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Abstract- In this article, the inverse problem of the differential inclusion theory is
considered. For a given £>0 and a given special type set valued map ¢ —V(),

te [t t'], it is required to define differential inclusion such that the Hausdorff distance
between the reachable sets of the differential inclusion with initial set (¢.,V(t.)) and
V(t) would be less than £ for every 1€ [t..t].
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1. INTRODUCTION

In this article the inverse problem of the differential inclusion theory (DI) is
considered, For a given £>0 and a given special type set valued map ¢ — V (),
telt.,t' ], it is required to define DI such that the Hausdorff distance between the
reachable sets of the DI with initial set (¢,,V(z.)) and V(f) would be less than ¢ for
every t€ [t,,¢ |. Note that the notions strong and weak invariant sets with respect to DI
are of great importance in construction of such DI (see, e.g. [1 - 51).

In [1-9], direct problems were considered i.e. the various properties of integral
funnels and reachable sets of the DI were studied. The inverse problem was investigated

in works [10 ~ 12]. In the offered article, the searching DI are defined so that the right

hand sides of the DI satisfy the conditions, which guarantee the existence and
extendability of the solutions. '

Let t —=V(), te [z 1 J be a set valued map,

V=grv()= {(t,x)e [t t IXR" : xe V(t)}
be a closed set. For (¢,x)e [£.,t IxR" we denote

DIV(x)=He R B0 e V(2), 7>+, lim ((r)—x)/(z-1) = d,
DiV(ex) =Y e R" :3x(e)e V (@), 7 <1, im (x(0) ~ ) (T ~1) = d .

The sets D]V (r,x) and D]V (t,x) are said respectively to be lower right hand side
and lower left hand side derivative sets of the set valued map ¢ — V(¢) calculated at the
point  (t,x). These sets are closed and they have nearly connection with lower

Bouligand contingent cone, used in many problems of the set valued and nonsmooth
analysis (see, for example [1 - 57). '
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let B= {x e Rl g 1}. We denote by symbol a(A,C) the Hausdorff distance
between the sets A< R" and C < R". Itis defined as

h(A,C)= max{Sup dist{a,C), Sup disz(c,A)}

e A ceC
-

., I means the Euclidean norm, We denote the interior of

where dist(a,C) = inf la = |
E c R" by intE and the boundary of E < R” by 0F.

From now on we will assume that V, c R", V' < R" are convex, compact sets,
intV. # @, intV' # @ and the set valued map t — V(t), t& lr z‘j is defined as

70 =[1_ - JV*+~Z—I* v, (1.1)
r -1, t —1,

for every te[z,2"]. It is obvious that V = grV (W< [t,,t 1xR” and V() C R" are
convex, compact sets for every ¢ €[z, ], the set valued map t - V({), te [t ,r*j, is

continuous.
Proposition 1.1. [13] There exist ¢ >0 and a set valued map

t—=W.(), te 1& ~ e, 1"+ mJ, such that W,(t)=V(t) for every te&[n,t ],
Wit ~a)2@, Wit +a)# @ and

W, = grW.() ={(t.0) € [t — @t + 0 JXR" 1 x€ W.(6)}
is convex, compact set.

2, PRELIMINARY STUDIES

Consider the DI -

x€ F(t,x) . @.1)
where x € R” - is the phase state vector, f€ [1,,?¥] is the time. Absolutely continuous

function x(:}:[z,,%] = R" satisfying the inclusion x(f} € F(1,x(t)) for almost all
1 €[1,,0] is said to be a solution of the DI (2.1) (see, e.g. [6]). By symbol X(z,,X,) we
denote the totality of solutions of the DI (2.1) satisfying the condition x(¢,)€ X, where
t ey, d, X, CR". Weset

X1, X)) ={x)e R" : x()e X, X))},

Ht, X)) ={t.x)e 1, 1xR" :xe X(131,,X,)}.

The set X (#;¢,, X,) is called the reachable set of the DI (2.1) at the time moment ¢ .

The set H(r,, X,) is called the integral funnel of the DI (2.1) with initial set (z,, X,).

