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Abstract- In this study. some problems connected with stochastic process with a discrete chance
interference X(t) are investigated. In particular, one-dimensional distribution functions of the
process are obtained and under some weak assumptions, the ergodic theorem for this process is
given. As a result, the explicit form of ergodic distribution function is derived. Moreover. the
double transform of distribution function of additive functional of the process X(t) is derived
Furthermore, asymptotic behaviour of the additive functional is investigated as 7+ — » . Based on
these results characteristic function of ergodic distribution of the process X(t) is obtained by
using a joint distribution of random variables N and S, . In addition. the first and second

moments of ergodic distribution of X(t) are expressed in terms of the moments of random
variable N.

1. INTRODUCTION

It is known that a number of very interesting problems in the fields of queues. reliability.
stock control theories, mathematical biology etc. are often given by means of the stochastic
processes with a discrete chance interference. Many good monographs and articles in this field
exist in literature (see, for instance. [1]-[17]).

But most of these studies are dedicated to some boundary functional of these stochastic
processes. It 1s well known that boundary functional plays an essential role in the study of
probabilistic problems connected with the random walks. Additive functional is as important as
the boundary functional but unfortunately, they are not studied enough in the literature. Because
of that. in this study, a stochastic process with a discrete chance interference is constructed and
additive functional of this process is considered.

2. CONSTRUCTION OF THE PROCESS AND ITS ADDITIVE FUNCTIONAL

Let {(i_n, f;)} (1=12---) be a sequence of independent and identically distributed
triples of random variables defined on any probability space(Q,3.P) such that & 1. are
independent random variables, where &’s and ¢ s take on positive values.

Suppose that the distribution functions of £ .1, and ¢, are known, 1. e.,

®(t) = P{g, <t}, F(x)=P{n, <x}, n(z)=Pfg, <z}: 1,220, x (-, ).

Define renewal process {'/' } and random walk {S,,}as follows:

n

n

T, :‘Z‘E_,l .S, :Zr], ,n=12.-- T, =§,=0,
1=1

=]

and a sequence of integer valued random variables N_ as
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N, =minfk >N, +1: ¢, +S, =S, <0,n=12--, N, =0, {, =2>0.
NI’I

Let t, =T, =Y &, n=12,--, 7,=0 and v(t)=max{n >0:T, <t}
1=1

We can now construct desired stochastic process X(t) as follows
X(t)=¢, + Sup) — Sy, » If T, St<T,,,n=012-,(,=2>0.

We call this process the stochastic process with a discrete chance interference.
We define

110 = [FCX()du.

n+l >

where f(x) is a measurable bounded function defined on the interval [O, 00) Here J . (t) is called
an additive functional of the process X(t).

In this study, some problems related to X(t) and J f(t) are investigated.

NOTATIONS. The following notations will be used throughout this study.
O (1)=D"(t),n=>1,® (t)=¢e(t)=1ift >0, g(t)=0ift <0.
AD ()=@__ (1)-D (1), n>1.
a (x,z)= P{Z+Si >0,i=1n, z+S, < x}, n>1 a,(x,z)=¢e(x-z).

b,(z) = P{Z+SI >20,i=1,n-1,z+S, <O},n2 Lb,(z)=0.

A(x,z) = ian(x,z).

n=0

For arbitrary measurable bounded functions M (t,x,z), (1=12) let
M (L) = [M (L x,2)dn(z), M, (6%,2) * M, (x,2) = [ M, (t - s.x.2)d M
0 0

For the function M (t,x,z), (1=12), ffli(?\., 1,z) (M. (A,p,2)) is the Laplace-Fourier
transtorm (Laplace-Stieltjes and Fourier- Stieltjes) with respect to t and x, respectivel,

3. THE DISTRIBUTION FUNCTIONS OF THE PROCESS X(t)

AND ADDITIVE FUNCTIONAL J, (t)
et us define
O(t,x.z) = P,{X(t) < x} = P{X(t) < x/ X(0) = z}
and

Q. (t,x,z) = Pz{Jf(t) < x}, where 0 <t,Xx,z <00,
We can formulate the main results of this section as follows.

THEOREM 3.1. One dimensional distribution function Q(t,x,z) of the process X(t) is
expressed by the probability characteristics of the renewal process {Tn} and random walk {Sn}
as

