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Abstract: The Solution of the Subproblem of the Cutting Angle Method of Global

Optimization for problems of minimizing Increasing Positively Homogeneous of degree

one functions is proved to be NP-Complete. For the proof of this fact we formulate another

problem which we call “Dominating Subset with Minimal Weight”. The solution of this

problem is also NP-Complete.
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1. INTRODUCTION

Cutting Angle Method described in the papers [1-3] was-developed for solving a broad
class of global optimization problems. This method is an iterative one requiring the solution

of a subproblem (minimizing functions fix), defined on the set S={x| Zx,. =i, x, 20,i=l,
i=l

..., n}, where x=(x,,...,x,) ) , which in its turn is, generally, a global optimization

problem. Different algorithms based on discrete programming and dynamic programming

were offered for the solution of this subproblem in the papers[1, 3 - 6.

In this paper we study some properties of the optimal solutions of the subproblem and
by means of these properties prove that this problem is equivalent to a problem of Boolean
programming, which we call “Dominant Subset of Minimal Weight”. The last problem can
be used in other situations as well. By transformation of this problem to the Knapsack
problem we prove that it is NP-Complete, therefore the subproblem considered above is
also NP-Complete.

2. FORMULATION OF THE PROBLEM

Let (1) be an (m* n) matrix, m=n, with m rows I*, k=1, ..., m, and n columns,
i=1,...,n Alielements I 20. The first n rows of (/}) matrix form a diagonal matrix,
ie., {f>0,only fork=1ii=1, ..., n
Introduce a function |

h(x)=max min 1} x,, where I(1*)={i: I} >0}.
N G

The problem considered in this paper is formulated as
The Subproblem

Minimize h(x) ‘ (H
subject to
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x€S={x] > x, =1, x, 20, i=l,...,1) 2)
izl .
3. SOME RESULTS CONCERNING OPTIMAL SOLUTIONS

The optimal sofution for the case m=n is as follows:
Theorem 1.{6] If m=n, then The Subproblem (1)-(2) has a unique solution

X h(x)/!, , =1, ..., n, where 3)

hx)= min A(x)= 1/2—4 @)

: i={ ,
Corollary 1. [6] minh(x) for m=n is the lower bound of minh(x) for any m>n.
If m>n, then two cases are possible.

Case 1. For each k>n, thete exists {, such that [f </,
Theorem 2. [6] If for every k>n, there exists 7, such that [* <1’ then the Subproblem

possesses a unique solution, which coincides with the solution for m = n.
Case 2. 3 K, such that [ > lf,\?’i =1,...,n1, for Vke K ,1i .e. the conditions of Theorem 2
are not satisfied. We will use the following notation:

h(x)= min I x;, k=1,2,. (5)
&ty

h(x) = max R ), (&)

h' = min /(x). . . (7

Clearly, if x* is a solution of the subproblem (1)-(2), then foreach k (k=1,2, ..., m1) there
is i, such that h(x") = If x, andfor k Snwehave iy=k ie. m(x)= (" x . Let x& S
and foreach i (i =1,2,...,, n) define

ki(x) = awmdx{h ()| (x) =2 x5, =i} (8)

k=l
Clearly, if for the given i there is no k > n with (x) = lf x.,then kix)=1i,ie.
hix)= 1 x, . - (9)
Remark 1. If for a given x, we call the smallest element of each row (i.e. the element l,."'x,.
which equals to /, (x)) a chosen element, then for each column i the row number of the

largest chosen element of this column will be k(x) .
Let us define ‘
L(x) =" = 1,2, (10)
Theorgm 3.If x*:(xf,x;gm, X ) is an optimal solution of the Subproblem (1)-(2), then
x::h":, i=l,2,. : (11)

, n}. It is clear from (6), (8) and (10)

—_——
-.__/

L{x
Proof. Let [ = {
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LWk, =12 .n (12)
Now suppose that Theorem 3 is not true, i.e., there are iy, i, ..., & € I such that
LX) <k, k=121 (13)
Letl,= {1, iz, ..., 1} and Eﬂ, = = {ing ina ..., in}. Then we obtain from (12) and (13)
(K =w, el (14)
Let us consider new variables ;cj iel:
X =x+a, i€l (15)
x=x- 0, i€l (16)
where o> 0, ie I and the following conditions are satisfied
C Yx =1, (17
ief
L) =L () ==L () = L (K ==L (), (18)

Substituting values of the variables ;, defined by (15) and (16) in (17) and (18) we obtain:
Sty + ) (x—a) =1,

il ik
S5+ Y- Ya =1
il il il

Since x; €S we have » x; = 1 and we obtain:
it

Sa=Ya. _‘ (19)

i, el

(18) leads to the following system of equations:

...............................................

