ON SOME EXTENSIONS OF DYNAMICAL HOMEOMORPHISM AND DYNAMICAL ISOMORPHISM IN DYNAMICAL SYSTEM

Necdet BİLDİK

Celal Bayar University, Faculty of Arts and Sciences, Department of Mathematics, Manisa -TURKEY

Mustafa İNC

Firat University, Faculty of Arts and Sciences, Department of Mathematics. Elaziğ-TURKEY

Abstract- In this paper, the definitions and the theorems concerning with the invariant sets, w- and α - limit sets are given and proved in the new Dynamical Systems. By using of the definition of P and P stability, some remarkable unknown results are obtained.

Finally, the definition of Dynamical Isomorphism and Dynamical Homeomorphism are given and related original theorems are presented and proved.

INTRODUCTION

A phase transformation on a metric space X is defined to be mapping $\pi: X \times I_* \to X$ where I* is the usual topological group of integers subject to the conditions [3]:

i) [Identity property]

$$\pi(x, 0) = x$$
 for all $x \in X$

ii) [Group property]

$$\pi (\pi (x, t_1), t_2) = \pi (x, t_1 + t_2)$$
 for all $x \in X$ and all $t_1, t_2 \in I_*$.

iii) π is continuous.

If X is a metric space, I* is a topological group of integers and π is a phase transformation, then the system (X, I_*, π) is called a dynamical system.

THEOREM 1.

For each t in I_* , the mapping π^t is a homeomorphism of X onto X, that is a bijection

PROOF:

The group property (ii) implies that $(\pi^t)^{-1} = \pi^{-t}$, and therefore both π^t and $(\pi^t)^{-1}$ are continuous by the continuity property (iii). Furthermore, π^t is an injection. Indeed let π be a continuous flow on X and let define π^t (x) = π (x, t). Let also π (x₁, t) = π (x₂, t) for any x₁, x₂ \in X. Then by the group property one has

$$\pi (\pi (x_1, t), -t) = \pi (x_1, t - t) = \pi (x_1, 0) = x_1$$

and

$$\pi (\pi (x_2, t), -t) = \pi (x_2, t - t) = \pi (x_2, 0) = x_2.$$

Thus this implies that $x_1 = x_2$ because of the definition

$$\pi(\pi(x_1, t), -t) = \pi(\pi(x_2, t), -t).$$

Finally, π^t is surjective for if $y \in X$, then $y = \pi^t(x)$ where x is given by $x = \pi(y, -t)$. Namely,

$$\pi^{t}(x) = \pi(x, t) = \pi(\pi(y, -t), t) = \pi(y, t - t) = \pi(y, 0) = y.$$

THEOREM 2.

For each x in X, the mapping π_x is a homeomorphism of X onto X, that is a bijection.

PROOF: The proof of the theorem is similar to the Theorem 1.

DEFINITION 2.

Let (X_1, I_*, π_1) and (X_2, I_*, π_2) be two dynamical systems. $f: X_1 \to X_2$ is called a dynamical homeomorphism providing

$$f(\pi_1(x, t)) = \pi_2(f(x), t)$$
 for all $x \in X$ and $t \in I_*[2]$.

If f is a homeomorphism providing f(xt) = f(x)t then f is called a dynamical isomorphism, the systems (X_1, I_*, π_1) and (X_2, I_*, π_2) are then said to be Isomorphic Dynamical Systems [2].

DEFINITION 3.

A point x in X is said to be critical point for the Dynamical System if π (x, t) = x for all t or a point x in X is said to be critical point of the motion if

$$\lim_{n \to \infty} \pi(x, t_n) = x$$

DEFINITION 4.

Let a motion $\pi(x, t)$ be given in the metric space X. We consider a certain positive half-trajectory $\pi(x; 0, +\infty)$. We take any increasing sequence of values of t:

$$0 \le t_1 \le t_2 \le ... \le t_n \le ... \quad \lim_{n \to \infty} t_n = +\infty$$

If the sequence of points

$$\pi$$
 (x, t₁), π (x, t₂), π (x, t₃),..., π (x, t_n),...

has a limit point y then we shall call this point a w-limit point of the motion π (x, t). The sets of the w-limit point is defined a w-limit set and denoted as Ω_x . Namely w-limit sets is described as

$$\Omega_x = \{ y \in X : y = \lim \pi(x, t_n) \text{ for some sequence } (t_n) \text{ with } t_n \to \pm \infty \}.$$

Analogously, any limit point y of a negative half - trajectory π (x; - ∞ , 0) is called an α - limit point of the motion π (x, t) [4].

