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Abstract-An overview of major signal processing and analysis methods finding an area of
application in machinery fault diagnostics is presented. Among them Wavelet Transform, which
has been gaining a special interest in many research and engineering fields, is emphasized with
an example application based on numerically obtained vibration-time data representing various
health conditions of a spur gear.

1. INTRODUCTION

Data collection and data interpretation are two main aspects in Condition Monitoring (CM) or
more specifically in Fault Diagnostics (FD). A majority of the work in the field to date has been
focused on the collection of relevant data. However, the capabilities to interpret the data and to
determine the condition of a system being monitored is far behind the data acquisition
capabilities, and hence recently has been attracting more interests by researchers, Staszewski
1996 [20], Engin et al. 1996, 1997 [7.8]. Dealing with data in complex structure and huge
amount, and the need for fast or automated data interpretation makes the subject even more
important and challenging.

Experiences with machinery condition monitoring data indicate that machines do not break down
without some form of prior warning. An amount of deterioration in the vibration and/or noise
pattern usually takes place. Such changes compared to machine’s normal or ‘healthy’ state have
been used as an indication of an impending or a developing fault. When a noise or vibration
signal is captured for monitoring, it can be difficult to analyze it in its raw state. This is because it
is usually submerged by other signals from adjacent components, or the variation in the signal is
too small to be detected. In this case special signal processing and analysis techniques have to be
utilized to accentuate the changes and to extract more information in order to make correct
decisions on'the machine’s health.

From basic, e.g. statistical and spectral ones, to relatively more advanced, e.g. time-frequency
and time-scale analyses, there have been many signal processing methods encountered in the
area. The criteria for a successful method is whether it explains and sheds light on the physical
phenomena and makes new predictions, Cohen 1995 [5]. On that account, in vibration/noise data
analysis the kind of signal analysis method to be used should depend on the complexity of the
problem, e.g., if the characteristics of the changes has a spiky nature kurtosis as a statistical signal
analysis tool can be very useful to identify the fault, Badi ef al. 1996 [1]. But if there are more



than one fault in the system or if the changes are too sudden or too small, other more
sophisticated techniques should be investigated.

The signal analysis techniques are in general divided into two groups, the time-domain analysis
and the frequency-domain analysis (called spectral analysis), according to which domain the
signal is processed. A third one called quefrency-domain is studied sometimes amongst the
frequency-domain methods, Staszewski 1996 [20], Hunt 1996 [12], since it is a kind of double
spectrum or spectrum of spectrum; and sometimes as independent, Rao S.S 1995 [18]. Here, from
the point of presentation convenience, the latter is followed. There are also more sophisticated
_signal analysis methods, which have been finding area of application in CM recently. These are
generally called 7ime-Frequency and Time-Scale (TFTS) signal processing methods, which
analyze the signals by transforming them into time-frequency or time-scale domains.

This paper presents a brief review of CM vibration signal analysis methods, which utilize various
types of signal processing techniques and especially the current state of the art in the field. It also
discusses some results of an example rotating machinery fault diagnostics application.

2. TIME-DOMAIN METHODS

The objectives of time domain analyses are to determine the statistical characteristics of the
original function by manipulating the series of discrete numbers. Therefore, they employ some
statistical methods to help to describe the spiky nature of the time signals. That is to assume that
the process is random and exhibits a degree of statistical regularity. With this assumption various
statistical methods have been developed to compute the probability of failure.

In a random process, since the motion is assumed as random, the precise value of x (amplitude of
the motion) at any chosen time 7=#, cannot be precisely predicted. The statistical properties of a
random signal are therefore described in terms of probability density function p(x) and this
function expresses the probability (a value between zero and one) of x taking a value between x
and x+Ax (where Ax is a vanishingly small increment). The probability must sum to unity over all
possible x values. This is formulated for analog and discrete signals with the following couple of
equation,

Ip(x)d(x):l, Zp(x, =1 (1)
U 1=0

The probability density function, which is usually assumed to be most applicable is the Gaussian
or ‘Normal’ distribution given by

\

e 2)

1
(x)= ex 5
r ,/(27{)0‘ p[ 20°

where x is the arithmetic mean value (indicates center of the distribution) and o is standard
deviation (indicates spread of distribution) and defined by
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Figure 1 shows, with parameters normalized, how this function varies for different standard
deviations.
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Figure 1. Gaussian or ‘normal’ probability density functions obtained for various o (standard
deviation) values.

