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AN EFFECTIVE ALGORITHM FOR EULER SYSTEM IN A CLASS OF
DISCONTINUOUS FUNCTIONS
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Abstract- In this article, an effective algorithm is proposed for solving a Cauchy problem for
Euler system in a class of discontinuous functions. To this end, an auxiliary system which 1s

equivalent to. but has more advantages then, Euler system is introduced. The auxiliary system

requires less smoothness assumptions on the solution, hence, is better for the numerical
applications

1. INTRODUCTION

Let R’ denote the usual Euclidean space of points (x,y,7), and R the subspace of W with

0. We consider the Euler system of equations defined on R’ which models the flow of

incompressible, irrotational and low viscosity fluid subject to a constant pressure[ 1],[3].[4]
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where  u,v are the components of the velocity vector in the x- and y- directions
respectively. We consider the Cauchy problem for (1.1)-(1.3)

u(x,y,0)=u,(x,y), (1.4)
v(x,y,0) =v,(x,y). (1.5)

By use of the method of characteristics, the solution of the problem (1.1)-( 1.5) can be
given as

u(x, y,t)y=u,(&,n), (1.6)
vix, y,t) =v,(E,n) . (1.7)

Here, the relations for the characeristics may be given as

E=x-ut, n=y-vt .

(1.8)
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. When the Jacobian is different from zero, i.e.,
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at the roots 7 = #,, and 7 =1, of the polynomial
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the derivatives of the functions u(x, y,f) and v(x, y.1) with respect to all variables approaches
to positive infinity. In another words, the problem (1.1)-(1.5) does not have a classical
solution. In additiori, from the relations (1.6) and (1.7) , being the closed form expressions for
the solution, an expilicit form of the solution can’t be obtained in general. For this reason, one
has to resort to numerical techniques for solving the problem (1.1)-(1.5).

If the initial function_s u,(x,y) and v,(x,y) have both positive and negative slopes, at the
points where # >0 and v > 0 the solution will grow according to the the magnitute of these
quantities.

Therefore, at the first point when ¢ > min{ 1,1, }, there will be a breaking. This then will raise
the issue of determinining the physically meaningful solution.

2. AN AUXILIARY PROBLEM

In some instances, it is possible to render a single-valued solution having first type of
discontinuities from the multi-valued continuous solution. To this end, one has to generalize
the concept of classical solution to the so-called weak solution. In order to determine the weak
solution of the problem (1.1)-(1.5), first we introduce the operator defined as

0
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It is easy to see that the kernel of this operator is given by
KerM = {h=wly(x,y)], weC'(Q)}

where w — is an arbitrary function and w(x, y) is a stream function satisfying the relations

Theorem 1 If the functions « and v satisfy the equation(1.3), then the operator M ' is
independent of time.

Indeed, we have
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Here w - is a first order differentiable function and ¢ = w[w(x, y)]. If M¢e = h_ then from
the Lagrange system

de _dy _do

" v h
we obtain w(x,y) =c¢, ¢ =, , and the general solution ¢ = w[y(x, y)].

To determine the weak solution of the problem, as in [5], we consider the following auxiliary
problem.
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The initial conditions for the equations (2.1) and (2.2) are

7(x,).0)=m,(x,y), (2.3)
P(x,v.0) =¢,(x,p). : (2.4)

Here h(x, y) € ker M is an arbitrary function, and the arbitrary functions 7, (x.y). ¢.(x. v)are
such that
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Teorem 2 If the functions 7 and ¢ are the solutions of the problem (2.1)-(2.4) . then the
functions defined by
) u=Mn, v=Mg¢ with M = M(0)

are the solutions of the problem (1.1)-(1.5) .

The auxiliary problem has the following advantages

(1) The equations (2.1) and (2.2) do not involve derivatives of any order for the functions
# and v
(11) The functions 7, ¢ are much smoother than « , v , more precisely, if the functions

1. v are differentiable to the order of k. then . ¢ are differentiable to the order of
k+1,00<k<1)
These adwvantages makes it possible to approximate the problem (2.1)-(2.4) by finite
differences.
Discretizing the problem (2.1)-(2.4) by finite differences, we have [2].[5]
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M, =1, ~U , +hix, y),

D, =D -V +h(x,y), (k=012.)
M, =7,(x.).)

C . =4(x.p)

Theorem 3 For any /., /. k . the identities

U wa =0, JL VT

hold.

As can be seen, the algorithm given above is rather compact and economical.
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