Let £>0 be some fixed number. We will study the following problem. It is
required to define a DI so that the inequality a(X(£;¢.,V.),V(#)) <¢ holds for every

1€ [t.,1"] where the sets V(£), te |t..¢'], are defined by (1.1).
For (t,x)€ Lr*,z*Jx_R", ve (0,c,) we set

/
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F (t,x)y=[W.(t+v)~x]/v, (2.2)

O (t, x) = [W.(t = V) = x]/(~V) (2.3)
where &, > 0 and the set valued map 1 > W.(1), r¢ [t -, ,t %a@_j are defined in.
prqhsifion I.I. It is obvious that F (t,x)=[V(t+v)—x}/v if t+v<t and
(I)f,‘(r,x) =[V{t ~v)—x}/(-v) if t~vzt.. Consider some properties of the set valued
maps (7,x) — F, (t,x} and {#,x) — @) (¢,x) defined on [z,,t"}x R". Denote

a= max{”x| {1, x)€ Wﬁ.}.

(2.4)
Proposition 2.1. The sets F, (£,x) C R" and @, (t,x) © R" are convex, compact for
any (t,x)€ [t,,£ )% R". The set valued maps (£,x) = F, (t,x) and (t,x) — @ (1, x) are

continuous with respect to (¢,x) in [f,,¢ ]x R" and are Lipschitz with respect to x with

1 . .
constant — . The inequalities
14

max{ﬂf“ L fe Hf(z‘,x)}s %;(a + ”xl ), max{!jga” cpe @ (1, x)}s % (a +i]x“)

" are true for any (f,x)e [t..t ]XR" where a =0 is defined by relation (2.4).
For (t,x)e [t.,t 1XR" weset |
r, (t,x) = p(F, (t,x), D, (t,x))
(2.5) : _
where p(A,C) =inf {la~dlae A, ceC} forthesets AcCR", CcR".
Proposition 2.2. Suppose that t" —t,>2v. Then, for any (t,x)e V such that
teft. +v,t" —v], the equality 7, (¢,x) = 0 holds.
The following proposition characterizes some properties of the function
7 () [, IX R~ [0,00).

Proposition 2.3. The function 7, (-}:[f.,¢ Jx R" — [0,) is continuous with respect

' . . : . 1
to {(f,x), is Lipschitz with respect to x with Lipschitz constant 2—,
Vv

r, (1, x)l < Zé(a +|lx) for any (r,x)€ [t.,¢ ]xR", where a2 0 is defined by relation

(2.4). Moreover, the function r, (-):[£.,1 ]XR" — [0,e0) is right continuous és =1,
and left continuous as ¢ ="

Now we formulate proposition characterizing relationship of the sets F(t,x) and
@:(r,x) with the derivative sets of the set valued map t — V(#), t€ {t,,£ ], where the
sets V(¢) < R" are defined by (1.1).

Propositien 2.4. The inclusions
F'(t,x) © DIV(t,x) forany (t,x)e V,1€[r,f),
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@ (t,x) C DIV(t,x) forany (t,x)e V, t€ (t,,1"]
are satisfied. '

3. APPROXIMATION
Consider DI
X€ F'(6,%), (t,%)€ [t,," ]X R*
(3.1)
X€ P (6, x)+ 1 (1, )B, (t,X)€ [ts." ]X R”
(3.2)

where the set valued map (#,x) — F;(t,x), ¢, x)elt.,t IxR", and the function
£y (), £ IX R —[0,%0) are defined by (2.1) and (2.5), respectively.

We denote by symbols X! (z,,X,) and X?(z,,X,) the totality of solutions of the DI
(3.1) and (3.2), respectively, satisfying the condition x(¢,)e X, where X, CR",
t, € [t.,t"]. Further, we set _

X, X)) ={ne R x()e X1a, X))
X260, X)) =0 e R 1 x()e X2, X))}
HY, X)) = {60 e 16,0 IR xe X! (e, X))
HYt, X)) = {60t xR  xe X2(11,, X )}

Formulate the theorem establishing a connection between integral funnels of the DI
(3.1}, (3.2)and the set V = grV{() [t.,t |xR".

Theorem 3.1. For every ve (0,&.) where o, >0 is defined in proposition 1.1, the
inclusions

Ht Ve oV e HA V)

and consequently
X, e Vi oV c X2, V)
are fulfilled for every r& [t.,¢].