As seen standard deviation (o) is a measure of the preciseness of the data set: the smaller the o,
the less the spread of values.

2.1 Moments of Probability Density Function

The moments of probability density function p(x), Eq.1., give indication of general features of the
distribution of variable x. The moment of order » is the average of x" Several significant
statistical signal analysis tools, which describe the behavior of x are constructed by the first few
moments. The first moment (n =1) gives the average value of x, » (or z).
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cquently. the standard deviation is the positive square root of
computations see Eq. 11). When the mean value u. is zero. and
equal to the root mean square (rms.) value. If the variance (o,”) and mean value (1) ot
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2.1.1 Crest and Form Factors

The Crest Factor is the ratio of the peak to peak (or just peak in some literature) value of a signal
to its rms. value. It 1s an immediate extension to overall level monitoring,

CF = X & X (8).
Therefore the Crest Factor is much more sensitive than the rms. value to the changes in the spiky

nature of a vibration signal. Moreover, it is much less likely to give false alarms than using the
peak to peak value on its own, since it does a kind of normalization (by means of rms.) that takes



changes into account for the overall vibration level. The results of crest factor computations tor
vibration signals representing healthy and faulty conditions showed that the more peaks the
signal has, the higher is the crest factor.

There is another factor, which gives some indication of the wave form of a complex vibration,
called form factor. 1t is defined simply as the ratio of the mean value of a signal to its rms. value,
1:/Xms In some literature as contrary to the definitions above, these two factors are defined as the
ratio of the rms. value to the peak (or peak to peak) value and the rms. value to the mean value,
respectively. As the names and definitions suggest, crest factor gives rather an indication of peak,

hence, it is more sensitive to sudden peaks, whereas form factor gives an indication of wavetorm
of the signal

2.1.2 Kurtosis

The first two statistical moments of a probability density distribution are the mean value and the
mean-square value, which were both outlined above. The third statistical moment is the skewness
of a distribution. It is a measure of the symmetry of the probability density function and is
particularly useful for the statistical analysis of many separate experimental results and
correlating past results with future outcomes. In the analysis of time series, skewness
characterizes the degree of asymmetry of a distribution around its mean.

The fourth statistical moment called kurtosis (K) is widely used in machinery diagnostics. It
characterizes the relative spikiness or ‘flatness’ of a time signal compared to its normal state,
Eq.9. Positive kurtosis indicates a relatively peaked distribution and negative kurtosis indicates a
relatively flat distribution.
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Where as usual, o is the standard deviation of the signal, p(x) is the probability density function

of x, and 4, (or x) is the average value of x. The kurtosis is calculated for a set of data or a
sampled vibration signal with the following, Eq.10,

K=— ) (-2 \ (10)
no T

where 7 1s the number of data and x; is the /th term in the data series. As it is known standard

deviation is a measure of how widely values are dispersed from the average value (mean) and is

calculated for a set of data by Eq.11,

’n 2 ={ .\7,3
o= u*)_.oro-:
n(n—1)

The time-domain statistical signal processing methods used in the initial stages of this research
are mean, rms., crest factor and kurtosis for doing comparisons between good and faulty (or
healthy and unhealthy) states, Engin 1998 [9]. These methods have the advantage of producing a
single number that is a relative measure of spikiness of an oscillating time series. The numbers
computed for vibration signals collected over a period of time can be treated as an indication of
the condition of the component and can be plotted against time. The plots can be used to detect
any trend i.e. early signs of incipient failures. However it is still difficult to interpret these plots
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very efficiently even for the signals of dominant faults. Too many samples are needed to make
more sound and reliable comments on the results of statistical methods.

