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Abstract- In this note an algorithm for testing on stability-unstability of polynomial
segments with stable end-points is given. The algorithm is based on well-known
segment lemma and on approximate positive real roots of suitable polynomial equation.
In this paper an upper bound for absolute error of aproximate root that guarantees the
segment stability or unstability is established. In the case of unstability the algorithm,
differs from the existing algorithms, explains the segment behavior in the parameter
space. Some illustrative examples also are given.
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1. INTRODUCTION

In this paper we consider real, stable (Hurwitz) polynomials, i.e. polynomials,
having all their roots in the open left half of complex plane.
Let a(s) and b(s) be two nth order stable polynomials:

a(s)=agtas+a,s+ - +a,s", SN ¢

b{(s)=by+bs+b,s*++- +b,s". - (2)
Denote their convex combination by ‘

a(s,A)=(1-Ada(s)+A b(s)y, A0l (3)

In the following the word segment means the family of polynomials {a(s,4 ):4 € [0,1]}.

We are interested in segment stability. Recall that, if for all Ae[0]1] the
polynomial a(s,A) is stable then the segment is said to be stable. If there exists
A€ (0,1) such that the polynomial a(s,4) is unstable then the segment is said to be

unstable.

It is well known that the stability of polynomials a(s)and b(s) does not guarantee
the stability of convex combinations. '

Without loss of generality we assume that the coefficients of a(s) and b(s) are
positive; I the coefficients of a(s) and b(s) have opposite signs then convex
combination is necessarily unstable.

There are many results concerning the stability of the convex combination of
stable polynomials (see, e.g., [1-71). Bialas [2] shows that a segment is stable if and
only if det|H (a)+A H(b)| has no positive real roots, where H{a) is the Hurwitz
matrix associated with the polynomial a(s). In [3], it was shown that if a(s) and b(s)
have the same even (odd) parts then segment is stable. For a stable polynomials or
matrix, Fu and Barmish [6] determines the maximal perturbation bounds under which
stability is preserved. The algorithm given in [4] is based on the solving for the positive
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real roots of five polynomials. Rantzer [7] proved that if the polynomial
g(s) = a(s)-b(s) satisfies the growth condition then convex combination is stable. ‘

Ir this paper we give an algorithm for testing segment stability and unstability.
Our algorithm as the algorithm in [4], is based on the well known Segment Lemma in
[S]. But the algorithm given in [4] is based on the solving for the positive roots of a five
pelynomials, whereas our algorithm is based on the solving for the positive approximate
roots of a only one polynomial. If the segment is unstable, our algorithm differs from
other algorithms also allows us to describe the segment's behavior during the mot;on
starting from one end point to another.

Putting s = jw with @ >0 we have

a(jw) = (aya,@’+aw'- - Wilaw-awraw’- )y = a’(w)+ ja’(w)

b(jw) = (byb,o*+b,'-- Wjbobw'+bw’- ) = b @)+ jb*(w)
Lemma 1.1. (Segment Lemma). There exists Ae[01] such that the

polynomiial a(s,A) has a pure imaginary root s = j@ <> the relations
a’(anNdb® (w)-a’ (b (w) = 0 cy
a“{(ab(w) £ 0 (3)
a’ (b’ (w)y < 0 (6)
The value of A, mentioned in Lemma can be calculated as
Mewy=—2D) o jay = PO ™
a’{a) - b (w) a’(w) - b (W)

If we can find the positive roots @;,a},...,w, of the polynomial equation (4),

then by checking (5) and (6), one may conclude abouf segment stability or unstability.
Unfortunately it is almost impossible to find out exact roots. Therefore, we develope an
algorithm based on approximate roots of (4).
2. THE SEGMENT STABILITY ALGORITHM
The following proposition is a direct consequence of the Segment Lemma.
Proposition 2.1. Let a(s) and &(s) be two nth order stable polynomials. Then the
segment is unstable < there exists @ > 0 such that either the relations (4) and
. a“ (b (w) < 0
or the relation (4) and
a’ (b’ (@)<0
holds.
If the Eqn.(4) has no positive solution then the segment is stable. Therefore, in the
following we assume that the Eqn.(4) has at least one positive solution.
Assume that @, @,,...,®, are distinct approximate positive roots of (4) and & is

their absolute error. Thus forall i =1,2,...,k we have *
W —ESW Sw+E (8
(recall that a), is exact positive solution of (4)}. Note that for ¢ sufficiently small one

