLE OBJECTIVE DESIGN OPTIMIZATION PROBLEMS

MOTS algorithm is applied to four design-optimization problems collected from the
literature. In each application the algorithm successfully found good sclutions in
comparison to the reported solutions. The MOTS algorithm is programmed using C++.
The program is an object oriented one and uses advanced linked list constructs. The
program is tested on a Pentium HI-MMX model PC at 450 MHz (128 MB RAM).

3.1. Compound Gear Train Design

This problem is taken from Deb e al [10]. A compound gear train is to be
designed to achieve a given gear ratio between the driver and driven shafts (see Figure
2}. The objective of the gear train design problem is to find the number of teeth in each
of the four gears so as to minimize:
i. The error between the obtained gear ratio and a required gear ratio of 1/6.931 [10} and
il. The maximum size of any of any of the four gears.
Since the number of teeth is integer, all four variables must be integer. By denoting the
variable vector x = (x, X2, x3, Xq) = (T, Ty, T, T, two objective optimization problem is
given as follows:

Driver

Fottower

Figure 2. Compound gear train

2
. I X, X,
minimise o

6931 x,x,
minimise  x = max(x,, Xy, Xy, £, ) 3
LA [2€x,%,,x,,x, <60

XXy, X5,%, 20 & Integer

For solving the compound gear train design problem, MOTS parameters are set
as follows; neighborhood size =150, tabu list size =20, step sizes for the fist, second,
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third and fourth variables are taken as 5, 5, 5, 5, maximum number of iterations is set {o
5000. Using this parameter set MOTS found 41 solutions after 402 iterations in 2
seconds. All obtained solutions are shown in Figure 3. The MOTS is also run with
different parameter sets and no significant differences observed on the solution quality.
The comparison of the best values of objectives obtained from MOTS and other
techniques presents that solutions of MOTS are not dominated. Moreover, MOTS found
more Pareto-optimal solutions than all other techniques, and the spread of the MOTS
solutions are much wider in Pareto-optimal front see reference [10}. The comparisons
are also summarized in Table 1.

LY PP @ @

] 0,1 2 0,3 4 0.5 0.6 0.7 0.8
obj L

Figure 3. MOTS solutions for compound gear train problem

Table 1. Comparison of solutions for the compound gear train design problem
Number of Pareto-optimal | Best objective function values found for obj-1 | Comput. time {in sec)
A solutions found and obj-2and solution quality records

MOTS 41 {1.83*10°%, 37) [0,732258,12) 2

GA-1 of Deb et al {10] G {183*10%, 371{2.47%107, 30) Not available
GA-2 of Deb et al £10] 23 Deminated by MOTS and GA-2 Noi avaijuble
Lagrangian | {0] 1 Not Dominated by any other technigque Not available
Branch-and-Bound {10) 1 ) Dominated by MOTS Not available
Single Obj GA-1 [10] 1 Not Dominated by any other technigue Noet available
Single Obj GA-2 [10] 1 Not Dominated by any other technique Not available

3.2. Two Bar Truss Design

This problem is taken from Deb ef al {10]. The problem was originally studied
using the &-constraint method. The truss has to carry a certain load without elastic
failure (see Figure 4). Thus, in addition to the objective of designing the truss with
minimum volume, there are additional objectives of minimizing stresses in each of the
two members AC and BC. The following two-objective optimization problem for three
variables y (vertical distance between B and C in m), x; (length of AC in m) and x
(length of BC in m) is constructed by Deb et al {10].
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100 kN

Figure 4. Two-bar truss

minimise  x,4/16+ y? +x,41+ y*
minimise max(C ., )
sk, Max(o e, 0 pe ) S1%10° , .
1<y<3 - ' 4
X,%y,y 20 & continuous

20416+ y? _BOyI+y?

. Fx, , o VX,

For solving the compound gear train design problem, MOTS parameters are set
as follows; neighborhood size =150, tabu list size =20, step sizes for the fist, second,
and third variables are taken as 2, 0.01, 0.01, maximum number of iterations is set to
5000. Using this parameter set MOTS found 651 solutions after 1562 iterations in 18
seconds. All obtained solutions are shown in Figure 5. The MOTS is also run with
different parameter sets and no significant differences observed on the solution quality.
The comparison of the best values of objectives obtained from MOTS and other
techniques presents that solutions of MOTS are not dominated. Moreover, MOTS found
much more Pareto-optimal solutions than the other techniques (€ -constraint method and
'Deb et al’s GA-1 and GA-2 [10]), and the spread of the MOTS solutions are much
wider than the €-constraint method see reference [10]. The solutions of MOTS are
spread in the following range {0.005902 m’, 99557 kPa}, {0.056623 m’, 8432 kPa),
whereas the spread of solutions of Deb et al’s GA-2 [10] are in the {0.00407 m’, 99755
kPa}, {0.05304 m®, 8439 kPa} range. If the minimization of the stress is important,
MOTS finds a solution with stress as low as 8432 kPa, whereas the GA-2 of Deb ef al
[10] has found 8439 kPa, €-constraint method has found 83268 kPa. As a result, the
quality of solution obtained by MOTS and GA-2 of Deb are nearly equal. But MOTS
found much more Pareto-optimal solutions in the Pareto-optimal front. Both MOTS and
GA-2 dominated &-constraint method in terms of solution quality and number of
Pareto-optimal solutions found. '

-~
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Figure 5. MOTS solutions for two-bar truss problem

3.3, Machine Tool Spindle Design

- The machine tool spindle problem (see Figure 6) is originally. modeled by
Eschenauer et al [11]. Coello [12] remodeled this problem as a MOO problem and
solved it using their genetic algorithm, which is known as MOSES. They also compared
their results with four other MOO techniques with respect to best results obtained for
each objective function. In this test study, their model is solved by MOTS. The model is
given in Equation 5. More details about the model can be obtained from Coello [12].

