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Abstract: This paper deals with analytical buckling analysis of the rectangular
orthotropic simply supported plates reinforced with longitudinal stiff ribs. It was
considered that the ribs with rectangular and circular cross-sections were parallel and
equivalent to each other. It was further assumed that the ribs were rigidly fastened to the
plate and that their cross sections were perpendicular to the undeformed middle surface
of the plate. These reinforced plates were subjected to the uniaxial uniform distributed
compressive loads. In the study, the effect of the numbers and the cross-sections of the
ribs on the buckling load were investigated. The results are striking in that how the ribs
effect the isotropic plates with low strength.
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1. INTRODUCTION

Stiffened structures are the principal structural components of ships, submarines,
aircrafts and “similar structures, which operate under harsh environmental loading
conditions and which need lighter and stronger structural materials. Buckling is one of
the important failure mechanisms under these conditions. Therefore, with the increasing
demand for lighter and stronger structures, the use of advanced composite materials is
unavoidable and the research for ways to fully exploit their properties continues.

Several researchers over the past decades made an extensive study on buckling
of composite plates. Kumar and Mukhopadhyay [1] developed a new stiffened plate
element based on first order shear deformation theory, which is a combination of
Allman’s plane stress triangular element and Discrete Kirchhooff-Mindlin triangular
plate bending element. Xu and Reifsnider [2] investigated composite compressive
failure using a micromechanical model and found that a complete matrix slippage had
reduced the composite longitudinal strength. Chattopadhyay and Gu [3] studied an exact
elasticity solution for buckling of composite laminates. Tung and Surdenas [4]
examined buckling of simply supported rectangular orthotropic plates under biaxial
loading. An approximate solution for isotropic plates stiffened by a number of
equivalent ribs was shown by Timoshenko [5].

Since composite materials have the ability to tailor many properties, such as a
high ratio of stiffness, weight, strength, thermal properties, corrosion resistance, wear
resistance, and fatigue life necessitates, many researches on composites have been
performed and will be continuing in the futare, Therefore, the main emphasis is on the
manufacturing techniques aiming at the development of stronger and stiffer materials
with lower density. One of the ways achieving this goal is to utilize metal fiber-metal
matrix plates consisting of a low ductile, usually low strength metal matrix, and elastic,
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ductile and strong metal fibres. The strength and the stiffness of the fiber and the
ductility of the matrix provide a new material with superior properties. In this study,
buckling analysis of the plates reinforced with ribs was carried out with an analytical
approach. The ribs used in this investigation have circular and rectangular cross-
sections. The effects of the rib cross-sections on critical buckling load were studied. It is
found that composite plates reinforced with stiff ribs have more resistance to buckling
than that of pure matrix plates.
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Figure 1. Loading case and geometry of a plate reinforced with cylindrical ribs.

2. MATHEMATICAL FORMULATION

A plate reinforced with many parallel ribs may be considered as orthotropic and
homogeneous. If it is reinforced with only a few ribs (one or two), it can not be
considered orthotropic and homogeneous. In this work, we considered a homogeneous
and orthotropic rectangular plate with piincipal -directions parallel to the sides.
strengthened by some parallel stiff ribs. The geometry of the plate reinforced with ribs
circular and rectangular-cross sections are shown in Figure 1 and 2. The orthotropic
rectangular plates with ‘two edges simply supported (y=0, y=b) are exposed to
uniformly distributed normal compressive forces on these edges.
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Figure 2. Loading case and geometry of plate reinforced with rectangular ribs
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Taking into consideration the combined work done on the plate and on the rib,
the buckling analysis was carried out [8]. While the plate is subjected to a compressive
load p, each rib is subjected to compressive force Py on its ends. Therefore, the rib force
can readily be found because it is postulated that the compressive strain £, in the plate

is the same as the compressive strain £, in any 1ib. Obviously,

g ==L e == b and €, =¢, EA,
' E, ' E A, ' E,

where £, is the Young’s modulus of the plate paralle] to the ribs, £; Arand Ef Apthe

Young's moduli, the cross-sectional area, and the axial rigidity for the ribs, respectively.

In the solution of the problem, we assumed that the deflection of the plate, the

deflection and the twist of the ribs were small deflections. Denoting by w(x,y) the

deflection of the plate, by W, (x), 6, (x) the deflection and rotation of the ribs, we
have by v;rtue of the rigid connection between the plate and the ribs: '

W, (x)=w(e.7,) 6,(x)= {?V) | (2
Y V*“";'A .