The sets of the α - limit point is defined an α - limit set and denoted as A_x . Namely α - limit sets is described as

$$A_x = \{y \in X : y = lim \ \pi \ (x, \, t_n) \ for \ some \ sequence \ (t_n) \ with \ t_n \to -\infty \} \ \textbf{[5]}.$$

THEOREM 3.

Let f be a homeomorphism, $t_0 \in R$ be constant. If $y = \pi(x, t_0)$, then $\Omega_y = \Omega_{x, t_0}$

PROOF:

Let $z \in \Omega_x$. We need to show $z \in \Omega_y$. Since $z \in \Omega_x$, then there exist increasing sequence (t_n) with $t_n \rightarrow +\infty$ such that

$$z = \lim_{n \to \infty} \pi(x, t_n) .$$

If we apply the function f to the both sides of the equation $z = \lim_{n \to \infty} \pi(x, t_n)$, then

$$f(z) = \lim_{n \to \infty} \pi(f(x), t_n)$$

is found. Since f is a homeomorphism, then

$$f(z) = f \lim_{n \to \infty} \pi(x, t_n) .$$

Substituting
$$x = \pi(y, -t_0)$$
, then
$$f(z) = f \lim_{t \to \infty} \pi(\pi(y, -t_0), t_n)$$

is obtained. Using the group property one has

$$f(z) = f \lim_{n \to \infty} \pi(y, t_n - t_0)$$

Now let assume that $t_n-t_0\equiv t'_n$. Since $t'_n\to +\infty$ for $t_n\to +\infty$ and f is a homeomorphism, then

$$f(z) = \lim \pi(f(y), t_n)$$

is found. Thus $z \in \Omega_v$.

On the other hand let us $z \in \Omega_y$. We need to show $z \in \Omega_x$. Since $z \in \Omega_y$, then there exist increasing sequence (t_n) with $t_n \to +\infty$ such that

$$z = \lim_{n \to \infty} \pi(y, t_n)$$

Applying the function f to the both sides of the equation $z = \lim \pi(y, t_n)$, then

$$f(z) = \lim_{n \to \infty} \pi(f(y), t_n)$$

is obtained. Since f is a homeomorphism, then

$$f(z) = f \lim_{n \to \infty} \pi(y, t_n)$$

Substituting $y = \pi (x, t_0)$, then

$$f(z) = f \lim_{n \to \infty} \pi(\pi(x, t_0), t_n)$$
$$= f \lim_{n \to \infty} \pi(x, t_n + t_0).$$

Now let assume that $t_n + t_0 = t''_n$. Since $t''_n \to +\infty$ for $t_n \to +\infty$, then

$$f(z) = f \{ \lim_{n \to \infty} \pi(x, t_n'') \}$$

is found. Since f is a homeomorphism

$$f(z) = \lim \pi(f(x), t_n'')$$

is obtained. Thus $z \in \Omega_x$. This completes the proof of the theorem.

THEOREM 4.

If y is a critical point, then $\Omega_x = A_x = \{y\}$ such that f is a homeomorphism.

PROOF:

We know that y is a critical point providing $y = \lim_{n \to \infty} \pi(x, t_n)$. By Definition 3, we may write

that $\pi(y, t_0) = y$. Since f is homeomorphism, then

$$f(x) = \pi(f(x), t_0).$$

On the other hand it is also known that

$$x = \pi(y, -t_0), y = \pi(x, t_0)$$

by [1]. Then $y = \lim_{n \to \infty} \pi(x, t_n)$. Applying the function f to the both sides of the equation,

$$f(y) = f \left\{ \lim \pi(x, t) \right\}$$

is found. Since f is a homeomorphism, then

$$f(y) = \lim \pi(f(x), t_0) = f(x)$$

is obtained Since f is homeomorphism, this implies that x = y. The second part of the proof of the theorem can be done similar.

Hence
$$\Omega_x = A_x = \{y\}$$
.

DEFINITION 5.

A point x is called positively stable according to POISSON (written stable P') if , for any neighborhood U of the point x and for any T > 0, there can be found a value $t \ge T$ such that $\pi(x, t) \in U$. Analogously, if there can be found a $t \le -T$ such that $\pi(x, t) \in U$ then the point x is negatively stable according to Poisson (P').

A point stable to Poisson both as $t \to +\infty$ and as $t \to -\infty$ is called (simply) stable according to Poisson (Stable P) [6].

THEOREM 5.

A point x is P - stable if and only if there exist an increasing sequence (t_n) with $\lim_{n \to \infty} t_n = +\infty$ such that $\lim_{n \to \infty} \pi(x, t_n) = x$.

