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Abstract: The preventive measures taken to curb the spread of COVID-19 have emphasized the
importance of wearing face masks to prevent potential infection with serious diseases during daily
activities or for medical professionals working in hospitals. Due to the mandatory use of face masks,
various methods employing artificial intelligence and deep learning have emerged to detect whether
individuals are wearing masks. In this paper, we utilized convolutional neural networks (CNNs)
to classify the use of face masks into three categories: no mask, incorrect mask, and proper mask.
Establishing the appropriate CNN architecture can be a demanding task. This study compares four
swarm intelligent metaheuristics: particle swarm optimization (PSO), grey wolf optimizer (GWO),
bat algorithm (BA), and whale optimization algorithm (WOA). The CNN architecture design involves
determining the essential hyperparameters of the CNNs. The results indicate the effectiveness of the
PSO and BA in achieving an accuracy of 100% when using 10% of the images for testing. Meanwhile,
when 90% of the images were used for testing, the results were as follows: PSO 97.15%, WOA 97.14%,
BA 97.23%, and GWO 97.18%. These statistically significant differences demonstrate that the BA
allows better results than the other metaheuristics analyzed in this study.

Keywords: face mask classification; swarm intelligence metaheuristics; convolutional neural network;
particle swarm optimization; whale optimization algorithm; bat algorithm; grey wolf optimizer

1. Introduction

The COVID-19 pandemic has shown the importance of using face masks, avoiding the
spread of the virus, and preventing the infection of millions of people [1,2]. However, it is
important to mention that various studies on its use were performed several years before
the COVID-19 pandemic, where the importance and efficacy of its use to prevent other
respiratory infections were demonstrated [3,4]. Two of the most widely used subsets of
artificial intelligence related to face masks are deep learning (DL) and machine learning
(ML). Different works on the detection of the facial mask using pre-trained models of con-
volutional neural networks can be found in [5–7], which allowed us to observe the potential
of this technique in the detection and classification of facial masks [8–10]. In Ref. [11],
the authors studied the architectures of different pre-trained models such as EfficientNet,
InceptionV3, MobileNetV1, MobileNetV2, ResNet-101, ResNet-50, VGG16, and VGG19.
Based on their study, they proposed a model for face mask detection based on MobileNetV2,
applying data augmentation techniques to increase the number of images for the training
phase. In Ref. [12], an application for mobile devices was developed to identify face masks
using the Google Cloud ML API, while analyzing the progress of cloud technology and
the benefits of machine learning. In Ref. [10], the authors developed five ML models for
face mask classification. The developed models were Naïve Bayes (NB), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbors (KNN).
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The test of the models was performed using 1222 images, where the results demonstrated
the effectiveness of the DT over the other models. The use of neural networks is related
to metaheuristics, which are utilized to find the optimal architectures that improve the
results depending on the application for which the network is used [13]. Metaheuristics
are a great option for finding optimal parameters in applications in different areas. These
algorithms have been classified according to their inspiration: based on evolutionary al-
gorithms, physics-based algorithms, and algorithms based on swarm intelligence [14–16].
Nature-inspired algorithms are mainly inspired by collective behavior, where the main
characteristics of a particular species are analyzed and represented in a computational way
to be used in solving complex problems in the search for optimal solutions [17,18]. In recent
works, comparisons have been made between metaheuristics to compare the performances
applied to find CNN hyperparameters. Some of these metaheuristics are grey wolf opti-
mizer (GWO), whale optimization algorithm (WOA), salp swarm algorithm (SSA), sine
cosine algorithm (SCA), multiverse optimizer (MVO), particle swarm optimization (PSO),
moth flame optimization (MFO), and bat algorithm (BA), to mention a few. The authors
have concluded the advantages of combining convolutional neural networks and meta-
heuristics for the search of hyperparameters [19–21]. These techniques have been combined
to solve applications related to pattern recognition [19,22,23], image classifications [18,24],
and medical diagnosis [21,25,26], among other applications.

In this work, convolutional neural network hyperparameters are optimized by differ-
ent nature-inspired algorithms [27–29]. The optimized hyperparameters are the number of
convolutional layers, filters, fully connected layers, neurons, batch size, and epochs. The
contribution of this work includes the optimal design of the convolutional neural network
architectures to increase classification accuracy and its application to face mask classifica-
tion: no mask, incorrect mask, and mask. Recent works applied to face mask classification
based their model architectures on pre-trained models, which does not guarantee optimal
architecture. As a novelty, this paper proposed optimizing CNN architectures instead
of basing them on other architectures. The optimal hyperparameters are found using
four metaheuristics used in recent works to make a statistical comparison and analysis,
providing better accuracy for face mask classification.