L (xﬁ‘ ) (x,+a) = | (xm ) ( x;: - @), . (20)

....................................
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If we add equation (19) to this system (20) con51st1ng of (n -1) equations we \.ill have n
equations for {inding n undetermined ¢,> 0, ie [ . Fmdmg o’ fmm this system we can

calculate new values of (xl , i€} by formulas (15) and (16).
Let L1y = 1(1*) and B A1ty = B (1Y),

Consider /u(x) , where x :(;;T,xz,.. X, )

hk(x)wmm ¥ x =min { min l P min ¥ x 1. (21)
ie 115y el () el oty -

Assume that

h(x) = 1 X k=12, m, (22)
For each k we have two cases : ‘
Casel. i, € B (1) then from (22), (10), (16) and (14) we obtain :
min 4 x5S B <L () e = 1 (6 ) - 4 (x) e =hL ( Vo, <ht @3
Case2. i, € I(1") then from (22), (10), (20), (16) and (14) we obtain :

A * *

151%![1}1*,\: Siox <L () =1 (e =1 (5) 5 -1, (x) o, = " 4 () <h" 28
Now from (21), (23) and (24) we have Ay J—C) <h', k=12, ..., m. Therefore it follows
from (6) and (7) that h(}) :mkax hk(;)< K" and h < h*. But this is a contradiction with

optimality of the solution /" of the problem (1)-(2) .
Corollary 2. The optimal solution of the Subproblem (1)-(2) is given as :

x =11, (x*), =1, ... n where | (25)

(26)
2T
Substituting (12) in (25) and (26) we obtain : '
.*= h*/I.kf(x) i=1,...,n, where 2N
(28)

m}l

4. TRANSFORMATION OF THE SUBPROBLEM TO AN EQUIVALENT
PROBLEM

Formulas (27), (28) are obtained from (3) and (4) by substituting lt.!“{x ), instead of I .
This means that if the condition of Theorem 2 is not satisfied, the optimal solution will be
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obtained by substituting some of ['’s (those i's for which A(x" }# I x,” , v.e. for which the
condition (11) is not satisfied) by 1.

' . <N .
Now let us study the change of the function k= 1/ Z——; in this substitution.
i=i & ‘
Without restriction of generality we can assume that h is obtained from A by substitution
of only two elements (say / andl; ):

hm 1 - . Y hﬂz I .
i_'...,}i. +_1.+ _|.,_}_.. i.,i,ymlw ‘+.u_];+ 4“}”
A A P
Since the condition of Theorem 2 is not satisfied then I >{ and 3 > 17 . .
Denoting L= "}{“%-}2—-{'.,.-#“-%- and —1_— - %: W', we will have h:i and
ETTETTY R L
_ 1 ‘ _ 1
1 1. 1 1) .1 1. .t 1 -l —uf L
B e . et R i O e
B |
b= 1 i w +uy? o u gy

L-uf—ul L L(L—(uf‘ +uy )) L - L(uf‘ +uy )
We see that if- uf“ +u§2 decreases then (h' - h) also decreases. Therefore we must make

changes [ — I, such that the surm above decreases, i.e.

| Zui‘" — min. ' ' : (29)
We will use the following notation for simplicity:
pmm-n;aﬁz%—ﬁz, i#ﬂpfnjﬁllmp.

Clearly u/ is the increment of the denominator of the fraction that expresses the function A
in the substitution I/ — [ .
Let us define the following function:

L i xz0
Sglx)=
8(x) {Qifx<0

~nd consider variables x/, i=12,....n; j=12,..,p:

i

i

o[V if the substitution 17" — 1/ is accomplihed
0, otherwise
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So the Subproblem (1)-(2) is transformed into the following Boolean (0 — 1) programming
problem :

" P . A .

