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Abstract: A method for the analysis of super-resolution microscopy images is presented. This method
is based on the analysis of stochastic trajectories of particles moving on the membrane of a cell
with the assumption that this motion is determined by the properties of this membrane. Thus, the
purpose of this method is to recover the structural properties of the membrane by solving an inverse
problem governed by the Fokker–Planck equation related to the stochastic trajectories. Results of
numerical experiments demonstrate the ability of the proposed method to reconstruct the potential
of a cell membrane by using synthetic data similar those captured by super-resolution microscopy of
luminescent activated proteins.
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1. Introduction

The pioneering works [1–3] mark the development of the revolutionary superresolu-
tion microscopy (SRM) that allows us to go beyond the Abbe limit for conventional light
microscopy [4]. The SRM method consists of labeling the molecules moving on a biological
support with fluorophores and then in sampling the microscopic images of the activated
fluorescent molecules.

Observation of the frames of the sampled SRM microscopic images have suggested
that the motion of the molecules could be modeled by a stochastic Langevin equation [5,6].
Clearly, the cell membrane at the microscope is a 3-dimensional object; however, it can be
considered flat, and the observed motion is 2-dimensional since it results in the projection
on the focal plane of the SRM microscope. It appears that an adequate model of the ob-
served trajectories of 2-dimensional images is given by the following stochastic differential
equation (SDE) [7]:

dXt = b(Xt) dt + σ(Xt) dWt (1)

Xt0 = X0, (2)

where b represents the drift, σ is the dispersion coefficient, and Xt ∈ R2 denotes the position
of the observed molecule at time t. In this framework, it is well-known that the drift and
dispersion coefficients satisfy

lim
t→s

E
[

Xt − Xs

t− s
|Xs = z

]
= b(z), lim

t→s
E
[
|Xt − Xs|2

t− s
|Xs = z

]
= σ2(z),
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where the expected values are computed with respect to the process having value z at t = s;
the operator E[· |Xs = z] denotes averaging with regard to the measure of the trajectories
conditioned to be at z at time s.

The formulas above suggest that suitable approximations to b and σ can be obtained
by tracking single molecules; see, e.g., [7,8]. However, this approach may suffer from
the highly fluctuating values of the trajectories and the difficulty of discerning between
different molecules that come closer to the resolution limit.

For this reason, already in [9] the authors have pursued an alternative strategy that
allows us to build a robust methodology for the estimation of the drift based on the
observation of an ensemble of trajectories. Our approach is built upon the assumption that
this ensemble is driven by a velocity field (the drift), given by a potential velocity field
U(x), with x ∈ Ω ⊂ R2, as follows:

b(x; U) = −∇U(x). (3)

Moreover, one assumes a constant diffusion coefficient whose value is chosen consistently
with estimates of laboratory measurement [10]. It is the purpose of our work to reconstruct
the potential U(x) by means of the observation of the motion Xt of the molecules modeled
by Equation (1).

In agreement with our statistical approach based on ensembles, we focus on the
evolution of the probability density function (PDF) of the positions of the molecules (not
on the single trajectories) whose evolution is governed by the Fokker–Planck (FP) problem
given by [6,11]:

∂t f (x, t)−∇ · (∇U(x) f (x, t))− σ2

2
∆ f (x, t) = 0, (x, t) ∈ Q (4)

F( f ) · n̂ = 0, (x, t) ∈ Σ, (5)

f (x, 0) = f0(x), x ∈ Ω, (6)

where Q = Ω× (0, T) and Σ = ∂Ω× (0, T). In this formulation, f (x, t) represents the PDF
of a particle at x ∈ R2 at time t, ∇U(x) is the Cartesian gradient of the potential U, f0 is
the initial density, and ∆ is the two-dimensional Laplace operator. Notice that we require
zero-flux boundary conditions, where F( f )(x, t) is the following flux of probability

F( f )(x, t) =
σ2

2
∇ f (x, t)− b(x; U) f (x, t). (7)

We choose zero-flux boundary conditions since they reasonably model the situation where
a similar number of particles enters and exits the domain; see, e.g., [6,12].

Our proposal is to construct an FP-based imaging modality that is based on the
formulation of an inverse problem for U and the observation of a time sequence, in time
interval [0, T], of numerical PDFs (two-dimensional histograms), which are obtained from a
uniform binning of SRM particles’ positions. We denote this input data as fd(x, t) which is a
piecewise constant function. In this setting, the initial condition is given by f0(x) = fd(x, 0).