This paper is presented as follows. In Section 2, the metaheuristics applied in this
work are presented in a succinct manner. Section 3 shows the optimization proposed
for the convolutional neural networks. The results obtained by each swarm intelligence
metaheuristic are shown in Section 4. The statistical test results are shown in Section 5. The
conclusions are presented in Section 6.

2. Background

The optimal design of architectures and models has allowed the realization of impor-
tant practical applications. In Ref. [30], optimal convolutional neural network architectures
was designed to identify various types of damage on reinforced concrete (RC) to avoid
further structure deterioration. The results achieved show good accuracy of six types of
damage. The design of convolutional neural network architectures using a particle swarm
optimization algorithm was proposed and applied to sign language recognition using three
study cases of sign language databases: the Mexican Sign Language alphabet, the American
Sign Language MNIST, and the American Sign Language alphabet [31]. In Ref. [32], the
authors proposed face detection and face classification by developing adaptive sailfish
moth flame optimization (ASMFO) to the parameter optimization using a deep learning
approach. In Ref. [19], the authors analyzed the importance of the CNN hyperparameters,
such as filters, kernel, epoch, batch size, and pooling size of the convolutional neural
networks applied to classify human movements. They compared seven metaheuristic
algorithms: GWO, WOA, SSA, SCA, MVO, PSO, and MFO, concluding the advantages of
the metaheuristics to optimize the hyperparameters of CNNs. The results led the authors
to the conclusion that the implementation of GWO achieved higher accuracy than the other
metaheuristics. In Ref. [20], the authors proposed a PSO to determine optimal hyperpa-
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rameters of convolutional neural networks. They used the simplest CNN model as a base:
LeNet. Their results achieved better results when the PSO designed the CNN architectures.
The results achieved by their study were obtained using MNIST, Fashion-MNIST, and
CIFAR-10 datasets.

In previous works [33,34], nature-inspired algorithms have optimized modular neural
network architectures applied to human recognition using different biometric measures.
In those works, comparisons using genetic algorithms (GAs) and swarm intelligence algo-
rithms were performed, and significant evidence of the advantage of the swarm intelligence
algorithms was proven. More recently, in [22], and based on the advantages offered by
the swarm intelligence algorithms, the architecture of convolutional neural networks was
optimized and applied to face recognition. In this work, algorithms such as particle swarm
optimization and grey wolf optimizer offer advantages when designing convolutional
neural network architectures. It is important to mention that the databases used for this
work were small, with 400 and 165 images. In Ref. [35], the non-optimized design of
convolutional neural network architectures applied to the facial mask classification was
performed, and the best architecture was implemented in a real-time system using a Rasp-
berry Pi 4 in combination with a camera to obtain the image in real time. The Raspberry Pi
4 sends a signal through its GPIO Board, and a result is provided by lighting an LED. If
the mask is correctly used, the green LED is turned on. If the mask is incorrectly used, the
yellow LED is turned on, and if a mask is not used, the red LED is turned on.

3. Intelligence Techniques

This section shows a description of the intelligence techniques utilized in this work.

3.1. Convolutional Neural Networks

Artificial neural networks (ANNs) are mainly based on the behavior of the human
nervous system and its way of processing information. An artificial neural network is a type
of distributive processor made up of simple processing units known as neurons, simulating
two main aspects of the human brain: it acquires knowledge of its environment through a
learning process and the use of synaptic weights to store the required knowledge [36,37].
Learning methods are categorized into supervised, semi-supervised, and unsupervised
learning. Among the main properties that can be found in ANNs that make them one of the
main techniques used in artificial intelligence, we can find their capacity for generalization,
adaptation, learning, and parallelism [38,39]. Convolutional neural networks (CNNs) are an
improvement of ANNs with some characteristics that make them powerful in applications
where images are used. This type of network consists of other layers in addition to those
already existing in conventional neural networks: the convolutional and the pooling layers.
One of the advantages provided by this type of network is the extraction of features from the
given images before proceeding to the learning phase, which makes it possible to reduce the
amount of information that must be learned by the ANN [38]. In the convolutional layers
(CLs), the inputs are multiplied by a filter with the size m × n. Each layer contains a height,
width, and depth. When talking about depth concerning the layer, it refers to the number
of channels (primary colors) that contain the input images [40]. The most used grouping
layers with the maximum, average, and minimum are responsible for grouping the feature
map produced in the convolution layer, thus reducing the amount of information that will
pass to the fully connected layers [23,41]. In Figure 1, a representation of a convolutional
neural network is shown.