has
 — & >0. ° O

Inequalities (9) wdl be in force throughout the paper. Define



a‘(w,)
a*(@,)
b'(w,)
E(w,.) :
a’(w,)
a’(w,)

b (w,)

b (@,)
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ay—afw, + & +afw, ~ & —afo, +ef +...
Gy~ a0, — €} + afow, + & —afw, —e)f +...
b, — by, + € + b, — & —bfw, +e) +...
by —bfw, ~ & +bfw, + &) —~bfw,—e)f +...
a, (@, — &)~ ay(@, + &) + ay (@, — &) ~afw+ €)' +...
a (@, + &) — a, (@, — &) +as (@, + €)Y ~ a;(w— &) +...
b (@, — &) —by(@, + €)' +by(w, ~ &) —b(w+8) +...
b(@, + &) —b(w, - 6) +by(w, + &) —b(w—&) +...

(10)

Then in view of positivity of coefficients &, a,,...4,,b;. by, ... b,, inequalities (8), (9)

we have got the following inequalities: Forall i =1,2,..., &

Also note that

d@) s aW) < W) (11)
p@) < b@) < b@) (12)
@) £ &) £ W) (13)
B’ (w) £ bw) £ b(w) : (14)
1%@@)m1%?@)=cﬂﬁ)
imb* (@) = limb*(w) = b))
‘ &30 &0 . (15)
ling_cﬁ (W) = lgin?]a” () = a(w)
1%@@)m1%?@)=b%ﬁ

Consider the following Table 1 and Table 2, where the symbols “+’ and -’
indicate the signs of the corresponding expressions.

Table 1: Stability Table Table 2: Unstability Table
al{my + alw) | *
a (@) | a (@) -
p{w) | T b{(w,) +

b (@) p@) |~
a’ (@) + a’(w,) +
a’(e9) - @y -
b (w;) * b (w,) +
b (@),) |- b () -

Now we give upper bound for & which guaranties that for each approximate root
 w, satisfying (8) at least one column of the Table 1 or Table 2 occurs (actually at most

two column may occur).
First of all we define the cutoff frequency @, >0 such that for all @ >, the
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vectors a(w) = (a*(w),a’(w)) and b(w) = (b*(@),b°(@)) are not colinear. Since the
colinearity is given by Eqn.(4) one can take @, to be the number, greater than largest
positive root of (4). In the sequel we assume that

O<w<a, ‘ (16)
Let i be fixed. Denote )

D, = a'(w)-d®) ., D, = a(@)-a' @)
D, = & W)-a"@) . D, = a"@)-a" ()
D, = b@)-b®) . D, = b(w)-b@)
D, = b@)-B(®) , D, = b(w)-b"@)

(recall that, @, and @, is exact and approximate roots respectively satisfying (8)). After

direct calculations we get the following
Proposition 2.2. Let

max{aﬁaai,---sa”,b{},b‘,“.,bn} = M
20, - (n+ )0 +nw’™ 1+ 0? - (n+ D" + (n-Da*
max - Y ) 202 e » £ (ntl) Cz 2( ) £ :K;
(1’"‘“(()5) (I"“CUC)
20, - (n+ D) + (n-Haw!™? 1+ @’ - (n+ 2" +na™ B
max £ ( ) ‘zg ) [ , o (i‘l )2c2 ; =K2

Then forall p=12,.,8 and foralli
0=D,<2MKe (ifniseven) , 02D, <2MK,¢  (if nis odd)
Now, for the stable polynomial a(s) (and b(s)) we define lower bound for the
distance of the curve a(j@w) (0<w<w®,) from origin (it is well-known that as @ goes
from O to +eo the curve a(jw) will cut counterclockwisely the real and imaginary axes

alternately a total of n times).
Let ¢ be a natural number such that

n T
—(-D=arga(jw,)s—t,
1 (t-D=arga(jo,) 7
and ©° =0,0',®",...,0 = ®, be real numbers satisfying
o'<ot<..<o <, , (q«~1)—§—<arga(ja)") <q~;r£ (g=12,....0).
Denote by L, the straight line passing from a(jw?™") and a(jo?) and by 47 the
distance from origin to L.
Let d, =mind?. Then, by arc convexity theorem [1, p.316]
4
laCje)|zd, (O<w=w,).
Similarly, one may choose d, such that
bljw)|zd, Osw<a,).