> > u/x{ —min ' (30)
i=i j= *f

D x/ <1, j=12,...p, (3D
i=l

T ,

DX <1, =12, 0, | (32
J=1

1l P .
D.0x =21, : (33)
i=] j=i
dyizl, j=12..p (34)
i=]

x/ =0vl, i=12,....n j=1,2,...p, ' (35)
¥/ = Sg (?aglc{ufxf}_ug), =12 =12, (36)

ax

where the condition (30) is obtained from the condition (29), the condition (31) from (5)
and (37} from (6). Since the condition of Theorem 2 is not satisfied the condition (9) will

not be satisfied for all i’s (i=1,2,...,n), i.e. at least one substitution AN lf will be
accomplished in the optimal solution and this means the condition (33). The condition (34)
is obtained from (7), (8), (10) and the definition of the variables y,.f (i.e. from (36)).

So we can obtain the optimal solution of the Subproblem (1)1(2) by the substitution

l,_f" by [i{f‘*" in formulas (3)-(4) for all xj,{" =1 in the optimal solution of the problem (30)-

(36) and vice versa. In other words the following Theorem holds.
Theorem 4. The Subproblem (1)-(2) and Problem (30)-(36) are equivalent.

5. DOMINATING SUBSET OF MINIMAL WEIGHT PROBLEM

Let us call the problem (30)-(36) “Dominating Subset with Minimal Weight”. We
can interpret this problem as follows:

Let (u]) be a (p *n) matrix, with p rows, j =1, 2, ...p andn columns,i=1,2, ..., nand
nonnegative u; for all i,j . |
The task is to choose some elements of the matrix such that: _
» Iach row contains a chosen element, or contains some element which is less than some
chosen element located in its column;
s The sum of the chosen elements is minimal.
We can give the following economic interpretation of this problem:
A task consisting of p (j = 1, 2, ..., p) operations can be accomplished by n (i =1, 2, ...,n)
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processors. Suppose that the matrix (u;) gives the time necessary for accomplishment of
the task as follows: if
uh<ul <. gul | (37)

i lj

for column £, then u;" is the time (or cost) for accomplishment of operation j; by
processor 1; u;* is the time for the accomplishment of operations j; and j; by processor i,

and so on, at last u,.j * is the time for the accomplishment of all operations (j;, jz, ..., j, ) by

processor i . The problem is to distribute vperations between the processors minimizing the
total time (or the total cost) required for accomplishment all tasks.

6. COMPLEXITY OF THE SUBPROBLEM

Now we transform problem (30)-(36) into the equivalent Multiple-Choice
Knapsack problem with p#n = g binary variables and p constraints.
Coefficients of the objective function of this problem are defined as

i 2 i 2 2 i
CI= Uy, C2= Uy ey Cp = W, Cput = Uy, Cppa = Uy pevey C2p = UL, Copa) = Ug,o.o, Cp= U
Considera 1 < k<q. Suppose ¢; - ”;j for some i,j, i.e., ¢ equals to some element in i-th
column and j-th row of matrix («; ) and for i-th column of this matrix the condition (37)

above is satisfied. Assume that ¢ is in s-th place in row (37) ie. c;= ;,;,.f-f . Then

al' =af = ... =gl =land & =qa/* = ... =gl =0.
We obtain the following problem:
q
> ¢z, - min : (38)
i)
q .
dalzzl, j=12,....p (39)
i=}
z;=0v1l, i=1... ,q (40)

To explain this transformation let us consider the following example:
Let matrix (x’ ) be as follows :

2 49
(w/)=|8 12 3.
10 6 5

111111100
Then c=(2, 8, 10, 4, 12, 6, 9, 3, S)and matrix (a/)is: ([0 1 1010111
' 001011101

Problem (38) — (40) is a Multiple-Choice Knapsack problem and since it is
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NP-Complete [7], {8], problem (30) -(36) is also NP-Complete. So the following Theorem
and Corollary hold :

Theorem 5. The problem (30)-(36) is NP-Complete.

Corollary 3. The Subproblem (1)-(2} is NP-Complete.

7. CONCLUSION

The Cutting Angle Method (CAM) solves a broad class of the Global Optimization
problems. Its computational efficiency is significantly affected by the efficiency of solving
the subproblem, which is solved at each iteration. We have proved that the Subprolem is
NP-Complete, so is recommended to solve the Subproblem by means of effective heuristic
algorithms, which leads to exact solution algorithms, thus i mcreasmg the overall efficiency
of the CAM.
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