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Abstract: A two dimensional, multi-link sagittally symmetric whole-body model was
developed to simulate an optimal trajectory for manual material lifting. Non-linear optimal
control techniques and genetic algorithms were utilized in the simulations to explore
practical lifting patterns. The simulation results were then compared with the experimental
data.

1. INTRODUCTION

Determination of muscle forces and joint moments is desirable for predicting
possible low back injuries during manual material handling. Unfortunately, there is no
device to directly measure muscle forces non-invasively [1]. Therefore, biomechanical
modeling becomes a necessary tool for muscle stress analysis on the musculoskeletal
system, particularly on the lumbar spine. These models also serve as an estimation tool for
kinematics and kinetics of the motion [2].

Optimal control theory has recently been applied to the analysis of human
locomotion by many researchers with the belief that it is a practical tool for explaining the
control of the human musculoskeletal system, and as such it may be successfully used in
predicting biodynamic behavior.

There are two primary reasons for using the optimal control techniques in the
biodynamics modeliné. Firstly, it is believed that locomotion obeys a certain “principle of
optimality” [3-4]. Since optimal control theory aims to determine the control laws that will
minimize (or maximize) a performance function subject to some physical constraints [51, it
provides a means for determining actuator (muscle) torques. Secondly, a dynamic model
should be established to predict the muscle forces and joint moments which produce the
movement. However, the musculoskeletal system considered is highly redundant, i.e., the
number of independent muscles acting on a particular joint exceeds the number of degrees
of freedom of that joint. Moreover, many muscles can affect more than one joint at a time,
which brings complex coupling to the system. So. there is no direct solution to the
problem. Therefore, to overcome the above difficulties, optimal control techniques are
popularly being used by researchers to estimate muscle forces [3,4,0].
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2. EXPERIMENTS

Ten healthy male and ten healthy female subjects participated in this study after
signing a consent form approved by the human subjects committee. Briefly, each subject
lifted and lowered a two-handled box attached to the arm of the LIDOLift in the
Biodynamics Laboratory of The Ohio State University. The lift cvcle occurred in the
sagittal plane of the subject. Each subject was instructed to lift and lower the box from as
low as he/she could comfortably reach to waist height, for five continuous repetitions.
Before the actual testing, the subject practiced at different loads. techniques. and
movement times to gain familiarity with the equipment and testing protocol. Then. the
tests were repeated for three (two for females) simulated loads. three techniques of litt,
and three movement times of lift in a random order. The simulated masses for the study
were 6.8, 13.6 and 20.5 kilograms (15. 30, and 45 pounds, respectively). Females did not
perform the 20.5 kg lifts. The techniques were a self-selected, stoop (straight-knee). and
squat (bent-knee) techniques of lifting. The movement times were 2. 4, and 6 seconds per
cycle. The subject was paced to complete the lifts in these times by a metronome. Further
analysis verified that the movement times were approximately 2. 4, and 6 seconds per lift
The 27 (18 for females) conditions within lift device were randomized for each subject

The joint angular position data from the middle three cycles of ecach liftine
condition were fit to 128 point curves and then averaged. This was performed so that o
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3.2. Dynamic Model

For a typical rigid link 1 in an n-link open chain mechanism, the joint reaction forces and
joint moments can be obtained by utilizing the Newton-Euler recursive formulation in the
following form

/',\‘.i = _1 x.i+l +m a (3 2 | )
1\1 = F v.i+l +mia,v.i . (3.2.2)
M M' 1 +(Fs 1+ 1% 1+ 1+Fvl[1)( ()8(8) (1\ ¢11 I+[<t\'.1[;)Sin(9)+];:lz) (22;)

where /., and F,, are forces at the joints i and i+1 in x-direction, likewise /-, and /-,
forces at the joints i and i+1 in y-direction, M, and M,., moments in opposite directions
acting at joints i and i+1, m, the mass of the link, /, and /.., lengths from center of mass to
joints 1 and i+1, respectively, a., and a,, accelerations in x- and v- directions, g
gravitational acceleration, /.- mass moment of inertia about z axes (perpendicular to both x
and y), and 6.6, and " angular displacement, velocity. and acceleration of the link.
respectively.