Proposition 2.3. Let two-dimensional vectors a = (g,,a,), b= (b,,b,) are colinear
and '
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SR & B

then at least one of the following statements is valid:
L Jalz-% and Jp2-% 2. Ja|z-L and [py|>-%
7 7 7 72

The proof is obvious.
Proposition 2.4. Let d = min{d,,d,} and ¢ is chosen such that

MK e <= (f nis even)

NG
or C {(iNh
2MK2€<—6?— (if nisodd)

V2

Then for each w; at least one column of the Table 1 or Table 2 occurs.

If € satisfies (17) then
J _
OSDP<“J§“ (p=12,....8). (18)
Proposition 2.5. Let ¢ be arbitrary positive number, satisfying (17). Then
1. Segment is stable « for all i=12,..,k at least one column of the Table 1
OCCUrS. :
2. Segment is unstable ¢ there exist i such that at least one column of the Table 2
occurs.
Proof. 1. =) Assume that segment is stable. For all i=12,.,k the vectors

alw)) = (a®(@; ),a®(w.)), bl@ )=0"),b°(w)) are colinear. Let, for example,
statement 1) from Proposition 2.3 is valid:

e,k d e d
a (a),-)!zmﬁ lp W!E”ﬁ- (19)

Since segment is stable, then a®(w;) and b°(w.) have the same sign and assertion
follows from (18), (19).
e=). By (11)-(14) we obtain that for all i=1,2,....,k either the inequality
a‘(mj)b‘(a):) >{) (20)
or the inequality
a’ (@ b7 (@, ) > 0 1)
holds. If (20) holds then by (4) «®(w )" (w;)=0. If {21) holds then also by (4)

a’ (w; b (w; )2 0. In each cases by Proposition 2.1 segment is not unstable and thus it is
stable. o

2. =>). Assume that segment is unstable. By Proposition 2.1 and Proposition 2.3
there exist { such that '

a(w b* (w;) <0 and

a‘(w; )} > : lb“ (a)f‘}] P .E%

4
V2 V2

or
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@’ (Wb () <0 and (a))‘ lb”{aﬁ)

holds. Then assertion follows from (18).
The implication =) follows from Proposition 2.1 and inequalities (11)-(14).
Suppose that the segment is unstable. Then there exists i such that at Ieast one

column of the Table 2 occurs (Proposition 2.5). This i corresponds the value (see (7))

I ae(w:‘} * '%(a)‘v) m o Cfo (a)t? #

a® (w; y=b"(w; } a’(w; )b (w;)

for which the polynomial a(s,A(®;)) has pure imaginary root s = jew! (vecall that @] is

exact root of (4) satisfying (5), (6)). In view of (11)-(14) we have the following
Proposition 2.6. Let i be an index for which at least one of the columns of Table

2 occurs. Then,

M) =

a‘(w;) a(a))
a(w)-b%@;) 4 (cu) b (w,)

If 1. column of the Table 2 occurs then A{w;)e

Il J—

If 2. column oceurs then A(w] )& | ——t (@) — Qw(wfz
mae(a){_) "’"bg(a),-) a {w;)~-b{w;)

-

QW) a'w)
| @2@)=6@) ()~ b*(@) |

If 3. column occurs then A(w;)e

a’ (@) a’(w;)
aw}wm)fw)NW)
The intervals above depend on & and their lengths are sufficiently small.
Therefore these intervals give approximate values of A(w,) and its error.

If 4. column occurs then A(w;)e

A vector (py, pr..., p,)€ R™ with positive coordinates is said to belong to
3
Hurwitz region of R""! if the polynomial
pls)=py+ pis+...+ p,s" (22)
is stable.

In the case of unstability Proposition 2.6 allows us to calculate approximate
values of all A4 and its errors for which the polynomial a(s,A) has pure imaginary roots.

This, in turn, enables us to determine all values of A for which the segment acrosses the
boundary of Hurwitz region.

Proposition 2.7. If the vector {py, p;,..., p,) belongs to the boundary of Hurwitz
region then the polynomial (22) has pure imaginary root s= jCU

Proof is obvious.
Let ¢ be arbitrary number, satisfying (17). Denote by {i,i,,...,i,} the set of all i

for which at Ieast one of the column of the Table 2 occurs. Then by Proposition 2.6 each
i€ {ijiy,...,i,} corresponds at least one interval [if,;{f} which contains the exact value

Alw;) . Tf for some i more than one column of Table 2 occurs then such i corresponds
more than one interval. In this case it must be taken an intersection of these intervals
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(this intersection is nonempty, because it contains A(a)*)) Therefore, for a given &,
each ie {i;,iy,...,0,} corresponds a unique interval [/1,,,»1,]