Q(t,x,z) = G(t,x,z) + R(t,z) * U(t) * G(t, x,*),
where



G(t.x.z) = ‘Zan(x,z).A(Dn(t); R(t,z) = ibn(z)Qn(t);

nt

R(t) = R(t,*) =Pfr, < t}; wnszWn

PROOF. It is easily seen that the random variables t,.7..... defined above are tormed a
sequence of stopping moments for a process X(t). Besides under the assumptions of Theorem 3 |
lc.l. (n=12..) is a sequence of independent and identically distributed random variables.
Considering these properties, the following integral equation of renewal type for one
dimensional distribution function of X(t) can be written as
Q(t.x,2) = G(t.x,2) + R(t, 2) *Q(t. x.*).
Now solving this integral equation of renewal type (see. for instance. [4]. p 351). we obtain the
final expression for Q(t, x,z). This completes the proof. ¢

THEOREM 3.2. The Laplace-Fourier double transform of one-dimensional distribution
tunctions of additive functional J (t) of process X(t) has the following form
R (M. 2)G, (A %)

I-R7(A %) ’
where G,(t,x,z) and R,(t,x,z) are expressed in terms of the probability characteristics of
{TH} and {Sn} as follows

(:), (A . z) = (2}‘ (A1, z)+

G.(tx.2)= Y P{z+S, >0k=InT <t<T .31 T (7 S

’

N 'l,X,Z):}_‘PJ\ZrSL Ok=lLn-1z+S$

n1
PROOF. 1t is not difficult to see that some inies 1101

functions Q,(t,x,z) of additive functional J (t) : ich
formulated integral equation, apply ng the Lap! )
and x, respectively, we can obtain the final )i .2+ and
R, (t.x,z) may be expressed by thie probabilin Py and
random walk {S_}. This completes the proof ¢

In Theorem 3 2, we obtained an exact expression lor 4 o transtorin of one-
dimensional distribution functions of J.(t) But it v very ditfic o this formula in
practical needs. For this reason, the features of J (t) necd to he explor atl Further studs
of J,(t) is closely related to the study of ergodic properts ot proy Nii). That is. i the

process X(t) is ergodic then the ratio J,(t)/texists as t — » and the himit of this ratio 15 not
random with probability 1. Moreover, under some weak conditions the process X(t) is ergodic
Let’s state this result.

THEOREM 3.3. Let the initial sequence of random pairs (£ ,n,) satisty the following
supplementary conditions
I)EE, < 2) En, <0; 3)n, isnot an arithmetic random variable.
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Then the process X(t) is ergodic and for any measurable bounded function f(x) detined
on the interval [(), ¥) the following relation holds

lim 2ol S =— l

Tt A (x)
PROOF. The ergodic theorem of Smith’s “key renewal theorem™ type exists in the literature for
a general class of processes with a discrete chance interference (see, for instance, [S], p.243). But
to verify the assumptions of such theorems are satisfied 1s rather difficult in the concrete cases
Theretore. it 1s desired one consider a restricted class of these processes in order to offer weaker
and obvious conditions for the ergodicity of such processes.

For this reason, in this study, we consider a special class of processes with a discrete
chance interference and ofter the ergodicity conditions for this class which are weak enough and
obvious. It is required to show that under the conditions (1)-(3) ot Theorem 3 3 all assumptions
of the ergodic theorem (see, [S], p.243) are satistied mentioned earlier

For this purpose, it is necessary to verify the following two assumptions.

Assumption 1. A chose of a sequence of ascending random epochs is required such that the
values of the process at these moments form an imbedded Markov chain which is ergodic and
has a stationary distribution.

For this aim it suffices to consider the sequence of random moments t,.t.... defined

[fed Ay

0

above, which are the stopping times. On the other hand. the values of process X(t) at these
points N = X(t, +0), n =1, form an imbedded Markov chain

Since X(t, +0)=c¢,, n>1, is a sequence of independent and identicallv distributed

random variables then the imbedded Markov chain [N, } is ergodic with a stationary distribution

n?

function n(z) = P{c, <z} Therefore, the first assumption of general ergodic theorem is satistied.
Assumption 2. The finiteness of expectation of t. (ie., Et, < x)is required

If a drift of process is negative (i.e., En, < 0) then a finiteness of expectation ot random
variable T, is derived from the studies of A. A Borovkov [2] . T I Nasirova [13] and etc.

