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Abstract- With the advancement of new materials and techniques, smooth and
high performance operation of critical systems such as flight simulators, satellite
navigators and robot arms are desired. In these systems. often more than one
objective has to be accomplished. In the present study, the global criterion
method is used as the multi-objective optimization tool. A general mass-spring-
dashpot system is analyzed. Damping ratio and natural frequency are chosen as
design variables. System settling time, percent overshoot and time to reach to
maximum peak are objective functions to be minimized. Numerical solutions with
the given constraints are presented and design specifications for the control
system are suggested. It is also shown that this optimization tool is a good
candidate for multi-criterion problems.

1. INTRODUCTION

Due to recent developments in numerical tools and high precision high speed
computational environment available to the design office, new systems have been
devised and put in operation. Accurate and high performances are expected in
addition to stable working conditions. To name such systems, flight simulators.
satellite navigators and industrial robots can be mentioned. For example, a long
duration for a space shuttle after its take off can not be tolerated as well as
position errors for a pick-and-place robot used in automotive industry.

In most of these military and industrial systems, control objectives are
more than one and mostly intensified at minimizing deviations from its target, i.e.
overshoot, with minimum stable settling time. Then, the open loop or closed loop
controls can be initiated.

Any such system can be idealized as a mass-spring-dashpot system and its
stability conditions can be determined after transforming the system differential
equation mto Laplace domain from which locations of the poles would indicate

the stability of the system. As it is well-known, when the damping ratio is zero or
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negative, the system poles are located in the right-hand side of the s-plane. thus
making the system unstable. When it is less than one, or equal to one or greater
than one, the system in question is said to be underdamped or critically damped or
overdamped, respectively.

For design purposes, when damping ratio and undamped natural frequency
of a stable system can be calculated, the relations between the mass. the spring
stiffness and the dashpot coefficients can be determined and accordingly
appropriate design specifications can be recommended.

In the design optimization field, there have been techniques developed
suitable for multiple objectives [1,2]. The global criterion method is one of them
[3]. Similar to a single optimization problem but with many, design variables,
corresponding constraints and objective functions are needed.

In this study, a general mass-spring-dash pot system is considered first.
Then, its mathematical differential equation is transformed into s-domain and the
undamped natural frequency and the damping ratio are formulated. By choosing
these two as the design variables, numerical constraints are impinged on the
system settling time, the percent overshoot and the time to reach maximum peak.
The multi-objective functions are chosen as the minimization of the system
settling time, the percent overshoot and the time to reach to maximum peak. Then,
the global criterion method is utilized for a stable system and as a result. desian
specifications are suggested for this particular configuration

2. THEORY
2.1 System Control Theory
As it is well conceived that any system can be decomposed int

combination of mass, spring and dashpot. A general such svstem is
Figure 1.
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Figurel. A general system representation.



Double pole

In this figure, the mass, the spring stiftness and the damping coetticients
are denoted by m, K and B respectively. The time dependent forcing function is
given by f(#) and resulting output is shown as x(7).

The mathematical system differential equation can be written as

M5 + B + Kx = f(t) (1)

and, applying Laplace transformation to Eq.1 results the transfer function as

2
G= D (2)

s°+2kw sto’

where o 1s the undamped natural frequency and & is the damping ratio of the

system. These constants can be expressed in terms of systems mass, spring
stiffness and damping coefticients as given below.

o, = l‘/M (3)
B
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Stability of the system is determined by the location of the poles, 1.e

zeroes of the characteristic equations Figure 2 illustrates the cases for various
damping ratios
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Figure 2. Stability cases for different values of damping ratios.
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A response graph for output function of X(t) can be given for stable
systems with different damping ratios. A such plot is shown in Figure 3
illustrating the overshoot from the steady state response. /5. system settling time
and /p. time to reach maximum peak.
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Figure 3 Illustration of system characteristics for various damping conditions

It can be easily noted tfrom Figure 3 that for no overshoot, system must be
critically damped or overdamped. In aerospace or robotic applications where
precision is a key design factor | the system settling time must be within a second
accompanying a tolerable 1% overshoot above the steady state target