Suppose that these intervals do not intersect each other (this corresponds to the
case when the polynomial a(s,4) has no two different pure imaginary roots s= ja,

5= jw,, @, >0, @, >0) and are written in the increasing order. Choose arbitrary
A€ Gy da)s Ay € (A2, ds), eves Ayt € Aoty ), |

and check for stability or unstability of polynomlals a(s,Ay), a(s. Ay), ..., a(s,4,,_;) . Then,
conclude about segment's behavior. For example, suppose m=3 and a(s,/?1) is stable,
a(s,A,) is unstable. Then:

1. The segment starting from a(s)=a(s,0) is an inner tangent of the boundary of

the Hurwitz region for some value Ae[4;,4i1,
2. Forsome Ae [42,12] the segment leaves the Hurwitz region,

3. Forsome A€ [43,13] the segment re-enters the Hurwitz region.
The algorithm |
1. For given stable polynomials a(s) and b(s) write the Eqn.(4).

2. If the Eqn.(4) has no positive root then the segment is stable. Suppose that the
Eqn.(4) has at least one positive root. Choose an approprlate € (see (17)). Find
all approximate, positive distinct roots w,@,,..., @, of the equation (4) with

absolute error &.
3. Calculate the numbers (10) for all i=1,2,....k. If for all o; at least one column

of the Table 1 occurs then the segment is stable. If there exists @, such that at

least one column of the Table 2 occurs then the segment is unstable. :
4. Suppose the segment is unstable and let {i.i,...,%,} denote the set of all { for
which at least one of column of the Table 2 occurs (remember that £ is chosen
such that for each ; at least one column of the Table 1 or Table 2 occurs). For

each i€ (i, iy,...,4,) calculate the corresponding interval [,_1_5,2;] which contains

,%(a)*) (i=1,2,...,m) . Suppose that these intervals are disjoint and are written in
the increasing order : |
5. Choose arbitrary 4 € (Andoh A€ (Aady)es Ay
stability or unstability of polynomials a(s,il),a(s,ﬂq),...,a(a,ﬂ,,,ml). Then

conclude about segment behavior.
3. EXAMPLES
Example 3.1. Consider two stable polynomials a(s) and b(s):

a(s)=2+8s+135% +65% + 55" + 55, b(s)=1+4s+557 +55° +3s* 457
The Eqn.(4) has the form 20° —1507+320° ~160°=0 and has three positive roots;
wf =2, wy=0848070512..., @3 =1.667566013...
and acceptable cutoff frequency is @, =2.

E(EW A ), and check for

e P

Simple computations yield M =13, K, =93, d= -J%, £<0.0002.
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Therefore & =0.0001 is acceptable. For £=0.0001 the approximate roots are
ay =2, wy =0.8480, @, =1.6675 _
By calculating the expressions (10) we conclude that for each @y, w, and @, at least one
column of the Table I occurs, and thereforerthe segment is stable.
Example 3.2.[4] Consider the following stable polynomials

a(s)=3+5+55% + 5>+ 5%, b(s) = 1+25+35% +55% + 5%
The Eqn.(4) has the ioliowmg fmm
- 23w’ +210° ~ 50 =0
and has three positive roots;
w; =0.6367324701..., @; =0.8110794934..., @, =2.164883788...
Therefore the acceptable cutoff frequency is w,=25. Computation gives
M =5, K, =67.5, and d, =0.03270685678, d, =0.2461069279 .
With d =min{d,,d,}=0.03270685678 (17) gives &£<0.0000342..., therefore & =0.00001
i acceptable. For this error, approximate roots are
w=0.63673, w,=081107, w;=216488
After calculating the expressions (10) we get that for w, at least one column of

the Table 1 occurs and for @, and @, at least one column of the Table 2 occurs. Using
Proposition 2.6 we obtain
(4, , A+ =[0.209661605 ,0.209941126], [&2,22] =[0.9563087719,0.956392263]
For A=0.5¢e (Zl,/lz} convex combination a(s,A)= (1~ Aa(s)+Ab{(s) is unstable
and we conclude that s;a——gment is unstable and starting from a(s,0) =a(s) leaves the

Hurwitz region for some A€ [A;, 4] and re-enters for some A€ [4,,42].

4. CONCLUSION

In this paper, we presented an algorithm for testing on stability-unstability o.
polynomial segments. The algorithm is based on the solving for the positive
approximate roots of a polynomial equation. |
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