Proof. According to the proposition 2.4, F (t,x)CDIV(t,x) for any
(t,x)€V, telt.,t’). Then, it follows from proposition 2.1 and theorem 1 [1] that the
set V is positively strongly invariant with respect to the DI (3.1). It means that for any
t,.x)eV, x(he Xl(t},X,) the inclusion x(t)e V(¢) is verified for any ¢ € [tl,r*}. It
follows from here and from the theorem 1.1 [9] that

Ht, V)V
According to the proposition 2.4, we have @, (t,x)CDV({t;x) for any
(t,xyeV, 1€ (t.,t'] where the set @, (¢,x) CR", (t,x)€[t,,"]xR", is defined by
(2.3). Then, it follows from definition of the function (z,x) = r, (¢, x) that
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, O (¢, x) A[F, (,x)+ 7, (t,x)B]# @ forany (L,x)eV, 1€ (.1 ].
We obtain that
[F (6, x)+ 7, (¢, x)BIN D V(1,x)# D forany (1,x)eV, (3.3)
where € (z.,¢ ]. Then it follows from propositions 2.1, 2.3, relation (3.3) and theorem

2 {1] that the set V is negatively weakly invariant with respect to the differential
inclusion (3.2). This means that for every fixed (¢,,x)eV, there exists

x(ye X 3(1, .x,) such that the inclusion x(r)& V() is verified for every re[t.,f,]. We
have from here and from theorem 1.1 [9] that V < H?2 (4., V(%.)). Theorém was proved.
Consider DI o '
x€ F (1,004 7B, (t,x)€ [t IXR" | (3.4)
By symbol Y/ (z,,Y,) we denote the totality of solutions of the DI (3.4) satisfying
the condition x(¢,)& Y, where Y, © R", 1, € [,,#"] and we set
Y (58,Y,) =ty R" 1 x()e Y] (1,1}
Proposition 3.1. Let X, © R", Y. & R" be compact sets. Then

h(Xf,(r;z‘i,,X*),YV"(t;;m,x,))s h(Xs,,Y*)exp[—%(twrg)}+ rv[l—exp(—%(r—t*)ﬂ

holds for any 7€ [£,,¢']. |

Proof. Let ¢, € [@J“‘L x, € X\(t;:t..X.). Then there exists x()& X, {#,X.) such
that x(f,) =x,. Consequently, there exist x.€ X. and measurable function
2.0 [t,l,,fiwe R" such that p,(t)e W.(t+v) ae.in lr*,t*J and

x(t) = x. . fx(f)df+i me(r} dr
Vh Vn

(3.5)
Now, we choose v, € ¥, such that |x, - y,| € A(X..Y.) and let

f

5=y, [y@dr+= [p.(ndr (6
1% |y

I

Then, y()e ¥/ (t.,Y.) and y, = y(z))€ ¥, (1,32, Y.). It follows from (3.5) and (3.6)
that '

lx(@) - y(@0)] S h(X.,Y.) expl:— %(x ~1. )}

for any r€ [t,,¢"]. Since x, & X! (32, X.) is arbitrarily chosen, ¢, € [¢.,¢"], we obtain
that

1
XX C Y‘f(zi;z,.,Ym)wLh(}(“}’*)a3x1{~»~-;(t§ ~t@)}l3 3.7
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Now, we choose an arbitrary y, € ¥, (t,;¢,.Y.). Then, there exists y()e ¥, (t.,V.)
such that y(f,)=y,. Consequently, there exist y.€Y, and measurable function
p.C) |t ]-> R" such that p.(t)e W.(t+v)+rvB ae.in |t | and