It is often necessary to quantify the degree of relation, similarity or interdependence of one set of
data upon another. There are several methods or operations to do this, e.g., cross-correlation,
covariance and convolution, and they play a prime role in both digital and analog signal
processing in establishing further effective signal analysis methodologies. Refer to Engin 1998
[9] for details.

3. FREQUENCY-DOMAIN METHODS

There are generally three main reasons for spectral or frequency analysis. The first is that it
simplifies the understanding of the waveform. Secondly, physical properties of the signal, for
example its propagation through a medium often depends on the frequency and thirdly it is a
mathematical tool for solving equations, Cohen 1992 [4] The first two reasons make spectral
analysis a very significant tool for condition monitoring signal analysis, which is of interest to
this study. The third reason is that convolution’s presenting a computational convenience:
multiplication in the time-domain corresponds to convolution in the frequency-domain and vice
versa. Any time series equation can be solved in the frequency-domain conveniently, then the
result can be transformed back to time-domain by utilising forward and inverse Fourier
transforms. ' '

An overall vibration time signal is usually dominated by a few major frequency components such
as machine rotation speed and gear tooth meshing frequencic. These do f] neies are
important to monitor. However, they will mask frequency componen! phitudes
which are produced by other rotating elements that must be considered. | bles
1s solved by decoupling the vibration time series into all its fr¢
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components with smaller amplitudes can be observed more clearly  The «pe rlow
to high frequencies give much earlier warnings of faults produced by treques wonents with
smaller amplitudes. This is because changes at individual frequencies be monitored more
carefully before the effects become large enough to be detected erall vibration time
series. Spectrum or frequency-domain analysis also enables fault dicono s < reqguencies
at which changes detected are connected with the rotating machine conpon 14t deteriorate
Different changes in the main frequency components and their side bands car iated with
various faults by experience. It can be concluded that even in the case whe actorv fault
detection can be achieved by one of the time-domain methods. spectruni analvsis is still often

required for detailed fault diagnosis.
4. QUEFRENCY-DOMAIN METHODS

Quefrency domain or cepstral analysis, which is an extension of spectral analysis, is another
widely used signal analysis tool in condition monitoring. The power cepstrum, first defined and
introduced as far back as 1963 by Bogert e7 al. (in Ref. [16]), is originally defined as “the power
spectrum of the logarithm of the power spectrum”, formulated in Eq.12. Several other definitions
can be found for the term cepstrum in the literature such as “inverse Fourier transform of the
logarithm of the power spectrum”, or “amplitude spectrum of the logarithmic spectrum” Randall
1985 [16], Rao S.S. 1995 [18]. However, this is not critical since they all detect and display
distinct peaks in the same location if there is strong periodicity in the spectrum. The name
“cepstrum ™ 1s derived by paraphrasing ‘spectrum’. the reason being that the cepstrum is obtained
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by performing a further spectrum analysis on a frequency-spectrum. Several other terms such as
“quefrency”, “saphe”, “rahmonics” and “gamnitude” are derived similarly from ‘frequency’,
‘phase’, “harmonics’ and “magnitude’ by reversal of some letters.

Using the terminology /{} to indicate forward Fourier transform and /'{} inverse Fourier
transform of the bracketed function, the original definition of the (power) cepstrum is

c(D)=IF{log Fu(x)}? (12).
where F.(x) is the power spectrum of the time signal x(7) and given by
Fol x );iF{X(I)HZ (13).

This definition of cepstrum was not found very clear when it was compared with autocorrelation
function, which was defined as “the inverse Fourier transform of the power spectrum”, given
below in the Eq.14.

Rl D) =F ' {Forlx)} (14).

Here, the principal difference with respect to the auto-correlation function is that for the cepstrum
the first spectrum is logarithmically converted, see Eq.12.