The potential energy of the system increases by the amount

ool (02wY . 9w otw (0w 2w Y
v, 3”2""[ 5[01[5;?) +2D|V2 —é?-é?_i_Dz[Wé;y} | %4DA[$8—);} }’)x dy
+> Z[( (), [ f ax(6,0,), f(ﬂg)zdx] o ©

D, D, and D are the bending stiffnesses for the plate and given as

2]’1 W _zjl w | and D,=2EG]2dz

where E;, E; and (G, are Young's moduli and she’n modulus of the composite plate in
the x-y directions, are given as

(D

EE, G,G,
E =EV, +EV,. E,=——"2"—  and G, =—"I "
G,’"Vm + va

mtmz 2 Efvm +E,,,V
and (EJ.I‘,. )k and (E},.J",. )k are the bending and torsional rigidities for the ribs,

respectively. It decreases by the amount of work done by the external forces .

AJ’“[ )dmfw ZPJ:( w, f dx @

Conditions at the supported (loaded) edges of the plate and at the ends of the ribs are
satisfied by assuming (m=1;2,3..)

‘ . Mz
w=f)sinExand W= f)sin"x, B, = f0p)sin T
{ \

where the function fin the form of a series with undetermined coefficients for a plate
with supported edge @ can be written as
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f = ZAnmfn(y) = Armz Sln—nb— y

where f, are continuous functions that satisfy conditions at y =0, y=b.
From equation V,=4 .we get

7DD, | [D, mY | D D, ,cY
-yl i B o 2 3 2 a4
g b2(1+25)ﬂ D, +C‘Ic] UL RS A o (m] ©

where if n=1, 3, 5,...then,'CE =2y, ¥=0andif n=2,4,6,..then 6 =1, C, =0. The
critical load P, is the smallest of all the values found from formula (5). Obviously the

smallest value from (5) is obtained for n=1, which corresponds to a half-wave, or for
n=2, which corresponds to two half-waves in the y-direction. It is impossible to decide
which of the two values (n=! or 2) must be used. This depends on ratios

ND/D,, D, / DD,, x 0, v. The following notations are introduced for
brevity;

2 2
kml = __-_.1”% PWL +2v [_ﬂi] 4 - 2D3 4 21(._0_) , F o= m{?ﬂm-}- v ,,P_.L,
Y1+26 |\ D, c JD,D, \ D \m; D, D,
D (m) D D,{cY — D
k,» = -m-‘-[——J +8 Lty |+16 —{——J . k, =8 b +1
D, e LMpZ VD, \m * 1D,
2 D, 2D . D G, 7,)
= l+2v |— + Lo |, r=al b, = LS
'1+w{ D, mpj : V@ b\/D,D,
The formula for critical load is of the form

7* /DD,
b2

=

P, = k R ()]

The results of the present investigation may be presented as fallows:

1. If the ratio of sides of the plate satisfies condition ¢ =mr, then &= l~<|—
2. If the ratio of sides satisfies ¢=05mr, then k= M;
3.. For larger ratios of sides ¢23 then

k=k if K<k, or  k=k, if  k>k

- These notations may be conveniently presented in Table 1, which includes values of ¢
and the corresponding values of & and m for the cases of n=1 and n=2.

If the rigidity ratio D, / D,, x,and v are known, the critical load for a plate
with a given side ¢ can be determined. In order to find the corresponding &, we establish
the place in the table where the given value of ¢ is found for both n=7 and n=2. After
determining the lines where ¢ is found, the corresponding values of k are taken from the
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column; of the two values, the smaller must be selected. Which value is smaller depends
on the plate parameters.