3.2. Nature-Inspired Algorithms

The nature-inspired algorithms used in this study are described below.
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3.2.1. Particle Swarm Optimization

In Ref. [42], the particle swarm optimization (PSO) based on the fish or bird social
performance was proposed. A set of particles is known as a swarm, and each particle is a
solution [43]. A particle defines their next position by Equation (1).

xid(t + 1) = xid(t) + vid(t + 1) (1)

where xid(t) indicates at time t, in the dimension d, the actual position of the particle i. A
velocity vi(t + 1) is designated to establish the next position. In Ref. [44], this algorithm
was enhanced by adding the parameter: inertia weight (w). The particle velocity is defined
by Equation (2).

vid(t + 1) = w× vid(t) + c1 × r1d(t)× [yid(t)− xid(t)] + c2 × r2d(t)× [ŷd(t)− xid(t)] (2)

where r1 and r2 are random values in [0, 1]. The best position of a particle i in dimension d
is connoted by yid(t); the best position of the swarm in d dimension is denoted by ŷd(t). c1
and c2 are the cognitive and social components.

w has a decreased value during the algorithm execution to allow exploitation and
exploration. The linear decrease in the inertia weight applied in this work is given
by Equation (3).

wt = (ws − we)×
(tmax − t)

tmax
+ we (3)

where tmax denotes the maximum number of time steps, and ws and we are the initial and
final values of the inertia weight, respectively. The recommended values are ws = 0.9 and
we = 0.4 [45].

3.2.2. Grey Wolf Optimizer

In Ref. [46], the grey wolf optimizer (GWO) was proposed. This metaheuristic uses
a dominant hierarchy applied by the wolves in hunting as inspiration. This dominant
hierarchy is shown in Figure 2, where leaders known as alphas are at the top of the pyramid,
and they make the main hunting and sleeping decisions. The betas are subaltern wolves
that help the alpha wolves in making decisions. A delta wolf does not belong to any
level already mentioned and can dominate only the lowest level. The delta wolves have
different roles as scouts, sentinels, elders, hunters, and caretakers. The wolves in the lowest
level are known as the omegas. They are always submitted by the wolves that are in the
superior hierarchies [47,48].

The description of the principles used to define this algorithm and its mathematical
representation is described below:
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• Social hierarchy: The three best solutions are alpha (α), beta (β), and delta (δ). The
wolves belonging to the lowest level are the omegas (ω).

• Encircling prey: The process of prey encircling during hunting are represented by
Equations (4) and (5).

→
D = |

→
C ×

→
Xp (t)−

→
X (t) (4)

→
X(t + 1) =

→
Xp(t)−

→
A×

→
D (5)

where
→
X denotes the agent position in the t iteration, and

→
Xp represents the position of

the prey. The coefficient vectors are
→
A and

→
C . Equations (6) and (7) are used to determine

their values. →
A = 2

→
a ×→r1 −

→
a (6)

→
C = 2×→r2 (7)

where
→
r1 and

→
r2 represent vectors with random values in [0, 1]. During the algorithm

execution, the vector
→
a has linear decreasing values in [2, 0] given by Equation (8) [49].

→
a (t) = 2− 2× t

tmax
(8)

where t denotes the current iteration, and tmax denotes the maximum number of iterations.

• Hunting: The first three levels in the dominant hierarchy know the prey position.
With their positions, the wolves belonging to the lowest level (omega) can update their
position using Equations (9)–(11).

→
Dα =

∣∣∣∣ →C1 ×
→
Xα −

→
X
∣∣∣∣, →

Dβ =

∣∣∣∣ →C2 ×
→
Xβ −

→
X
∣∣∣∣, →

Dδ =

∣∣∣∣ →C3 ×
→
Xδ −

→
X
∣∣∣∣ (9)

→
X1 =

→
Xα −

→
A1 ×

( →
Dα

)
,

→
X2 =

→
Xβ −

→
A2 ×

( →
Dβ

)
,

→
X3 =

→
Xδ −

→
A3 ×

(→
Dδ

)
(10)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(11)
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• Attacking prey: The process is also known as exploitation, where the current posi-
tion of an agent and the prey allows it to establish the next position of the agent.

This position is calculated using
→
a and vector

→
A with random values in an interval

[−2a, 2a].