However, the cepstrum was later defined as “the inverse Fourier transform of the logarithm of the
power spectrum”, thus making its connection with the autocorrelation clearer In this case the
power cepstrum, ¢,( 7), becomes

cp( 7) ~F! {log F{x)} (15).
However, as just mentioned above, in practice the choice of the definition of cepstrum is not

critical since they both (Eq.12 and 15) detect and display distinct peaks in the same location if
there is strong periodicity in the (logarithmic) spectrum.

The other type of cepstrum known as the ‘complex cepstrum’, is described by Oppenheim et al. in
1968, Randall 1985b [16]. It was defined as “the inverse Fourier transform of the complex
logarithm of the complex spectrum” and was called the ‘complex cepstrum’, given by the
equation,

co(1)=F ' {log Fi(x)} (16),
where /(x) 1s the complex spectrum of x(7).

Despite its name it is a real valued function, but the name indicates that, unlike the power
cepstrum, the complex cepstrum is obtained from the complex spectrum, with no loss of phase
information. For this reason the process by which it is obtained is reversible, and it is thus
possible to return to the original signal after performing filtering operations. This may be useful
and desirable in some applications where removal of convolved and multiplied effects by linear
filtering techniques is needed, Randall 1977 [17]. Cepstrum is still in use in various signal and
1mage processing applications effectively as a feature extraction tool.

S. TIME-FREQUENCY/SCALE DOMAIN

It has been quite difficult to satisfactorily handle signals carrying nonstationary or transient
components, such as small or short lasting vibrations emerging as chirping sounds, using
conceptualizations based on stationarity. The production of particular frequencies depends on
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physical parameters, which may change in time possibly due to an incipient failure originating
from various causes. Therefore, examining local behavior of the vibration signal with reasonably
precise frequency information may be useful to interpret the signal in a better way. The aim of
time-frequency/time-scale (TF/TS) signal analysis is to describe how the frequency or spectral
content of a signal evolves and to develop the physical and mathematical ideas needed to
understand what a time-varying spectra is, Cohen 1995 [6]. The attempt to represent a signal
simultaneously in time and frequency —or a frequency related scale— is full of challenges both
physical and mathematical, and there has been an extensive multidisciplinary research on this
issue. This section study the basic theory on such methods, which have been found an area of
application to CM of rotating machinery.

5.1 Short time Fourier transform (STFT)

Fourier transform gives frequency information which is extracted for the complete duration of a
signal x(7). As known, since the integral in Fourier transform, extends from -« to +x, which
covers all time the signal lasts, the information obtained is on the average frequency content over
the whole length of the signal. If there is an oscillation, which may be due to a fault, somewhere
in the duration of the signal, it will change the resultant values of Fourier transform X(w). but its
location on the time axis will be lost. In other words, the Fourier transform implies that time
information is not needed after the transform is applied. There is no attention to when the signal
components of different frequencies act. Likewise, when the inverse transform is obtained, one 1s
supposed to have no interest in the frequency of the various components of the signal x(7), W.J.
Williams 1998 [21]. Time-localization must then be achieved by first windowing the signal, and
subsequently calculating the local spectral coefficients. The window is then moved to a new
position and the calculation is repeated, which is the basis for the short-time Fourier transform
(STFT). To study the properties of the signal at time 7, the signal is emphasized at that time and
suppressed at other times. This is achieved by multiplying the signal by a window function, w(7),
centered at 7, to produce a modified signal x,,

x{(7) = x(7) w(7-1) (17)
The modified signal is a function of two times, the fixed time being interested (window position)
{, and the running time 7. The window function is chosen to leave the signal more or less

unaltered around the time 7 but to suppress the signal for times distant from the time of interest,
Cohen 1995 [5].

Summing up it can be said that, STFT works by first dividing a signal into short consecutive
segments by a windowing function and then computing the Fourier transtorm coefticients of each
segment. This is a time-frequency localization technique in that it computes the frequencies
associated with small portions of the signal as follows,

STFT x(t.w) = J'x(r)u-'(r—r)e'”‘"dr (18).
The problem with windowing, however, is that the slice of the signal which is extracted is always
the same length. Thus, the number of data points in time history used to resolve a low frequency
component is the same as the number used to resolve a high frequency component. Using long
window can cause to lose the time localization ability of the analysis method. Shortening the
window to increase time resolution can result in unacceptable increases in computational effort,
especially if the short-duration phenomena being investigated do not occur very often, which is



the usual case for rotating machinery faults. Due to the duality of time and frequency, the
resolution is restricted by the uncertainty principle, Chui 1992 [3],

ALAf = 1(4m) (19).