This proposal is similar to that in our previous work [9]. However, in [9] the as-
sumption of interacting particles was made that resulted in very involved and CPU time
demanding calculations. It is the purpose of this work to demonstrate that accurate recon-
struction results can be obtained assuming noninteracting particles, hence by using a linear
FP model.

At the continuous level, our FP-based imaging tool is formulated as the following
inverse problem:
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min J( f , U) :=
1
2

∫
Ω

∫ T

0
( f (x, t)− fd(x, t))2 dx dt

+
ξ

2

∫
Ω
( f (x, T)− fd(x, T))2 dx

+
α

2

∫
Ω
(|U(x)|2 + |∇U(x)|2) dx, (8)

s.t. ∂t f (x, t) +∇ · [b(x, ; U) f (x, t)]− σ2

2
∆ f (x, t) = 0, in Q

f (x, 0) = f0(x) in Ω, F( f ) · n̂ = 0 on Σ,

with the given initial and boundary conditions for the FP equation, and α, ξ > 0.
In this problem, the objective functional J is defined as the weighted sum of a

space–time best fit term
∫

Ω

∫ T
0 ( f (x, t) − fd(x, t))2 dx dt, and at final time

∫
Ω( f (x, T) −

fd(x, T))2 dx, and of a suitable ‘energy’ of the potential ‖U‖2 =
∫

Ω(|U(x)|2 + |∇U(x)|2) dx,
which corresponds to the square of the H1(Ω) norm of U. Notice that this formulation
allows us to avoid any differentiation of the data and makes it possible to choose the
binning size and, in general, the measurement setting, independently of any choice of
parameters that are required in the numerical solution of the optimization problem.

Our second main concern in determining the potential U is to provide a measure of
uncertainty, and thus of reliability, of its reconstruction. Statistically, this is achieved by
many repetitions of the same experiment, that could not be feasible for (short) living cells.
However, inspired by the so-called model predictive control (MPC) scheme [13] already
used for optimal control problems [12,14], we propose a novel procedure to quantify the
uncertainty of the estimation of U by using the data of a single experiment.

Our methodology is to consider a sequence of non-parametric inverse problems like (8)
defined on time windows (tk, tk+1), k = 0, . . . , K− 1, that represent a uniform partition in
K subintervals of the time interval [0, T]. Therefore, a statistical analysis can be performed
on the set of the corresponding K solutions for U that are obtained in the subintervals.

For development and validation, we consider images of a cell’s membrane structures
(actin, cytoskeleton), as expression of potentials, that is pixel grey values where increased
brightness stands for more repulsion, with which we generate our synthetic data. In
particular, we use an image of actin from a cytoskeleton obtained with a Platinium-replica
electron microscopy [15,16].

With this images taken as gray-level representation of potential functions, we perform
Monte Carlo simulation of motion of particles to generate images of molecules at different
time instants, thus constructing the datasets representing the output of measurements. This
setting is illustrated in Figure 1, where the image of actin [17] and a plot of few trajectories
of the corresponding stochastic motion of the particles in this potential are shown.

Once the synthetic measurement data is constructed, we perform a pre-processing step
on this data to construct the numerical PDF required in our method and solve our inverse
problem to find the estimated–measured potential U. The latter is compared with that one
used in the MC simulation, by a measure of similarity based on the pixel cross-correlation
between the two images.

In Section 2, we discuss a numerical methodology for solving our FP-based reconstruc-
tion method for the potential U. In Section 3, we provide all details of our experimental
setting and introduce some analysis tools for determining the accuracy of the proposed re-
construction. In Section 4, we validate our reconstruction method, and use our uncertainty
quantification procedure. In Section 5, we investigate the resolution of the proposed FP im-
age reconstruction as an optical instrument. A section of conclusion and acknowledgements
completes this work.
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Figure 1. (Up) A picture of actin from a cytoskeleton as cell membrane potential (close up) (courtesy
of Koch Institute [17]); (Down) a few simulated trajectories of particles (black dots) on the membrane
(in reverse colors).
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2. Numerical Methodology

Our aim is to reconstruct the potential U from the data consisting of a temporally
sampled SRM images of the positions of particles subject to this potential; see Figure 2 (up)
for a schematic snap-shot of this data. This image is subject to a pre-processing binning
procedure in order to construct histograms by counting the number of particles in a regular
square partition of Ω. The height of an histogram is proportional to the number of particles
in a bin of the domain. This procedure for the image at time t defines the histogram function
fd(·, t); see Figure 2 (down).