Thus, under the conditions of Theorem 3.3, all assumptions of general ergodic theorem
for processes with a discrete chance interterence are satisfied Theretore. the process X(t) 1s

ergodic. This completes the proof. ¢
Substituting the indicator-function for the set (- . x] instead of f(x). from Theorem 3 3

the following Corollary is derived immediately.
COROLLARY. The explicit form of ergodic distribution function ot X(t) s given as
Q(x) = lim P{X(t) < x}:—A—(X’—*) X € [O i)
. ! o A(%’*)" oo '

4. CONNECTION BETWEEN PROBABILITY CHARACTERISTICS OF
PROCESS X(t) AND RANDOM PAIR (N, S.)

It is not easy to calculate A(x.z), but a great number of papers has investigated certain
boundary functional of random walk {Sn}.n > 1 For this reason, we will try to express the
probability characteristics of X(t) by means of a joint distribution function of a certain random
pair (N .S, ), defined below. According to W. Feller (see, for instance, [4], p.598-600), we

consider the random walk {Sn}, n > 1, with initial state S, = 0 in the interval B = (-z, %), where
z 1s any fixed positive real number.
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Let N(z) be a first moment of the exit of the random walk {Sn } n =1 from the interval

B.ie N(z)= min{nz IS, S-z}, z> 0 In the below, sometimes N(z) shown as N for
simplicity. We need to investigate a joint distribution of the pair (N .S. ). For this purpose we
define

d.(Lz)=P{N=nS_el}. ifIcB'andd (l.z)=0. if IcB.n=012 (41)
where B’ is the complement of B

From the definition of N(z) 1t is seen that

d,(Lz)=PfS, Bk =I.n—LS, €B.S, el}. if 1B’ (42)
The probabilities d_(1,z) will be called hitting probabilities. The study ot d _(1.z) is closely
connected with the study of the random walk prior to the first entry into B’ that is. the random
walk is restricted to B. For

[=B=(-z,%)
and n=12,-- let

a,(1.z)=P{S, €B:S, €B:.:S, €B:S el}, (4.3)
in other words, this is the probability that at epoch n the set 1 < B is visited and up to epoch n no
entry into B’ = (- ‘t,—z] took place. We extend this definition to all sets on the line bv letting
a(l.zy=01if 1B",z>0.

We are concerned with the distribution of the pair (N.S. ). Since N is inteural-valued

we use generating functions for N and characteristic functions for S. - Accordinglyv. we pus
(dx.-), a(s.0.z)=) s [L a (dx.z)

o series are eci:al 1o 0 : i
for s foi nstance, the C. Stein s lenina is give

de function M(x.7) detfine
W(d: 2) and lei’s @(0) = Ee"™ J.’e “dF(x)

establish the basic identity
(5.0.2[1 - sp®)].

tion between the probabilities d (1.z) and a

valuable miormanon can be extracted directly from (4.4).
Now. sider a function W(s,0) for a deeper investigation of S,
Y(s.0) - {n(dz) C".\:ZS”P{zﬂ- S, >0,k = Lnz+S, €dx .
Using the basic identity (4.4) we get an important relationship
. ¢ 1-d7(s.0.2 o
P(s.0)=|e" H-L—)dn(z) (4.5)
g 1 —sop(0)

Taking the limit as s — | in (4.5), we get
(1,6) = [ 12000 Dgr () (4.6)
! 1-¢(0)

By the definition of ¢(0) and H‘(l,e, z), the formula (4.6) can be rewritten as follows
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y Eexp(i6S,,,) —1
l};(l’e):J‘em/. {‘ p( . N ) ‘}dn(z) (47)
s E‘.exp(|9n|)~l,

Using this relation. it is not difficult to establish a connection between characteristics of ergodic
distribution of process X(t) and random variable N.