Where At is duration of the window in time domain and Af is its frequency bandwidth. Therefore,
it would be sensible to search for a time-frequency method employing some sort of “adjustable”
windows, which will be addressed later on.

5.i.1 Gabor transform

The limitations of Fourier methods have not by any means been observed recently. Dennis Gabor
(1946) was the first to introduce time-frequency analysis, which is called GGabor transform for his
name, or later interpreted as time-frequency wavelets, Meyer 1993 [14], or Gabor wavelets, Chui
1992 [3]. Gabor introduced a time localizing window function to broaden the application of
Fourier methods. In an attempt to extract local frequency information from the signal x. he
proposed a windowed Fourier transform,

Tox(w,b) = fx(t)g(t—b)e_j""dt (20).

This is exactly the same equation as Eq.18, except that 7 is taken as the running time and 4 is the
position of window function g on the time axis. The signal x and the window function g are both
energy signals, i.e. defined in L*(R), Lebesgue space of square-integrable functions, i.e. signals
having finite/measurable energy. The windowing function Gabor used was the Gaussian function,
which makes an optimal window by minimizing end effects and satisfying the minimum
condition of the uncertainty principle. The Gaussian (window) function is defined as

P () [ )

2V
where a (a > 0) determines the width of the window function.
This function is proportional to the standard normal probability density function
Gaussian window function, the Gabor transform is now defined to be,
(GEx)w)= Ix(t)ga(t—b)e"’”’dt
which localizes the Fourier transform of the signal x about the time point 7 = /. In other words
gives a picture of the signal x at time b and angular frequency @ (=2zf). As with the continuous
Fourier transform, there exists an inverse Gabor transform that will recover the original signal
from its transform,

x(t) = j j((?,‘,lx)((o)ga(t—b)ej“”db dw (23)

—0 —on

In these two similar time-frequency analysis methods the STFT and Gabor transform, Eq. 18 and
Eq.22, the signal under study is subdivided into a number of small records where it is assumed
that each sub-record is stationary. To reduce the effect of leakage (the effect of having finite
data), each subrecord is then multiplied by an appropriate window and the Fourier transform is
applied to each sub-record. However, there exists signals in nature whose spectral content is
changing so rapidly that finding an appropriate short-time window is problematic since there may
not be any time interval for which the signal is stationary, Matalgah 1998 [13]. To deal with these
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time changes properly, it is necessary to keep the length of the time window as short as possible.
This, however, will reduce the frequency resolution in the time-frequency plane. Hence, there is a

trade-off between time and frequency resolutions, as explained above by the wncertainty
principle.

5.1.2 Spectrogram and Scalogram

In engineering applications, the time-frequency plot obtained by means of the square of the
modulus of the STFT, [STFT, x(t.w)|*, or Gabor transform, |(GZx)w)|*, is called a “spectrogram” (it
is also named sonogram) For example, in Gabor transform based spectrograms, for each 5, i.e.
for each position of the window, a different spectrum may be obtained and the total number of
these spectra represents a function of » and w, which gives a time-frequency distribution.

The wavelet analogy of the spectrogram is the wavelet time-scale plot, which can be named as
scalogram, since with wavelets, use of scale is most common, Ogden 1997 [15]. These plots
consist simply of the square of the wavelet transform |1, 7(a.5)1*, where b represents the location

in time and a represents the scaling factor. In this study, scalograms, i.e. the wavelet contour

maps and 3d mesh diagrams are focused in the analysis of condition monitoring machinery
vibration signals.