Figure 2. A frame of particles (up) and the corresponding histogram fd(x, t) on a mesh of 40 × 40 bins
for a fixed time (down), from simulated data.

In order to illustrate our numerical framework, we introduce the potential-to-state
map U 7→ f = S(U), that is, the map that associates to a given U ∈ H1(Ω) the unique
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solution to our FP problem (4)–(6), with given initial condition f0. For the analysis of
well-posedness and regularity of the map S, we refer to [18].

Next, we remark that with the map S, we can define the reduced objective functional
Ĵ(U) := J(S(U), U) and consider the equivalent formulation of (8) given by

min
U∈H1(Ω)

Ĵ(U), (9)

which has the structure of an unconstrained optimization problem. Thanks to the regularity
of S and the quadratic structure of J, existence of an optimal U can be stated by well known
techniques; see, e.g., [19].

Further, since S and J are Fréchet differentiable, it is possible to characterize an optimal
U as the solution to the following first-order optimality condition

∇U Ĵ(U) = 0,

where ∇U Ĵ(U) denotes the so-called reduced gradient [20].
In the Lagrange framework, this condition results in the following optimality system:

∂t f (x, t) +∇ · [b(x; U) f (x, t)]− σ2

2
∆ f (x, t) = 0,

f (x, 0) = f0(x) in Ω, F( f ) · n̂ = 0 on ∂Ω× (0, T],

∂t p(x, t) +
σ2

2
∆p(x, t) +∇p(x, t) · b(x; U) = f (x, t)− fd(x, t), (10)

p(x, T) = −ξ ( f (x, T)− fd(x, T)) in Ω, ∂n̂ p(x, t) = 0 on ∂Ω× (0, T],

α U(x)− α ∆U(x)−
∫ T

0
∇ · ( f (x, t)∇p(x, t))dt = 0 in Ω,

∂n̂U = 0, on ∂Ω,

where p denotes the adjoint variable, which is governed by a backward adjoint FP equation.
Notice that the adjoint equation is a well-posed problem with fd(x, t) ∈ L2, which allows
to use the irregular histograms as input data. The numerical solution obtained with a finite
difference approximation is consistent with the interpretation of fd as a piecewise constant
function obtained by local averaging an L2 function on subcells centered at grid points.
Notice that the numerical grid is finer than that of the binning.

The last equation in (10) is the so-called the optimality condition equation, and the
Neumann boundary condition ∂n̂U = 0 is our modeling choice. One can show that its
left-hand side represents the L2 gradient along the FP differential constraint with respect to
U of the objective functional. We have

∇U Ĵ(U)(x) := α U(x)− α ∆U(x)−
∫ T

0
∇ · ( f (x, t)∇p(x, t))dt. (11)

Our approach for solving our FP optimization problem (8) is based on the nonlinear
conjugate gradient (NCG) method; see, e.g., [20]. This is an iterative method that resem-
bles the standard CG scheme and requires to estimate the reduced gradient ∇U Ĵ(U) at
each iteration.

In order to illustrate the NCG method, we start with a discussion on the construction
of the gradient. For a given Un obtained after n iterations, we solve the FP equation and its
adjoint, and use (11) to assemble the L2 gradient. However, since the potential is sought in
H1(Ω), we need to obtain the H1 gradient that satisfies the following relation(

∇U Ĵ(U)|H1 , δU
)

H1 =
(
∇U Ĵ(U)|L2 , δU

)
L2 , (12)

where (·, ·) denotes the L2(Ω) scalar product.
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Now, using the definition of the H1 inner product, we obtain∫
Ω

[
∇U Ĵ(U)|H1 · δU(x) +∇x∇U Ĵ(U)|H1 · ∇xδU(x)

]
dx =

∫
Ω
∇U Ĵ(U)|L2 δU(x) dx, (13)

which must hold for all the test functions δU ∈ H1(Ω). Therefore we obtain

−∆
[
∇U Ĵ(U)|H1

]
+
[
∇U Ĵ(U)|H1

]
= ∇U Ĵ(U)|L2 , (14)

with the boundary conditions ∂
∂n̂∇U Ĵ(U)|H1 = 0 on ∂Ω; see [9] for more details. In

Algorithm 1 our procedure for computing the gradient is given.

Algorithm 1 Calculate H1 gradient.