. . C, :
. ) . F

]

i el a B

- Figure 6. Sketch of the inachin_etobl spindle
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minimise %{a(df —dhy+l(d} -d?))

minimise (14 Lo +‘F‘[a v 4y +5~‘3-l
3EL, al, : l ¢l

1, =0.049d; —d3}, 1, =0.049(d; —d{), ¢, = 354005,
5. i-1,20

L, -1<0

d,-d, <0

d, ~d,$0 5
d, —d, <0
d,-d, <0
d, —d, <0
pd,—d, 50
pady ~d, S0

“

[, ¢, =3540008,,]" 41"

rh

[A“ +HA, -Af,)% A0

d, 20, continnous & d.d, discrete

a?

In the machine spindie design ‘model d, and dp are discrete variables and d,
should be selected from the following set {80, 85, 90, 95}, and d, from the set {75, 80,
85, 90}. For solving the spindle design problem, MOTS parameters are set as follows,
neighborhood size =10, tabu list size =20, step sizes for the fist, second, third and fourth
variables are taken as 3, 5, 4, 4, maximum number of iterations is set to 1000. Using this
parameter set MOTS found 128 solutions after 348 iterations in 9 seconds. All obtained
solutions are shown in Figure 7. The MOTS is also run with different parameter sets
and no significant differences observed on the solution quality. The comparison of the
best values of objectives obtained from MOTS and other techniques reported in Coello
[12] presents that solutions of MOTS are not dominated. These comparisons are also
shown in Table 2.

0,04
0,035 A
0,03
0,025 -

o
0,015 -
0,01
0,005 +

0 500000 1000000 1500000 2000060
obj-1

Figure 7. MOTS solutions for machine spindle design problem
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Table 2. Comparison of the best results for each objective of the machine spindle
design problem (For each method the best results for f3(x) and fa(x)are shown in boldface)

) Techniques e, [ d, dy fi(x) Six '
Monte Carlo-1 59.08 189.17 %) 75 60676547 0.032463
Monte Carlo-2 20.26 193.29 94 85 1457748.36 .019242
GA(binary) 60.00 200.00 80 73 494015.44 0.038087
GAbinury) 25.60 190.09 95 90 1643777.68 0.016613
‘GA(floaling point) 56.16 194,49 95 90 112440937 0.017951
GA(laating point) 25.35 189.58 95 90 1637052.38 0.016615
Litcrature . 63.89 183.29 83 80 531183.70 0030215
Lilerature : 06,45 183.36 95 85 694200.03 0.023191
MOTS - 39,84 199.26 80 75 497644.1 (.037839

MOTS 38.02 199.02 &5 80 1485169 0016894

3.4. I-Beam Design

In Figure 8, design optimization for a simply supported I-beam is shown.
Osyczka [13] originally modeled this problem. Coello and Christiansen [14] remodeled
the problem as MOO problem and solved the model using genetic algorithm, which is
known as MOSES. They also made an extensive comparison of their results with some
other MOO techniques with respect to best resuits obtained for each objective function.
In this study, their model is solved by MOTS. The model is given in Equation 6. More
details about the model can be obtained from Coello and Christiansen [14].

Figure 8. Sketch of the simply supported I-beam

minimise  2u,x, +x,(x, —2x))

e 60000
minimise - S
Xy (o~ 200" + 2y x (g + 3 (k- 20,
o 16 : 1800(}{))5,2 _ 1500(}\:2 20
Xy (e, = 2, )+ 2, (o + 30,y = 22,0 (o~ 23,00 + 2,0 6
105 x 80
10<£x, £50
09<x, 25
09<x S5

Xy, Xy, X, 20 (continuons)
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For solving the I-beam design problem MOTS parameters are set as follows;
neighborhood size =10, tabu list size =20, step sizes for the fist, second, third and fourth
variables are taken as 5, 5, 2, 2, maximum number of iterations is set to 1000. Using this
parameter set MOTS found 92 solutions after 178 iterations in & seconds. All obtained
solutions are shown in Figure 9. The MOTS is also run with different parameter sets
and no significant difference is observed on the solution quality. The comparison of the
best values of objectives obtained from MOTS and other techniques reported in Coello
and Christiansen [14] presents that solutions obtained from the MOTS are not
dominated.

0.04
@
0035 -
k4
0.03 | Y
+
0,625 1

g
o 0062
Q
0015 4 )
061 g d

(008 -

0 106 200 360 400 580 BGO 700 800
obj1

Figure 9. MOTS solutions for I-beam design problem

4. CONCLUSIONS

Any optimization technique, which works with more than one solution vector in
its inherent solution mechanism, such as TS, can be effectively used for solving MOO
models including engineering design ones. TS is a heuristic neighborhood search
algorithm that works with a set of potential solutions known as neighborhood solutions.
This gives TS an advantage in solving MOO problems directly without requiring -
additional method. Based on this observation, recently Baykasoglu et af [1-3] develop. .
the multiple objective versions of TS, which is known as MOTS.

In this study an application of MOTS to solve the mechanical components
design models is presented. Four different problems collected from the literature are
solved. The first problem is compound gear train design problem, the second one is two-
bar truss design, the third one is machine tool spindle design and the final problem is I-
beam design problem. In all of the design problems MOTS has found very good results.
The solutions obtained from MOTS dominated solutions obtained from the classical
techniques and are better than the compared genetic algorithm solutions in terms of
number of Pareto-optimal solutions obtained. It can finally be concluded that MOTS is a
viable candidate for solving engineering design problems.
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