• Search for prey: The process is also known as exploration, where vector
→
C is used

with values in [0, 2] to provide diversity to the population and avoid local optimal.

3.2.3. Whale Optimization Algorithm

In Ref. [50], the whale optimization algorithm (WOA) was proposed. This algorithm
uses as inspiration the hunting method applied by the whales. These marine mammals
usually live in groups and are considered killers and predators [51]. One of the main
characteristics shared with the grey wolf optimizer is the process of encircling prey, present
also in WOA. The description of the processes used to define this algorithm based on
humpback whales and its mathematical representation is described below:

• Encircling prey: The whales encircle the prey because they know its position. The
whale closest to the prey becomes the best solution. Equations (3) and (4) allow the
update of the position of the rest of the agents.

• Bubble-net attacking method: This process is also known as exploitation and is very
similar to the one in the GWO, where the distance between the agent and the prey is
determined. The process can be accomplished using two approaches:

1. Mechanism of shrinking encircling: In Equation (5), the values of
→
a decrease

every iteration, and an interval [−a, a ] is used to generate random values for the

vector
→
A.

2. Spiral updating position: The helix-shaped movement of whales between the
whale and prey position is mimicked by Equation (12).

→
X(t + 1) =

→
D′ × ebl × cos (2πl) +

→
Xp(t) (12)

where the distance between prey and whale is connoted by
→
D′, and b is a constant that

represents the shape of the logarithmic spiral. A random value in an interval [−1, 1] is
represented by l.

• Search for prey: This process is also known as exploration, where the whales seek ran-

domly based on the position of others. To force the exploration, the
→
A vector has num-

bers less than−1 and greater than 1. The process is defined by Equations (13) and (14).

→
D =

∣∣∣∣ →C × →
Xrand −

→
X
∣∣∣∣ (13)

→
X(t + 1) =

→
Xrand −

→
A×

→
D (14)

where a random whale of the current iteration is represented by
→

Xrand. This random whale
or the best solution found is utilized to help the other whales update their position.

3.2.4. Bat Algorithm

The bat algorithm (BA) [52] is based on their echolocation behavior due to the ability
they have to identify their prey even in darkness. There are different types of bats de-
pending on their size. Microbats have the characteristic of using a type of sonar known
as echolocation, allowing them to detect prey and avoid obstacles. The bats make a loud
sound pulse and listen for the echo that is reflected off of nearby objects. The rate of pulse
is established in an interval [0, 1] [53].

The author established some important rules to delimit the behavior and knowledge
that the bats can have:
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• Echolocation is used for all the bats to sense distance, and they know the difference
between the prey and other kind of elements.

• To search for prey, each bat flies randomly in a position xi with a velocity vi. This task
is performed by changing loudness A and wavelength λ. Depending on the closeness
of its objective, the bat regulates the wavelength of its emitted pulses and regulate the
rate of pulse emission r ∈ [0, 1].

• The loudness is assumed to be a large value positive number A to a minimum constant
value Amin.

To define the update of position and velocities, the next equations are given by
Equations (15)–(17).

fi = fmin + ( fmax + fmin)× β (15)

vi(t) = vi(t− 1) + (xi(t− 1)− x∗)× fi (16)

xi(t) = vi(t− 1) + vi(t) (17)

where xi(t) and vi(t) represent the new position and velocity, respectively, at time step t. A
vector with random values in [0, 1] is represented by β. The current global best solution is
denoted by x∗. For the local search, the best solutions are used to select one of them and
locally generate a new solution using a random walk given by Equation (18) [54].

xnew = xold + ε× A(t) (18)

where ε represents a random value in an interval [−1, 1], and the average loudness of all
the bats at time step t is represented by A(t).

4. Proposed Method

The proposed optimization is applied to face mask classification (no mask, incorrect
mask, and mask). To perform this task, the method combines CNNs and optimization
algorithms. The metaheuristics allow the optimal design of CNN architectures to be
found. The optimization algorithm designs the CNN architectures, seeking their number
of convolutional layers, filters, fully connected layers, neurons, batch size, and epochs.
Each CL is followed by a max-pooling layer with a pool size of 3 × 3 to reduce image size.
Figure 3 shows an example of the CNN architecture applied to face mask classification.
As input to the convolutional neural network, images of people wearing (correctly and
incorrectly) or not using face masks are used for the training phase of the convolutional
neural network. The first layers of the convolutional neural network (convolutional and
pooling) will extract features and reduce the image so that the fully connected layers learn
the most relevant information. As output, when an image is simulated, a classification
will be obtained (no mask, incorrect mask, and mask). A correct classification will depend
on correct learning and the convolutional neural network architecture. For this reason,
an optimization algorithm is an excellent option for designing the architecture because it
allows a specific model to be applied to a particular application.
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4.1. Description of the Optimization

The parameters used to execute any optimization algorithm have great importance
because these depend on its performance. For each optimization algorithm, 10 solutions
(particles, bats, or search agents) and 10 iterations are used. The configuration of the
optimization algorithms used in this work is presented in more detail in Table 1. The
parameters presented are based on previous works [22,33,55].