From the theory of linear control [4-7], the system settling time. /y. the
percent overshoot. (), and time to reach maximum peak 7p can be expressed as

4

Ts = —— (5)
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PO=¢ ™' 5 %100 (6)

Tp= — 2 (7)
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2.2. Multi-Criterion Optimization Theory

As opposed to a classical design optimization problem where single cost
function is to be optimized, the multi-criterion theory considers more than one
objective function. This 1s mostly the case in advanced svstems operating in
military or in high technology areas, where many aspects of a single design are
expected to operate at its best compromised conditions. A well outlined reference
on multi-criterion optimization is due to Osyczka, [2].

In this section, it is not intended to give full theory but mention some of
them to interested readers. In the "weighted method”, similar to weighted residual
method of finite elements, some weights are assigned to objective functions



according to their importance. This method may fail for nonconvex sets In the
“epsilon-constraint” method, one or remaining objective functions are expressed
as constraints to the problem. A clear disadvantage is that the problem may not
vield feasible solutions for certain values of epsilon. In the "/exicographic
method”, a hierarchical approach is employed according to the priorities of the
objective functions. Another method is the "minimum deviation method” where
best and worst values are to be calculated for each cost function. The “nun-max
method", "goal programming”, "genetic algorithm methods” can also be utilized
for the solution of multi-dimensional optimization problems. Global criterion
method 1s explained in the following section.

2.3. Global Criterion Method

Let £, (x") be the ith 'ideal' solution or optimum value of cost function f.
considering only the ith objective. Then the optimization problem can be written
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A sample problem is chiose:: for an applic hould
down 1n 2 seconds, the maximi:n value shoul
minimum deviation fron: tarc et should
optimally design the system according to the
mass. the spring and the dashpot characterstic

Undamped natural frequency and damping ratio are picked as tne
design variables after an examination of the system

The objective functions are the overall mimimization of percent overshool

time to reach maximum peak and system settling tme Then the optimization
problem can be written as.

X;= ¥ Damping ratio, X;= @, Undamped natural frequency (rad/s)
minimize
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4. RESULTS
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The numerical results to the multi-criterion design problem are presented
in Table I, for p values of 1 to 3.

Table 1
Value of p £ on (rad/s) Ts (s) Tp (s) PO(%) j‘
I 0.59 7.78 0.86 0.50 10 |
2 0.77 9.99 0.51 0.49 2 |
I 3 0.59 7.78 0.86 0.50 10

The corresponding design suggestions are given in Table

constraint values at optimal design points

~

2 along with

Table 2
" Value of p K/M B/2YKM | Constraint Constraint | Constraint |
Ts (s) Tp (s) . PO(%) l
13 | 606 0.59 -0.56 0 | S4E-4
2 | 999 0.78 -0.74 -0 079

From these results, optimal design points can be determined as the values
corresponding to p = 2. Thus, appropriate values for the mass, spring and damper
can be chosen accordingly.

The Figure 4 illustrates the optimal points for p values of | and 2 .
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Figure 4. Optimal points in the design space.
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5. CONCLUSIONS AND FUTURE WORK

The mass-spring-dashpot system is analyzed under the conditions of
multi-optimality requirements. A powerful method of "Global Criterion
Method" is used for the multi-criterion design optimization problem. This
problem required minimization of three objective, 1.e.. cost functions of
system settling time, time to reach maximum peak and percent overshoot from
target, with two design variables of undamped natural frequency and damping
ratios

It 1s shown that the optimization method and the suggested procedure tor
the control system problem are vigorous. It can be noted that no direct values
for the mass, the spring and the dashpot are inferred. However. the relations
between them are presented to give flexibility to the designer in choosing the
system characteristics. An extreme case for zero system settling time and zero
time to reach maximum peak are also experimented to show the versatility of
the procedure and the program. In that case, the natural frequency is increased
to its thousand fold suggesting a million for the spring to mass ratio.

For future work, it is suggested that this procedure can be applied to
different systems. To give examples, the designers in the area of automobile
suspension or robot manipulators can easily benefit from the presented
outcomes.
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