3.3. Optimization

One of the most significant problems in optimization of biomechanical systems is the
choice of a proper cost function reﬂecting most of the aspects of locomotion. In this
paper. it was chosen to minimize "integration over the time of sum of the square ot the
ratio of the predicted joint moments to the corresponding joint dynamic strength” The
onsidered 10 be measures of joint capacities under different posture:
and joint angular velocities.
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where 7, is the lifting duration, M, moments and S, joint dynamic strengths for the i joint
Ihe dynanuc strength values were used in the objective function as opposed to static ones

to better replicate the joint behavior and to improve the simulation. They were defined to

be functions of lomt angular positions and velocities for each joint i [13] in the following
form

SA(8.60)= .+ 6,0+ 5, 9+ﬂ,;6 +3,0° +,B,590 (332)

The coeflicients through fs determined based on experimental requltq were directly
taken from [13].

3.4. Numerical Formulation of the Problem

The problem is highly nonlinear and an infinite dimensional one. One of the
approaches to solve two point boundary value problems at that nature is to approximate
the states and/or controls by a polynomial and/or a Fourier series [10-11]. For this study,
joint angles were approximated as seventh order polynomial in the form



!
0=a, t (34

for the i" joint. Since the boundary conditions (initial and final angular positions, angular
velocities, and angular accelerations) were known for a lifting experiment. six of the
coeflicients can be determined. The other two coefficients were added to the polynomials
to introduce extra degree of freedom for optimization. By substituting these polynomials
and their derivatives into equation (3.3.1). the problem becomes a finite dimensional
parameter optimization of the form

J = J'f](a,”, NAL/ (342)
0

where 1 is the joint number, and j coefficient index of the polynomial. Since the lifting
duration is known, the problem can further be simplified by discretization in integration
time steps At as
’ .-

Ar = P (343)
where t is time, k is the number of integration steps. Then, the problem becomes
minimizing another function in coefficients and integration step size

J = fila, Al ' {344)

A genetic algorithm implementing Goldberg's [12] algorithm in Matlab was used
for optimizations. Once the cocfficients in the polynomial are estimated, the optimized
path for a lifting task can easily be determined. A sample result for a randomly selected
subject (mass of 94.7 kg, height of 1.85 m) was given for his hip joint which is the most
critical one in lifting in Fig 1. .
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" Fig. 1. Comparison of an experimental and a theoretical motion trajectory for the hip joint
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4. DISCUSSION AND CONCLUSION

A two dimensional, sagitally symmetric model was established to simulate manual lifting.
Joint torques for the five rigid link describing human body in two dimension were obtained
with the use of Newton-Euler formulation. Then, the aforementioned objective function
was formed based on these torques

As mentioned before, dynamic strength values were used in the objective function with the
belief that they are dependent not only on joint angular position but also on joint angular
velocities [131 Using strength values specifically obtained for the same subjects rather
then normalizea ones in the literature [14] brought additional power to our model

It was another strength of this paper to use Genetic Algorithms (GA) to optimize
objective function as opposed to other researchers [2.9.10.14] who used generalized
reduced gradient algorithms. Since GAs search from population of points. not a single
point, they have better chance to catch global optimum as compared to other heuristic
methods, although they don't guarantee global optimum. Furthermore. thev don't require
any derivative information, thev just use objective function evaluations, which brings
another ease to researchers because getting derivative information is cumbersome in many
cases, especially for highly nonlinear systems such as biomechanic ones [12].

Physical constraints on the system were the geometrical ones, for example a joint can only
operate in a certain range of angles. cannot exceed its upper or lower bound This upper
and lower bounds for each joints implemented in the objective as penalty functions.
Simulation results were compared ; tal fi '
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