Table 1. Configuration of characteristic/tuning parameters of the optimization algorithms.

PSO BAT WOA and GWO

Parameter Value Parameter Value Parameter Value

Particles 10 Bats 10 Search
Agents 10

Maximum
Iterations

(tmax)
10

Maximum
Iterations

(tmax)
10

Maximum
Iterations

(tmax)
10

C1 2 fmin 0 - -

C2 2 fmax 2 - -

ws 0.9 Loudness
(A) 0.5 - -

we 0.4 Pulse rate
(r) 0.5 - -

Each solution seeks to minimize the face mask classification error. In this work, the
accuracy equation is used and given by Equation (19).

Accuraccy =
TP + TN

TP + FP + TN + FN
(19)

where TP, TN, FP, and FN mean True Positive, True Negative, False Positive, and False
Negative, respectively. The objective function used in this work is expressed by Equation (20).

f = 1− TP + TN
TP + FP + TN + FN

(20)

The search space used for each solution (particle or agent) is determined by the
minimum and maximum ranges shown in Table 2. These ranges are established based
on previous works [18,22]. The convolutional neural networks use the Adaptive Moment
Estimation (Adam) as a leaning algorithm and the rectified linear activation function (ReLU)
as an activation function. The batch size is determined using a range from 1 up to 5, which
means 8, 16, 32, 64, or 128.

Each particle or agent represents a solution, where each solution has 14 dimensions,
which allow the creation of a CNN. In Figure 4, the dimensions of the solution are shown.
The first four dimensions allow the determination of the number of convolutional layers,
epoch, batch size, and the number of fully connected layers. Meanwhile, the rest of the
dimensions allow us to determine the number of neurons and filters.

All the metaheuristics have, as a stopping criterion, 10 iterations or when the best
solution has a cost equal to zero. The Keras Python package based on TensorFlow was used
to implement the optimization algorithms and to build and train the CNN models.



Math. Comput. Appl. 2023, 28, 107 9 of 23

Table 2. Definition of the search space to determine the solutions.

Hyperparameter Minimum Maximum

Convolutional layers (CLs) 1 5

Number of filters

CL 1 8 16

CL 2 8 16

CL 3 16 32

CL 4 16 32

CL 5 32 64

Fully connected layers (FCL) 1 5

Neurons 10 150

Epoch 5 50

Batch Size 1 5

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 9 of 23 
 

 

epoch, batch size, and the number of fully connected layers. Meanwhile, the rest of the 
dimensions allow us to determine the number of neurons and filters. 

All the metaheuristics have, as a stopping criterion, 10 iterations or when the best 
solution has a cost equal to zero. The Keras Python package based on TensorFlow was 
used to implement the optimization algorithms and to build and train the CNN models. 

 
Figure 4. Dimensions of the solutions to design CNN architectures. CL indicates convolutional 
layer, and Layer indicates fully connected layer. 

4.2. Database 
To perform the face mask classification, the convolution neural networks are 

trained, validated, and tested using images of three classes (no mask, incorrect mask, and 
mask). The first two classes are obtained from the MaskedFace-Net dataset [56], and the 
no mask class is obtained from the Flickr-Faces-HQ Dataset (FFHQ) [57]. The 
MaskedFace-Net dataset consists of 137,016 images, and it is based on the 
Flickr-Faces-HQ (FFHQ) dataset. In this work, 3000 images were used, where each class 
contains 1000 images of the dataset. In Figure 5, a sample of the dataset is shown. The 
images used in this work were separated into training, validation, and testing. To help 
prevent bias in our models, when the images are split into sets, stratified sampling is uti-
lized to guarantee a consistent distribution. Stratified sampling is a functionality pro-
vided by the Keras Python package. 

 
Figure 5. Examples of the database with 3 classes: incorrect, mask, and no mask. 