Require: control U(x), f0(x), fd(x, t).
Ensure: reduced gradient ∇U Ĵ(U)|H1

Solve forward the FP equation with inputs: f0(x), U(x)
Solve backward the adoint FP equation with inputs: U(x), f (x, t)
Assemble the L2 gradient ∇U Ĵ(U)|L2 using (11).
Compute the H1 gradient ∇U Ĵ(U)|H1 solving (14).
return ∇U Ĵ(U)|H1(x)

In this algorithm, the FP problem and its optimization FP adjoint are approximated by
the exponential Chang–Cooper scheme and the implicit BDF2 method; see [12].

Now, we can discuss the NCG method. The NCG iterative procedure is initialized
with U0(x) = 0. We denote the optimization directions with dn. In the first update, we
have d0 = −∇U Ĵ(U0)|H1 and perform the optimization step

U1 = U0 + α0 d0,

where α0 is obtained by a backtracking linesearch procedure. After the first step, in the
NCG method the descent direction is defined as a linear combination of the new gradient
and the past direction as follows:

dn = −∇U Ĵ(Un)|H1 + βn−1 dn−1,

where β−1 = 0, and βn−1 = ‖∇U Ĵ(Un)|H1‖2/(dn−1 · (∇U Ĵ(Un)|H1 − ∇U Ĵ(Un−1)|H1)),
that is, the Dai-Yuan formula bn−1 = ‖rn‖2/(−dn−1(rn − rn−1)), where here rn stand for
the deepest descent direction rn = −∇U Ĵ(Un)|H1 and dn−1 is the conjugate direction at the
previous step; see, e.g., [20].

The tolerance tol and the maximum number of iterations nmax are used for termination
criteria. Summarizing, in Algorithm 2 we present the NCG procedure.

Algorithm 2 Nonlinear conjugate gradient (NCG) method

Require: U0(x) ≡ 0, f0(x), fd(x, t)
Ensure: Optimal control U(x) and corresponding state f (x, t)

n = 0
Assemble gradient g0 = ∇U Ĵ(U0)|H1 using Algorithm 1; set d0 = −g0.
while ‖gn‖H1 > tol and n < nmax do

Use linesearch to determine αn
Update control: Un+1 = Un + αn dn

Compute the gradient gn+1 = ∇U Ĵ(Un+1)|H1 using Algorithm 1
Calculate the new descent direction dn+1 = −gn+1 + βn dn

Set n = n + 1
end while
return Un(x)
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For our numerical experiments these algorithms have been implemented with ob-
ject oriented programming in C++, by using the numerical libraries Armadillo [21,22],
Openblas [23], Lapack [24], SuperLU [25,26] and HDF5 [27].

3. Experimental Design and Analysis Tools

In a real application, the input data fd is given by frames of a recorded sequence of a
SRM experiment, and the desired output is the reconstructed potential denoted with Ur. In
our case, we construct this data based on a sample potential Us that determines the drift
function in our stochastic model (1). Thus, we generate our frames of synthetic data first by
time-integrating this SDE in the chosen interval [0, T], and choosing the initial positions
of the particles randomly uniformly distributed. Next, the positions of the particles at
different times are collected in a sequence of 2-dimensional bins that result in the sequence
of distributions fd(x, t`), ` = 1, . . . , L, where L is the length of the resulting time sequence
of frames. With this preparation, we apply our algorithm to obtain Ur, which represents
the proposed reconstruction of Us. A comparison between these two potentials allows to
validate the accuracy of our reconstruction method (see below).

We choose a domain Ω = [−3, 3]× [−3, 3], and Us corresponds to Figure 1 (up), where
the values of Us in Ω correspond to the gray scale pixel values of the picture mapped in
[0, 1]. With this Us, we perform a stochastic simulation of Np particles for a time horizon T,
and diffusion amplitude σ. The particles trajectories given by (1) with (3), are computed
with the Euler-Maruyama scheme with a time step τ = 10−3, which results in a number of
L frames. In this simulation, reflecting barriers for the stochastic motion are implemented.
We remark that for the following calculations we are going to consider a relatively small
value of density of particles; see [10,28].

Next, we perform a binning of the positions of the particles at each frame to construct
fd. Hence, we consider a uniform partition of Ω with non-overlapping squares; see Figure 2
for a plot of particles in Ω at a given time and the corresponding fd. Notice that fd is
irregular; nevertheless, we do not perform smoothing of this data. The sequence of fd
values enter in our best fit functional in (8).

Once we have computed Ur with our optimization procedure, we aim at providing
a quantification of its uncertainty. Thus, we compute the following normalized cross-
correlation factor between the reconstructed potential Ur and the one used to generate the
synthetic data Us. We have

cc(Ur, Us) =
Ur ·Us

|Ur| |Us|
. (15)

In this formula, Ur and Us are considered as vectors and · represents the scalar product.
Therefore if cc = 1 we have that the two potentials match perfectly, whereas if its value is
close to 0, the two potentials are dissimilar. Notice that cross-correlation is commonly used
in medical imaging and biology; see, e.g., [29–31].