The spectrogram and scalogram (based on respective continuous or discrete transforms) are
useful objects in analyzing vibration time signals. As mentioned, both the Gabor transform and
wavelet transform divide the time-frequency plane into blocks measuring in time local frequency
content of the signal. For the Gabor transform (same as STFT), the analyzing windows all have
constant shape with fixed window length and height. Whereas, for the wavelet transform, these
blocks are short and wide for analyzing low-frequency (small-scale) content and, tall and narrow
for analyzing high-frequency (large-scale) phenomena. In plotting either the spectrogram or the
scalogram, each of these blocks in time-frequency (or time-scale) plane are shaded in the color
scale / gray scale according to the magnitude of the corresponding coefficient.

5.2 Wigner-Ville Distribution

Similar criticism of the usual Fourier transform was addressed by Jean Ville, as early as Gabor, in
1947, as he applied it to acoustic signals, Meyer 1993 [14]. Ville introduced the physicist Eugene
P. Wigner’s works (1932) on calculation of joint distribution of position and momentum (for a
gas) to signal analysis as joint time-frequency distribution. Ville’s revival of the Wigner
Distribution (WD) of quantum mechanics led the WD to be known mostly as Wigner-Ville
Distribution (WVD) in the signal processing and analysis circle.

The WD or WVD is the main and hence probably the most extensively studied time-frequency
distribution. It is defined, Cohen 1992 [3], for the signal x(/) as,

R I A 1 .\ e o)
17/ (t,(u)—z—”:[hx (t Er)x(m-zr)c dr (24),

where x'(7) is the complex conjugate of the original time function x(7) and 7 is time slices around
time point 7.

If the signal is written in terms of its spectrum X(®) and substituted into the above equation, WD
is obtained in terms of the spectrum,



_\'*((0%0)_\'(«)—%9)0”/’6’[{0 (25).

« dummy variable corresponding to frequency transformation of 7. As it can be seen
o equations above, the distribution is derived by generalizing the relationship between
spectrum and the autocorrelation function. The Wigner distribution is said to be
the signal because the signal enters twice in its calculation. It must be noted that to
sner distribution at a particular time, the signal components made up of the product of
at a past time multiplied by the signal at a future time are added up. Here the duration
it equals to that of the future. Therefore, to determine the properties of the Wigner
»n at a time 7, the left part of the signal is folded in an imaginary way over to the right to
re is any overlap. If there is, then those properties will be present now, at time . This
>int makes many issues and results regarding Wigner distribution clear. Everything said
me-domain holds for the frequency-domain because the Wigner distribution is basically
in form in both domains. Another important point, which may be a drawback, is that the
distribution gives equal weighting throughout the time domain. That is it weighs the far
mes equally to the near times. Hence the Wigner distribution is highly non-local.

1y with short-time Fourier, Gabor and Wavelet Transforms, the Wigner distribution has
yroperty of time-frequency localization. The shape of the window of the WD is similar to
es used in Gabor transform or STFT, but contrarily, there is no frade off problem betweci
.nd frequency resolutions in WD. This unlimited resolution property, however. can lead the
ution to produce negative values, which present no physical meaning. This can therefor
reted as violation of the uncertainty principle (refer to Eq.19).

Wigner distribution or corresponding Wigner-Ville distribution has been satish
ied in the analysis of nonstationary signals, Boashash and O’Shea 1992b [2]. Matalual
3] This comes from the ability of the WD to detect signal features in both
iency domains. As mentioned, one advantage of the WD over the STFT is that 1 \:i‘ .
.rcctly from the time-frequency trade-off problem. On the other hand. the WD hu
niage that it 1s limited by the appearance of cross-terms (viewed as extra peaks
ie-irequency distribution plots, which may lead to confusion and misinterpretation)

; e terms are due to the non-linearity property of the WD. One way to remove them iy
smoothing the time-frequency plane, Cohen 1995 [4], but this will be at the expense «
Lueased resolution in both time and frequency. In addition, this will increase the computational

omplexity and consequently the time necessary for the computation.