Note that taking the limit as 8 — 0 in (4.7) and taking into account the Wald’s equation.
we get an expression for the ¥ (1,0) , namely

Y(1.0)= 1?m Y(1.0)= jE(N(z))dn(z). (4.8)

Let’s denote the last integral by EN | that is, EN = IEN(z)dn(z.).
Thus the characteristic function of process X(t) as t — « has the form

je‘\‘l E{exp(ies\'w))_ l}

]
ImE exp(16X(t)) = e dn(z). (4.9)

N E{exp(ion,) - 1
Because of the practical importance below. we give only the explicit expression for the
first and second order moments of ergodic distribution of” X(t) .

5.STUDY OF THE FIRST AND SECOND ORDER MOMENTS OF ERGODIC
DISTRIBUTION OF PROCESS X(t)
Let us denote EX* =limEX"*(t). m_ = En} . k=12

Our aim is to express of EX and EX® as the first and second order moments of the
random variable N(z). Now we state the following theorem.

THEOREM 5.1. Let the conditions of ergodic Theorem 3.3 and the condition E!’nﬂ‘ <% be
satistied. Then the first and second order moments of ergodic distribution of process X(t) exist
and can be expressed in terms of the EN(z) and EN"(z) as follows

I J"[m, . | m;
EXZRJTEN (z)+zEN(z)fdn(z)—7,

. I '}'mf
EX’ = — |4
Ele 3

EN'(z)+ m,zEN"(z) + z'EN(z) +

m, —

-m; 3m, —4m; |
+—“7—EN‘(Z)—m,zEN(z)—TEN(z)(dn(z).

PROOF. Since Ein, i < o0, we can take the first and second order derivatives of both side of the

formula (4.9). By taking the limit of the expressions for the derivatives as 6 — 0 and carrying
out the necessary calculations, we finally obtain the expressions for EX and EX~

This completes the proof ¢

One of the advantages of Theorem 5.1 is that the moments of random variable N(z) can
be expressed in terms of the probability characteristics of random variables, known as ladder
height and moment. Those probability characteristics are well known in the literature (see, for
instance, [4]). Relations between characteristics of N(z) and ladder height and moment are
given in the following theorem.
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THEOREM 5.2. The first three moments of random variable N(z) can be given as tollows
E(N(z)) = U (2);
E(N())" = (1, - 20U, (2)+ 21, U7 (2)
E(N(2))’ =61 U™ (2) + 61, (i, —20))U T (2) + (1 = Oppy +u)U (2)

where

L =E(v ), k=123 and U (2)= Y F"(@), F.(2)=Pl <z},

n=0

PROOF. From definition of random variable N(z) the following identity is derived

P{N(z) >z} = P{- S, <z}, n120,z>0.
Based on this identity it is easy to show that N(z) can be represented by some renewal reward
process (see, [15], p.318). In order to rewrite N(z) in the form a renewal reward process, we
introduce a sequence of independent and identically distributed pairs of positive valued random
variables (v'.x').(i=12...). The first term in this sequence (v,.x, ) is called the first strict
ascending ladder point for random walk {— S, } (n >0) (see, [4], p.391), where

v, =min{k21:-S_>0}, x = _Sv,‘ 4

Let I'(z) = min{n > :ixl‘ > z}_

1=1

Note that I'(z) is a renewal process, which is formed by means of the positive valued random
variables x , (n >1).

It can be shown that using these notations, N(z) may be rewritten in the following torm:
I'(z)

N(z)=> % .

Furthermore, applying the Wald’s identity in this equality and expressing the first three moments
of renewal process I'(z) by a renewal function U, (z), which is formed by means of a
distribution function of the random variable 7y, we get the final expressions for
E(N(z))", k =1,2,3. This completes the proof. ¢

Note that, the expressions for E(I'(z)) and E(I'*(z)) may be found in a scientific
literature (see, [4], p.386), but the expressions for E(I''(z)) and E(N'(z)) are new results.

CONCLUSIONS

In this study, a process called “A stochastic process with a discrete chance interference”
is constructed and the following results are obtained for this process.

e One dimensional distribution functions of the process are expressed by means of the
probability characteristics of initial sequence of random triples {(£ .1 .c )} i=12.. .

e The ergodicity of the process is proved under some weak conditions.

e An explicit form of ergodic distribution of process is obtained.

e The Laplace-Fourier double transform of distribution functions of additive functional is
calculated.

e A characteristic function of ergodic distribution is expressed by means of the probability
characteristics of random variables N and S .

e Finally, the first and second moments of ergodic distribution of process are calculated.
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