Table 1

7 ¢ m k. n ¢ - m k

I O<c<r, I k| 2 0<c<0.5r, 1 ki
1 c=r, Ll k| 2 ¢ =0.57, ok

1 B <c< '\/Ei’i ! ey | 2 0.5r, <c < 0.5\/_2—1”2 1 ky,

! \ﬁfq <c<2p 2 ky | 2 (.).5\/'21‘"2 <c<h 2 ky,

] c=2r 2 R |2 c=r, 2 &

1 2n <e< \/’6;»1 2 ky | 2 7, <c< 0.5«/61"2 2 k5

1 Jor, <c<3r, 3 ky i 2 | 0546r, <c<1.5r 3 ky

1 c =3 3 k]2 ¢ =1.5r, 3 k,

3. NUMERICAL RESULTS AND DISCUSSION

To observe the effect of the stiff ribs on the critical buckling load, the buckling
of the pure matrix and-rib materials should be examined. For the isotropic materials,
buckling formulation [7] is given as

2 5,3 2

N, :__ffiTk k:[é%ﬂ (7
126" (1-v")

where E, and v are elasticity moduli and Poisson’s ratio of isotropic material, and g, b

and ¢ are the dimensions of the isotropic plates. For pure aluminium and steel plates of

250x250x5 mm, the critical buckling loads are found as 506 N/mm and 1419.4 N/mm,

respectively. While.aluminium is light but low resisting, steel is heavy but strong. If

those two materials are appropriately composxtcd both light and stronger composite

materials can be produced.

In this stady, aluminium . piates are reinforced with stiff steel ribs with
rectangular and circular cross-sections. The effects of those ribs on buckling load are
given in lables, where the buckling loads are non-dimensionized by dividing the
buckling lvads of composite plates to that of the pure matrix material (aluminium).
Materia] properties are taken as Eg=200 GPa and v, =027 for steel, aid E,=70 Gpa

and v, = 0.30 for ajuminium.

Tables 2-5 give the non-dimensionized buckling loads for the square composite
plates reinforced with rectangular cross-sectional ribs under uniform uniaxial
compression. In tables, first lines (d=I, 1.5, 1.75 ....20 mm.) represent the widthes of
the rectangular ribs, and the first column (nr = §, 16 20,... ) the numbers of ribs.

In these tables, it'was found-that while the rib widthes were getfing larger, their
numbers were diminishing in each table (for example: for d=1 mm, nr=166; for d=4 mm,
nr=41; for d=10 mm, nr=16). Similarly, from table to table, while the rib thicknesses were -
groving, less ribs were used in composite plates (for example, for h=1 mm, nr=166, for
h=1.25 mm, nr=133; and for h=2.5 mm, nr=66). nr shows numbers of ribsg
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Table 2. Non-dimensionized buckling loads for square composite plate reinforced with
rectangular ribs under uniform uniaxial compression. (h=1 mm, t/h=5)

nr 1.000_1.500 1.750 2.000 2.500 3.000 4.000 6.000 8.000 10.000
16 1.283 1.378 1.418 1.455 1.519 1.575 1.667 1.806 1.915 2.008
20 1333 1.437 1.480 1.519 1.587 1.646 1.742 1.890 2.008

27 1.408 1.523 1.570 1.612 1.684 1.746 1.850 2.014

41 1.527 1.654 1.705 1.751 1.830 1.899 2.019

55 1.618 1.753 1.807 1.857 1.944 2.022

66  1.677 1.818 1.875 1.927 2.022

83 1755 1.904 1.967 2.024

95 1.803 1.959 2.025

111 1.860 2.026

166 2.024

Table 3. Non-dimensionized buckling load for square composite plate reinforced with
rectangular ribs under uniform uniaxial compression. (h=1.25 mm, t/h=4)

nr 1.000_1.500 1.750 2.000 2.500 3.000 4.000 6.000 8.000 10.000
13 1.336 1441 1.484 1.523 1.592 1.650 1.747 1.895 2.014 2.119
16 1.388 1.500 1.546 1.587 1.658 1.719 1.820 1.979 2.111

22 1474 1596 1.646 1.690 1.766 1.832 1.943 2.126

33 1.596 1.730 1.783 1.832 1.917 1.992 2.126

44 1.690 1.832 [.890 1.943 2.039 2.126

53 [.753 1.902 1.965 2.022 2.128

66 1.832 1.992 2.062 2.126

76 1.885 2.055 2.130

88 1.943 2.126

133 2.130

Table 4. Non-dimensionized buckling load for square composite plate reinforced with
rectangular ribs under uniform uniaxial compression. (h=1.667mm, t/h=3)

nr_ 1000 1.500 {750 2.000 2.500 3.000 4.000 6.000 8.000
10 1415 1.530 1.577 1.619 1.692 1.754 1.858 2.023 2.163
12 1465 1.586 1.635 1.678 1.754 1.819 1.929 2.109 2.267
16 1.549 1.678 1.730 1.776 1.858 1.929 2.052 2.267

25 1.692 1.834 1.892 1.945 2.042 2.129 2.292

33 1787 1.941 2.006 2.067 2.179 2.286

40 1.858 2.023 2.095 2.163 .