\ few more time-frequency distributions (called Cohen class time-frequency distributions) as
extensions of WVD have been developed in order to alleviate the drawbacks that WVD suffers.

3.3 Wavelet Transform

A relatively new method has appeared in signal processing recently called Waveler Transform
(WT in short). Although wavelet theory has been studied for many years by mathematicians
(before the word wavelet was even coined), Haar (1911), Franklin (1928), Calderon and
Zygmund (1952). an explosion of applications have been seen in engineering since the mid-
eighties. This resurgence was initiated by Morlet et al. (1982), in geoexploration studies as a
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technique for the analysis of seismic signals, and was followed by a detailed mathematical
analysis by Grossmann and Morlet (1984), Rioul and Vetterli 1991 [19].

As stated, the basic idea in time-frequency representations is that two parameters are needed: one
called a, which refers to frequency; the other called 5, which indicates the position in the signal.
Thus a general time-frequency transform of a signal x will take the form,

x(y o> y(ab)= fy/_abx(t)dl (206),

—w

where y; 1s the analyzing function and ,, (indicated also as w') is its complex conjugate. In
wavelet transform, the analyzing function y is defined as,

v =ay[ 2] (27).

Combining the two equations (26 and 27), the basic formula for the continuous WT (CWT) can
be obtained as,

W (aby=a"? fy?('_b)x(r)dr (28).

a

In discrete WT (DWT), the two parameters a and b which are for scaling and translating,
respectively can be defined as functions of level j and position &

a=2"7 jeZb=ak k=0.n-I (29)
Then the analyzing funcuior become

W, =2"w(@71-k) 3
where  called mother vave ot an ¢ Here the level ; determine

how many wavelets are necded (¢ cover the he number £ determines the

position of the wavelet and vive ndication ¢ pOSsibic to decompose any arbitrary
signal x(7) into its wavelet comy ! [he aprroa similar to the harmonic analysis in
Fourier transform except that read of breaki dowii mto harmonic functions of
different frequencies and amplitudes, the signai 1 i ito wavelets of different scale
(level), different positions and the correspondin des of wavelets.

This can be put into a simpler explanation to stress the similarity of approaches between the two
transforms, as follows. The Fourier transform breaks down a signal by frequency, and the wavelet

transform breaks down a signal into components of different scales by comparing the signal to
wavelets of different sizes. In both cases, this is done by integration: multiplying the signal by the
analyzing function (sines and cosines or wavelets) and integrating the product, Hubbard 1996
[11]. FT and WT are both linear and square-integrable functions, derived from group
representation theory (from different groups). The essential difference between the two is in the

way the frequency (scaling) parameter a is introduced in the analyzing function. In both cases, »
is simply a time translation.

5.3.1 The Diagnostics Methodology

The feature extraction scheme proposed for the fault diagnostics methodology here is based on
calculating mean-square D20 WT map of the vibration signal to introduce the characterizing



mean-square wavelet amplitudes of the critical levels to the ANNs. The block diagram for the
methodology is sketched in Figure 2.

test vibration (( ANNs )
rig > data »| architecture
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e
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A
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best level(s) ¢ "ﬂ 2

fatigue level

Figure 2. Block diagram of the feature extraction scheme for gear fault diagnosis.

The -diagram details the steps of the fault diagnosis methodology as part of the established
Condition Monitoring set-up, detailed in Engin 1998 [9]. It combines the two types of fault
experiments; the impulsive (blip and shaved faults) and bending fatigue failures. The ANN based
classification results of this example problem were presented before, Engin and Giilez 1999 [10].
As noted, the performance of the scheme was tested with standard backpropagation ANNs.

5.3.2 Wavelet Applications

As was the case when introducing. other signal processing methods, the customary approach is
followed, and the proposed WT—ANN based fault diagnostics methodology was presented with
the numerically simulated data. For this purpose a simple MATLAB" program was coded to
simulate vibration time signals representing three different health states of a typical 36-tooth spur
gear. The resultant vibration signals representing the reference, having fault-1 (similar to gear
with one tooth giving a “blip”) and fault-2 (similar to gear having a “shaved” tooth) are displayed
in Figure 3 (a-c), respectively.