Clearly, one could consider many repetitions of the simulation of the motion of the
particles with the same initial condition and make the final binning on the average of the
resulting frames. This procedure would result in a less fluctuating fd(x, t`) that allows a
better reconstruction. However, this scenario seems difficult to realize in the real laboratory
setting of a living cell. On the other hand, in SRM, imaging is able to visualize the motion
of the particles on a cell membrane for a relatively long time (T � 1 in our setting), and our
approach exploits this possibility considering a subdivision of the time interval in a number
K of time windows, and solving our optimization problem in each of these windows almost
independently. This approach allows us to improve the reconstruction Ur and makes it
possible to quantify the uncertainty of the reconstruction.

Now, to illustrate our approach, consider a uniform partition of [0, T] in time windows
of size ∆t = T/K with K a positive integer. Let tk = k∆t, k = 0, 1, . . . , K, denote the start-
and end-points of the windows. At time t0, we have the initial PDF f0, and we solve our
optimization problem (8) in the interval [t0, t1]. This means that the final time is t1 and the
terminal condition for the adjoined variable is given by p(x, t1) = −ξ ( f (x, t1)− fd(x, t1)).
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The resulting potential is denoted with U1. Thus, the solution obtained in this window also
provides the PDF at t = t1.

Clearly, we can repeat this procedure in the interval (t1, t2) with the computed PDF
at t = t1 as the initial condition and t2 as final time, to compute U2. This procedure is
recursive and can be repeated for k = 1, . . . , K, thus obtaining Uk, k = 1, . . . , K.

Notice that small values of K in relation to L produce a rough estimate of the average
potential and its standard deviation due to statistical fluctuations of the Monte Carlo
experiments. On the other hand, for greater values of K, the number of frames for each
window of our approach is reduced when L is kept fixed, thus resulting in a worsening of
the reconstruction procedure.

For the purpose of our analysis, we apply a scaling of these potentials so that their
point-wise values are in the interval [0, 1]. This scaling is performed as follows:

Û =
U −min(U)

max(U)−min(U)
. (16)

Thereafter, we the reconstructed potential by pixel-wise average of the Uk is given by

〈Ur〉 =
1
K

K

∑
k=1

Ûk. (17)

Moreover, we can also compute the following pixel-wise standard deviation

sd(Ur) =

√√√√ K

∑
k=1

(Ûk − 〈Ur〉)2

K− 1
. (18)

Next, we provide conversion formulas for our parameters in order to accommodate
data from real laboratory experiments. We introduce a unit of length u such that the side
length l of our square domain Ω is given by l = 6 u, and the unit of the noise amplitude σ
is given by

√
u/s. In real biological experiments, the typical measure of the length l̃ of a

cell membrane is given in µm. Further, the particle’s diffusion constant D = σ2/2 is given
in µm2/s; hence, we have the correspondence σ = l/l̃

√
2D in unit

√
u/s, whose value is

used for MC simulations.
The depth of the potential Ũ is expressed in unit of KBT̄, where KB is the Boltzmann

constant and T̄ the absolute temperature. In experimental papers, the Equation (3) is
written with the diffusion constant D and KBT̄, i.e., DŨ/(KBT̄). As above, we obtain the
relationship between the values of a potential U and the scaled Ũ, as Ũ = U(l̃/l)2/D in
the unit of KBT̄.

As an illustration of the setting above, we see that in an experiment, the super-
resolution of an acquired image frame can reach the value of 0.02 µm/pixel. With an
image of 500× 500 pixels, we have l̃ = 10 µm. The average diffusion coefficient of parti-
cles (protein molecules) observed in SRM imaging is estimated with D = 0.1 µm2/s [10].
By super-resolution techniques, it is possible to activate a density of 0.5÷ 2/µm2 visible
particles, which in terms of image pixels corresponds to 0.5÷ 2 particles in a square of 50
pixels of side. Each frame is usually sampled at time intervals of δt = 30 ms.

In order to set up a consistent MC simulation of a real experiment, by mapping an
image of a square of side 10 µm on our domain Ω, we get from the above mentioned
formula: σ = 6/10

√
0.2 ≈ 0.268 u/

√
s.