50 1.945 2.129 2212 2.292

57 2.000 2.199 2.290

66 2.067 2.286

100 2292
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Table 5. Non-dimensionized buckling load for square composite plate reinforced with
rectangular ribs under uniform uniaxial compression. (h=2.5mm, t/h=2)

e 1.000 1.500 1,750 2.000 2.500 3.000 4.000 6.000 8.000
8 1.582 1.713 1.766 1.814 1.898 1.972 2.102 2.334 2.556
11 1.684 1.825 1.883 1.936 2.031 2.118 2.278 2.584

16 1.814 1.972 2.039 2.102 2.221 2.334 2.556

22 1936 2.118 2.199 2.278 2431 2.584

26 2.006 2.207 2.299 2.390 2.570

33 2.118 2.355 2.469 2.584

38 2.192 2.459 2.590

44  2.278 2.584

66  2.584

In Table 6, the non-dimensionized buckling loads are given for the square
orthotropic plates reinforced with cylindirical ribs under uniform uniaxial compression.
In the same table, the first line (d=1, 1.25, 1.667, 2, 2.5, 3.125, 4 mm.) represents the
diameter of the circular ribs, and the first column (nr = 10, 25, 40,...) the numbers of
ribs. The other quantities are non-dimensionized buckling loads calculated by dividing
the buckling loads of composite plates to that of the pure matrix material (aluminium}.

_ Also in this table, it was found that the number of ribs were decreasing (for
example, for d=1 mm, nr=140; for d=2 mm, nr=83; for d=4 mm, nr=40) as the
enlargement of rib diameters. As seen from the table, the plates reinforced with fewer
ribs and larger diameter have a higher resistance to buckling than those with too many
ribs and small diameter.

" Table 6. Non-dimensionized buckling load for square composite plate reinforced with
cylindiric ribs under uniform uniaxial compression.

nr 1,000 1.250 1.667 2.000 2500 3.125 4.000
10 1.160 1.231 1353 1448 1.578 1.720 1.891
25 1329 . 1.443 1614 1.733 1.893 2.080 2.353
40 1450 1.581 1771 1905 2.096 2347 2.771
50  1.514 1.653 1.852 1997 2214 2517

75 1.640 1.791 2.016 2.194

83  1.673 1.828 2062 2.253

90  1.700 1.858 2.101

100 1.736 1.898 2.154

111 1772 1.940

140 1.857

166 1.923

4. CONCLUSIONS

In this study, analytical buckling analysis of rectangular orthotropic simply
supported plates reinforced with longitudinal stiff ribs were investigated. Parallel and
equivalent ribs with rectangular and circular cross-sections were assumed in the



110~ Hamit Akbulut  Omer Giindogdu

composite plates, which are rigidly fastened to the plate and their cross sections are
perpendicular to the undeformed middle surface of the plate. Being subjected to the
uniaxial uniform distributed compressive loads, in the study, the effect of the numbers
and the cross-sections of the ribs on the buckling load were investigated.

The results show that the composite plates reinforced with stiff ribs are more
resistive to buckling than that of pure matrix plates. Particularly, plates with prismatic
ribs are stronger in terms of buckling resistivity than the ones with cylinderical ribs. In
the cases of both cylindrical and prismatic ribs, as the number of ribs increase, the
buckling resistivity increases.

If the entries in Tables 2-5 are examined, it is observed that the plates reinforced
with prismatic ribs according to the buckling loads may have too many ribs with smaller
diameters or fewer ribs with larger diameters. As for the plates with circular ribs, the
plates reinforced with fewer ribs and larger diameter have a higher resistance to
buckling than those with too many ribs and small diameter. Therefore, for the plates
with cylindrical ribs, it might be recommended to use fewer ribs with larger diameter
rather than too many ribs with smaller diameter.

One disadvantage of using ribs with small cross-sections is that there will be no
contribution of the rib stiffening to buckling resistivity due to the decrease in rib
suifness. However, there are some possible difficulties in production and in fastening of
aluminium plate with steel ribs when ribs with larger cross-sections are used.
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