W) = yo —L [y(0ydr £ [pu2)dz. (3.7)
V Is Vl

Now we choose x, € X, such that [y, — x| <h(X.,Y.) and let
p)={pe W.(t+v):|p.() - p| = dist (p. ), W.C+v))}  (38)
where 1€ [tt] Since the set valued map ¢t - W, (t+v), t€ [ztj is continuous, the
sets W,(r+v) are convex and compact for every t€ [t_.:,t*], the function

p.(): Lt*,t* J~—> R" is measurable then according to [4], the function p(): [t,,r*J—e R"
defined by (3.8) is single valued and measurable. Since p.()e W.(t+v)+rv B ae. in
..t | then '

p.(t) - p(t)| < rv foralmostall te[z,,t']. (3.9)
Let
1 t 1 £
x(t) = x, —— {x{0)dT+~ fp(z*)dr
4 fe v 1
(3.10)

where te |r,,+*|. Then x()e X!(t.,X.) and x, =x(t))e X' {t,;t.,X.). It follows from
(3.7), (3.9) and (3.10) that

|y~ x(n)] < h(X*,Y,,.)exp[—w -E-u -1, )] + rV{I - exp[w%(t‘ wr*)D

for any te[t,,¢']. Since y, € ¥, (t;t.,Y,) is arbitrarily chosen, t, & [Lr,r*J we obtain
from here that

Yv"(r,;t,;,Y*)C Xl(rl;L.,,X.J%{hA(X*,Y,g)exp{-——l—(rl ——Lﬁ):lJrrv[i—exp (——11;([! —t*)ﬂ}B
Vv

It follows from here and (3.7) the validity of the proposition.
Theorem 3.2. Suppose v.e (0,c.) where «.>0 is defined in proposition 1.1.

Then, there exists 7 =0 such that for every ve (0,v, ] the inequality

h(Xi(I;t*,V(Ix)),V(I))S v, .[1 wexp(mé(t - t*)ﬂ

is satisfied for any 7€ (2,4 ].
Proof. Since the function 7, ():{t,,t JXR" —[0,00) is continuous with respect to

(t,x), V=grV{)cit.,t 1xR" is compact set, then there exists r. >0 such that
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rv {t,x)<r for any (¢,x)€ V. Let us choose an arbitrary ve (0,v, 1. According to the
theorem 3.1, we have _ _
X0, V() C V() forevery te[t,t']. 3.11)
Since @) (¢,x) < D;V(t,x) for any (t,x)eV,te (0], it follows from the
definition of the function (¢, x)—> r. (t,x) that
[F 0+ 0Bl D V(L @,
(3.12)
for any (t,x)eV, tre (t.,t 1. It is p0851ble to prove that r, (t, x) = r (2, x) for every
(t.xye V. Consequently, we obtain from (3.12) that '
DV, x)m[["' (t, )+ rBl#Q forevery (t,x)e dV, te (t*,t 1. (3.13)'
Consider DI

x€ F (t,x)+ 1B, (t,x)€ [t IXR’ (3.14)
By symbol ¥,"(z,,Y,), we denote the totality of s_olution's of the DI (3.14)‘satisfying
the condition x(¢,}€ ¥,, where ¥, ¢ R", t, € [t. .17, and we set
Y (5 tI,Y)-{x(r)e R": x()e Y2 (1, Y}

It foliows from relation (3.13) and from theorem 2 {1] that the set V is negatively
weakly invariant with respect to the DI (3.14). This means that for every (t,x)eV

there exists x()e ¥, (¢,,Y,) so that the inclusion x(1)e V() is verified for any
re [t;,r,]. We obtain by theofem,l.l [9] that . _ _
V(@) C Y (e, V() forany te[t.,17] C(3.15)
By the proposition 3.1 we have "

WXt Ve Y (B, V)< vn -[1—exp [—%—(r _;ﬂ,)ﬂ (3.16)

for any 7€ {t.,t ].

By virtue of (3.11), (3.15) and (3.16), the validity of the theorem is shown.

Validity of the following theorem follows from theorem 3.1 and theorem 3.2.

Theorem 3.3. For each £> 0 there exists v{(£) (0, ) that for every ve (0,v(g))
the inequality h(Xf,(t;zﬂf,V(rw)),V(r)}SE holds for any t€[t.,t'] where a.>0 is
defined in proposition 1.1. '

If there exists v.e (0,o.) such that #, (1,x)=0 for any (f,x)e JV, then
CH! @ V)=V

4. CONCLUSION

The obtained results can be applied in mathematics modeling where it is required to
specify the dynamic of the system through measurement of the phase state of the system.
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