4. Numerical Validation

In this section, we discuss results of experiments in a setting that is close to real labora-
tory experiments involving SRM imaging. The results of these experiments demonstrate
the ability of our methodology to reconstruct the potential from the simulations of the SRM
measurements of the motion of particles on a cell’s membrane.
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We consider a potential that corresponds to a portion of cytoskeleton as depicted in
Figure 3, with 200× 200 pixels. We assume that the pixel is 50 nm, which corresponds to an
area of 100 µm2. In the figure, the white regions represent the structure of the cytoskeleton;
the black ones are the ‘valleys’ where the proteins are supposed to be attracted.

For the MC simulations for generating the synthetic data, we choose σ = 0.268 u/
√

s.
This value of σ corresponds to a diffusion constant of D ' 0.1 µm2/s. We consider
Np = 1000 particles, i.e., an average density of 10 particles per µm2. In this case, we
consider a sequence of L = 3000 frames and T = 90, obtained by the numerical integration
of the stochastic differential equation with an integration step τ = 30× 10−3 s. The frames
have δt = 30 ms, similar to a real experiment. The resulting (single run) particle trajectories
are collected in a binning process based on a mesh Ω of 50× 50 bins.

For our reconstruction method, we choose a numerical partition of Ω of
100× 100 subdivisions, corresponding to a mesh size of 100 nm. The time integration
step coincides with that of the frames. For the tracking functional, we set α = 10−4 and
ξ = 1. Further, in the FP setting, we have σ = 0.7 u/

√
s. Notice that σ in the FP model is

chosen to be larger than the one used in the MC simulations. This choice is dictated by
numerical convenience and it appears that it does not affect the quality of the reconstruction.
The calculations are performed according to the MPC procedure with K = 5 time windows.

With this setting, we obtain the reconstructed potential shown in Figure 3 (down). We
see that the reconstruction is less sharp as we expected considering the much finer structure
of the cytoskeleton and the small number of particles involved.

Further, in Figure 4, we depict the potentials obtained on each time window of the
MPC procedure and the values of the corresponding cc. With these results, we have
obtained the reconstructed potential Ur in Figure 3, which we re-plot in level-set format in
Figure 5 for comparison. In Figure 5, we also depict the standard deviation that suggests
that we have obtained a reliable reconstruction with small uncertainty.

Figure 3. Cont.
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Figure 3. (Up): Portion of the cytoskeleton (Courtesy of [17]). (Down): reconstructed potential with
the MPC scheme and K = 5.

Figure 4. Cont.
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Figure 4. Sequence of the 5 (from top-left to right-down) calculated potentials obtained with the
MPC procedure. Cross-correlation values: 0.82, 0.81, 0.82, 0.81, 0.82.

Figure 5. (Up): reconstructed mean potential. Its cross-correlation value with respect to the real
image is 0.82. (Down): standard deviation of the reconstructed potential, in level set representation.
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5. Resolution of FP-Based Image Reconstruction

In this section, we investigate the optical resolution of our reconstruction method,
that is, try to determine a confidence value related to the scale at which our method
can resolve variations of the potential. As a guideline, we remark that single molecule
localization microscopy (SMLM) can distinguish distances of molecules of approximately
20 nm resolution. Therefore, we assume this resolution range of the fluorescently labeled
particles images, and we attempt to quantify the smallest scale at which geometric features
of the reconstructed potential U can be distinguished.

For our purpose, we consider the following ‘target potential’, appearing as an alternat-
ing sequence of black and white circles (likewise those in test targets used for the resolution
measurement of optical instruments), to synthetically generate the motion data of particles.
We have

U(x, y) = A
(

1 + cos
(

2π

dl
(x2 + y2)

))
, (x, y) ∈ Ω, (19)

where A denotes the semi-amplitude of the variation between the minimum and the
maximum of the potential, l is the length of the side of the domain, d is the distance
between two peaks of the potential as a fraction of l.

Now, we consider a single MC simulation of 500 particles with the setting: σ = 0.5,
T = 90 and L = 3000 frames, integrated with the time step τ = 0.03. In Figure 6, we
show (left) the given potential with A = 0.05 and d = 1/20, with a gray-scale value
representation conveniently adjusted for illustration pourpose. According to the above
working hypothesis, we suppose that the pixel’s width of the image is 20 nm. In Figure 6
(left), we depict U in a square of side of 500 pixels, corresponding to l̃ = 10 µm. Hence,
the distance between two peaks is λ = 10/20 = 500 nm. Further, the particle’s density is
5 particles per µm2, the diffusion coefficient D ' 0.3472 µm2/s, and the potential depth,
i.e., the difference between the maximum and the minimum, is Ũ = 0.8 KBT. For the
reconstruction process, we use a binning of 50× 50, α = 10−4, ξ = 1. In the numerical
setting, we use a grid of 100× 100 points, and K = 5. Also in Figure 6 (right), we show
the reconstructed potential 〈Ur〉 and notice its high accuracy that is also confirmed by the
high value 0.82 of the cross correlation. Notice, that the quality of the reconstruction can be
further improved by using post-processing techniques of images.