All three kinds of signals carried an amplitude modulated main sine and several other sine
functions with higher frequencies giving the meshing frequency and its first three harmonics. The
fault-1 and fault-2 were introduced as localized sine functions (enveloped with fast decaying
exponential components), i.e. starting with a relatively high amplitude and ending with a very
low amplitude at around 205° and 210° of rotation angles. The signal and seeded fault-1, fault-2
and the noise components of the signal are plotted separately in Figure 4 (a-d), respectively.

While the first fault was designed to last 7 or 8 samples (giving a sharp impulse), the second
lasted around 15 samples (simulating nearly half of a tooth was shaved), corresponding to the
duration of ~2.6 and ~5.2 degrees in Figure 4 (b) and (c), respectively. The embedded faults are
tried to be kept fairly small (around half of the signal amplitude) to simulate the conditions of
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developing faults realistically. Hence, as Figure 3 illustrates the variations between the signals are
hardly distinguishable by eye.
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Figure 3 Numerically simulated vibration signals; the reference (a), first fault (b), and second
fault (c).
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Figure 4. The reference signal (a), and Fault-1 (b), Fault-2 (c), noise components )

A number of copies of each health state were distorted by random noise signals as shown in

Figure 4 (d). Then their D20 wavelet transform based mean-square wavelet maps were computed

for feature extraction. Example 3d mesh diagrams of these maps (for the three signals plotted in
" Figure 3 (a-c)) are presented in Figure 5 to 7, respectively.
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Figure 5. Wavelet mean-square mesh diagram for the numerically simulated reference vibration
- time signal given in Figure 3 (a).
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Figure 6. Wavelet mean-square mesh diagram for the numerically simulated fault-1 (similar to
the blip fault) vibration time signal given in Figure 3 (b).
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Figure 7. Wavelet mean-square mesh diagram for the numerically simulated fault-2 (similar to
the shaved fault) vibration time signal given in Figure 3 (c).



Wavelet magnitudes distributed in high levels detected the changes indicating the health of the
signal sufficiently. For this example, when the scalograms are studied it is seen that while levels
7 and 8 are mostly indicative for fault-1, levels 8 and 9 are more indicative for fault-2. This is due
to the fact that the fault-1 involved lower fault frequencies compared to the fault-2. Therefore,
~while levels 7 and 8 are sufficient for fault-1, for fault-2 higher levels, i.e. levels 8 and 9 seemed
to be more descriptive. And only several (about six) wavelet magnitudes in those levels reveal the
differences between the health patterns.

These successful visual results led the authors to get use of the 3d wavelet plots as a feature
extraction tool to incorporate with ANNs to establish an automated Fault Diagnostics
methodology, Engin and Gulez 1999 [10].

6. CONCLUSIONS

The statistical or the classical time- and frequency-domain techniques offer more straightforward
approaches, they all do some sort of averaging on the signal’s duration, which cause loss of time
information. This is a real drawback when dealing with signals that have very short-lasting or
suddenly occurring components. While, time-frequency methods, e.g. short-time Fourier
transform and Wigner-Ville distribution can localize those nonstationary features, they suffer
from several inconveniences, which is difficult to compensate, such as time-frequency trade-off
problem and returning extra/unwanted terms. The wavelet transform as a time-frequency or time-
- scale method has proved itself as a powerful analysis method in pinpointing signal features,
which may represent a fault. On the other hand, Al based techniques, in particular ANNs, are
becoming commonly used pattern classification tools. Therefore, there is a great need to develop
effective ANN input data pre-processing algorithms, which exploit. advanced signal processing
and analysis techniques.

The challenge is therefore to search for a good TFTS-anaiysis/ANN integration methodology,
which holds an effective feature extraction scheme producing compressed and interpretable input
data for the ANN for fast and reliable pattern recognition. The system to be devised, on the other
hand, should be able to give good fault diagnosis results when dealing with small faults, which
represent early stages of an impending failure.
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