PROOF:

Let a point x is P⁺- stable. Then there can be found $t_n \ge 0$ with $\lim_{n \to \infty} t_n = +\infty$ for any sequence $\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > \dots > \varepsilon_n > \dots$ with $\lim \varepsilon_n = 0$ such that

$$d(x,\pi(x,t_n)) < \varepsilon_n. \tag{1}$$

Since $\lim_{n\to\infty} t_n = +\infty$ and by Equation (1) then it is clear that

$$\lim \pi(x, t_n) = x.$$

Namely there exist a sequence (t_n) with $\lim_{n \to +\infty} t_n = +\infty$ such that $f(x) = \lim_{n \to +\infty} \pi(f(x), t_n)$

Conversely, if there exist an increasing sequence (t_n) with $\lim_{n\to\infty} t_n = +\infty$, such that $\lim_{n\to\infty} \pi(x, t_n) = x$. Then it can be obtained directly that a point x is P^{*}- stable.

THEOREM 6.

If a point x is P'- stable then every point of the trajectory π (x; I_*) is also P'- stable.

PROOF:

Consider an arbitrary point $\pi(x, t)$ of the trajectory. By properties (ii) and (iii) of a dynamical system we have

$$\lim_{n\to\infty}\pi(x,\,t+t_n)=\pi(x,t)$$

[1] i.e., the point $\pi(x, t)$ is P^{*}- stable. Since for every point of $\pi(x, t)$ is P^{*}- stable, then P^{*} can obviously be written thus:

$$\pi(x; I_*) \subset \overline{\pi(x; 0, +\infty)}$$
;

the condition for stability

$$P = \pi(x; I_*) \subset \overline{\pi(x; -\infty, 0)}$$

Alternatively we can say: $x \in \Omega_x$ or $x \in A_x$ (where $\overline{\pi(x; -\infty, 0)}$ is the closure of the negative semi-trajectory).

THEOREM 7.

If the motion $\pi(x, t)$ is P⁺- stable, then $\Omega_x = \overline{\pi(x, I_*)}$.

PROOF:

Let the motion $\pi(x, t)$ is P*- stable. Then by Theorem 6, all points of its trajectory are wlimits for it i.e., $\pi(x; I_*) \subset \Omega_x$

Since Ω_x is a closed set, from the last inclusion there follows

$$\overline{\pi(x;I_*)}\subset\Omega_{\mathbf{x}}$$

On the other hand the relation holds

$$\Omega_{\mathbf{x}} \subset \overline{\pi(\mathbf{x}; 0, +\infty)} , A_{\mathbf{x}} \subset \overline{\pi(\mathbf{x}; -\infty, 0)}$$
 (2)

since the closure of a semi - trajectory contains all its limit points.

Comparing this with the inverse inclusion (2), which always holds, we have for a motion stable $P^*: \Omega_x = \overline{\pi(x; I_*)}$. Similarly if the motion $\pi(x, t)$ is P^* - stable then it is easy to show that $A_x = \overline{\pi(x; I_*)}$.

THEOREM 8.

If the motion $\pi(x, t)$ is P-stable then

$$\Omega_{x} = A_{x} = \pi(x; I_{*})$$

PROOF:

If the motion π (x , t) is P - stable, then by Theorem 7

$$\Omega_{\rm x} \subset \overline{\pi(x; I_*)}$$
, and $\overline{\pi(x; I_*)} \subset {\rm A_{\rm x}}$

is obtained Since $A_x = \overline{\pi(x; I_*)}$, then

$$\Omega_{\mathbf{x}} \subset \mathbf{A}_{\mathbf{x}} = \overline{\pi(\mathbf{x}; I_{*})} \tag{3}$$

On the other hand, If the motion $\pi(x, t)$ is P-stable, then by Theorem 7,

$$\overline{\pi(x; I_*)} \subset \Omega_x$$
, and $A_x \subset \overline{\pi(x; I_*)}$

is obtained Since $\Omega_{\rm x} = \overline{\pi(x; I_*)}$, then

$$A_{N} \subset \Omega_{N} = \overline{\pi(x; I_{*})}. \tag{4}$$

Therefore $\Omega_X = A_X = \pi(x; I_*)$ are found by Equation 3 and Equation 4. This completes the proof of the theorem.

REFERENCES

- [1] N. Bildik, On the Dynamical Systems in Metric Spaces, Ph.D. Dissertation, University of Oklahoma, 1982.
- N. Bildik, Dynamical Homeomorphism and Dynamical Isomorphism in Dynamical Systems, First University, Journal of Science and Engineering, 7 (2), 7 12, 1995.
- [3] N. Bildik and M. İnç, On Some Extensions of Dynamical Systems in Metric Spaces. Far East Journal of Math. Sci., 6, 1998.
- [4] N. P. Bhatia and G. P. Szegö, Dynamical Systems Stability Theory and Applications, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [5] G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Nostrand Reinhold Company, London, 1971.
- [6] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag. Berlin-Heidelberg, 1990.