Figure 6. (Left): the potential (19) with A = 0.05 and d = 1/20 (the gray scale levels spans from
U = 0 to 0.1). (Right): result of the reconstruction with the gray levels expanded to the min/max of
〈Ur〉. The cross correlation between the two images is 0.82.

Now, with the aim to define a criteria to establish the resolution measure for the
potential, we introduce a confidence level for the quality of the reconstructed potential by
setting a threshold for the calculated cross-correlation. This approach has been adopted
in [29] for the detection of cellular objects from images acquired from electron tomography.
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For that purpose, the authors used the threshold value of 0.5, whereas in our case, we
set a more strict threshold-cc level equal to 0.8. With this threshold, we can state that the
test pattern depicted in Figure 6 (left) is satisfactorily reconstructed and determines that
the resolution measure associated to our ‘imaging instrument’ is 500 nm. Notice that this
value is affected by the value of the potential U and the diffusion D, and it can be further
improved by changing the other parameters of the experiment, such as K or the time T of
the motion sampling.

6. Conclusions

A novel method for the analysis of super-resolution microscopy images was presented
and applied to the reconstruction of the structure of a cell membrane potential based on
the observation of the motion of particles on the membrane.

The working principle of this method is the modeling with the linear Fokker–Planck
equation of the ensemble of the stochastic trajectories of particles moving on the membrane
of a cell, and the solution of an optimization problem governed by this equation, where
the purpose of the optimization is to find a potential such that a least-squares best fit
term of the computed and observed particles’ density and a Tikhonov regularization term
are minimized.

Results of numerical experiments were presented that demonstrated the ability of the
proposed method to reconstruct the potential of a cell membrane by using the data of a
super-resolution microscopy of luminescent activated proteins.

7. Brief Documentation of the Code

The program code has been written in C++ with the support of Armadillo, LAPACK,
and others common public available linear algebra routines. The structure of the code
follows the object oriented programming style, with some basic classes for the the definition
of the mathematical model, numerical grids and solvers, and derived classes for the solution
of the optimization problem. Notice that the code is not computationally optimized, that is, it
has been written with the purpose to test the ability of the numerical scheme to accomplish
the proposed reconstruction task. Further major improvements could be implemented,
such as a better organization of the hierarchical class structure and a more efficient use of
the pointers.

The package of the source codes is composed of 14 files (The code will be available in
the repository of this journal as a supplemental material):

• CALC_FIG3.cpp, CALC_FIG6.cpp the main driver routines
• Non_lin_conjug_grad.cpp/.hpp class definitions for the nonlinear conjugate gradi-

ent method
• Optim_problem.cpp/.hpp class definition for the optimization problem
• BDF_Chang_Cooper.cpp/.hpp class definitions of the BDF2 solver associated with the

Chang-Cooper method
• Chang_Cooper.cpp/.hpp class definitions of the Chang-Cooper numerical method
• gradients.cpp/.hpp support functions for the discrete gradients
• model.cpp/.hpp class definition for the Fokker–Planck model

For our tests, the following libraries were installed on the OS Linux Mint (20.3): Ar-
madillo (version 12.6), Openblas (version 0.3.8), Lapack (version 3.9.0), SuperLU (version
5.2.1) and HDF5® (version 1.10.4). The makefile gives support for the compilation, pro-
vided that the user customizes the library paths according to his own OS configuration.
The compilation process is invoked with the command make CALC_FIG3 that produces
the related executable file. The command make clean cleans all the object codes. At run
time, the executable file loads the input data from the folder input_data, prints on the
screen some computation information about the minimizing process, and finally saves the
resulting reconstruction in data files and pictures inside automated created folders.

Here follows a brief description of the input/output data structure.
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The main input data of the algorithm, namely fd, is a 3-dimensional matrix that,
according to the syntax of Matlab®/Octave [32,33], has size as [Nx,Ny,Nt]=size(fd),
where Nx,Ny are the number of histogram bins in each dimension on the domain space, and
Nt is the number of time step samples of the particles trajectories, i.e., fd(:,:,n) represents
the 2-dimensional matrices slice at the time step n with the values of the histograms of the
particles positions. This matrix is saved in the HDF5® format [27] under the set data name
value, as follows

name_h5 = [save_name ’.h5’];
h5create(name_h5,’/value’,size(fd));
h5write(name_h5,’/value’,fd);

The library Armadillo provides the loading method.
The files CALC_FIG3.cpp and CALC_FIG6.cpp are the driver programs for calculating

the figures of the papers. They differs on the input/output data name and some parameters
value. Here follows the list of variables that can be customized by the user:

• base_data_dir: folder name containing the input data.
• data: file name of the input data, i.e., the trajectories, binned in histograms, of the

particles. The HDF5 format is used.
• base_dir: is the parent folder name where the results of the computation will be saved.

This folder must be created in advance, otherwise the run-time is stopped by an error.
The program creates automatically the sub-folder and saves the results inside.

• save_name: is a root file name, used to create file names for saving the results of the
reconstruction.

• nlcg_param_fname: file name for the file containing the parameters of the nonlinear
conjugate gradient algorithm. See below the description.

• sig: intensity of the Gaussian noise σ in the FPE (4).
• alfa: weight α of the norm of the potential U(x) in the objective functional (8).
• beta: weight of the norm of the gradient of the potential ∇U(x) in the objective

functional (8). Notice, here we assume beta= α.
• xi: weight ξ of the terminal condition in the objective functional (8).
• ax, bx, ay, by: are the boundaries of the 2-dimensional domain. It is not necessary

to change the default values.
• TT: total time interval for the reconstruction. It is equal to the time of the Monte Carlo

simulation or the time length of the sampled trajectories.
• Nx: number of grid points of the numerical domain. In this implementation it must be

square.
• mux, muy, s0: parameters for the 2-dimensional Gauss PDF used as initial condition

f0(x) for the FPE (4). mux, muy are the (x, y) coordinates of the mean value, s0 is the
standard deviation. If s0 < 0 then the PDF is uniform.

• Nt_seq: number of windows of the Model Predictive Control. It corresponds to the
number of the reconstructions computed along all available input time step data of
the particles trajectories from the Monte Carlo simulation, as depicted in Figure 4.

• lam0: is the initial step length for a single cycle of the NLCG algorithm.
• kmax: maximum number of iterations for a single cycle of the NLCG algorithm.
• max_restart: maximum restart sequences of the NLCG algorithm.

Non_lin_conjug_grad.hpp/.cpp defines the class NLCG that implements the nonlinear
conjugate gradient method. It contains some default values of parameters for the Armijo
condition during the linesearch algorithm (for details see [12,20]).

• BACK_TRACK 0.5 is the backtracking coefficient of the linesearch algorithm.
• MAX_LEVELS 10 is the maximum number of level search for the Armijo condition.
• GAMMA 0.1 is the coefficient for the Armijo sufficient decrease condition of the func-

tional.
• EPS_CONV 1e-4 is the tolerance level for the search of the step-length
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• U_TOLERANCE 1e-4 is the tolerance level for the search of the step-length related to the
control.

• EPS_PDF 1e-8 is the minimum value of the PDF under which the control should be
set vanishing (not used).

These values can be overwritten by those defined in an external file pointed out by the
variable nlcg_param_fname. Such as an example, in the file nlcg_params.dat the following
values are changed

• BACK_TRACK 0.3
• GAMMA 0.2

Outline of the classes usage.
The source codes CALC_FIG3.cpp and CALC_FIG6.cpp give the guidelines on how to

use the classes for solving the optimization problem. After loading the input data and
defining some parameters, the classes Param and Model must be instantiated. In particular,
the class Model named fokker_planck that contains the mathematical model of the FPE.
Afterward, it follows the definition of the Cauchy initial condition. Then it starts the
iterations over the reconstruction windows related to the MPC. Each iteration solves an
optimization problem, inside of that it instantiates a Grid class for the numerical grid and
matrices for the data. The instance of the class NLCG provides the numerical optimizer
for the reconstruction problem. The constructor of the class takes as input arguments the
classes Model and Grid, and a reference to the output, i.e., the solution of the optimization
stored in u. After loading the algorithm parameters, the optimization starts by invoking the
public method start_restart_sequence. At the completion of the method, the solution
is stored in u, and the final value of the PDF is set as the initial condition for the next
temporal window.

Finally, notice that the classes can be easily reused, e.g., for solving the sole Fokker–
Planck equation, or modified in order to implements others optimization algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mca28060113/s1.
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