4.3. Preprocessing 
The original images have a resolution of 1024 × 1024 pixels. The region of interest 

(ROI) for this work is the face region, and it is automatically found using the Caffe model. 
The Caffe model was developed by the Berkeley Vision and Learning Center (BVLC). 

Figure 4. Dimensions of the solutions to design CNN architectures. CL indicates convolutional layer,
and Layer indicates fully connected layer.

4.2. Database

To perform the face mask classification, the convolution neural networks are trained,
validated, and tested using images of three classes (no mask, incorrect mask, and mask).
The first two classes are obtained from the MaskedFace-Net dataset [56], and the no mask
class is obtained from the Flickr-Faces-HQ Dataset (FFHQ) [57]. The MaskedFace-Net
dataset consists of 137,016 images, and it is based on the Flickr-Faces-HQ (FFHQ) dataset.
In this work, 3000 images were used, where each class contains 1000 images of the dataset.
In Figure 5, a sample of the dataset is shown. The images used in this work were separated
into training, validation, and testing. To help prevent bias in our models, when the images
are split into sets, stratified sampling is utilized to guarantee a consistent distribution.
Stratified sampling is a functionality provided by the Keras Python package.



Math. Comput. Appl. 2023, 28, 107 10 of 23

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 9 of 23 
 

 

epoch, batch size, and the number of fully connected layers. Meanwhile, the rest of the 
dimensions allow us to determine the number of neurons and filters. 

All the metaheuristics have, as a stopping criterion, 10 iterations or when the best 
solution has a cost equal to zero. The Keras Python package based on TensorFlow was 
used to implement the optimization algorithms and to build and train the CNN models. 

 
Figure 4. Dimensions of the solutions to design CNN architectures. CL indicates convolutional 
layer, and Layer indicates fully connected layer. 

4.2. Database 
To perform the face mask classification, the convolution neural networks are 

trained, validated, and tested using images of three classes (no mask, incorrect mask, and 
mask). The first two classes are obtained from the MaskedFace-Net dataset [56], and the 
no mask class is obtained from the Flickr-Faces-HQ Dataset (FFHQ) [57]. The 
MaskedFace-Net dataset consists of 137,016 images, and it is based on the 
Flickr-Faces-HQ (FFHQ) dataset. In this work, 3000 images were used, where each class 
contains 1000 images of the dataset. In Figure 5, a sample of the dataset is shown. The 
images used in this work were separated into training, validation, and testing. To help 
prevent bias in our models, when the images are split into sets, stratified sampling is uti-
lized to guarantee a consistent distribution. Stratified sampling is a functionality pro-
vided by the Keras Python package. 

 
Figure 5. Examples of the database with 3 classes: incorrect, mask, and no mask. 

4.3. Preprocessing 
The original images have a resolution of 1024 × 1024 pixels. The region of interest 

(ROI) for this work is the face region, and it is automatically found using the Caffe model. 
The Caffe model was developed by the Berkeley Vision and Learning Center (BVLC). 

Figure 5. Examples of the database with 3 classes: incorrect, mask, and no mask.

4.3. Preprocessing

The original images have a resolution of 1024 × 1024 pixels. The region of interest
(ROI) for this work is the face region, and it is automatically found using the Caffe model.
The Caffe model was developed by the Berkeley Vision and Learning Center (BVLC). This
model was trained to perform object detection and classification [58]. In Figure 6, an
example of the face detection is shown.
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When the face region is detected, the image is resized to 100 × 100 pixels. Once the
image is resized, an RGB subtraction technique is implemented to the ROI in order to help
counteract slight variations [59]. In Figure 7, an example of the RGB subtraction technique
is shown.
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The proposed method is shown in Figure 8, which begins with the input images that
go through preprocessing. The database is partitioned into three sets (training, validation,
and testing), and the optimized CNN architecture is obtained with the metaheuristic.
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5. Experimental Results

The database previously described is used to prove the proposed hyperparameters op-
timization. As previously mentioned, 3000 images were used to train, validate and test each
convolutional neural network. In this work, 20 runs were performed using 10, 20, 30, 40, 50,
70, 80, and 90 percent of the images for testing, leaving the rest for training and validation.
These experiments are performed with all the previously mentioned metaheuristics.

5.1. PSO Results

The best architectures achieved by the PSO with different percentages of images for the
testing phase are summarized in Table 3. The best results are obtained with 10% and 20%
of images for the testing phase, where an accuracy of 100% is achieved (marked with bold
text in Table 3). We can define the best architecture as the one that uses less information
for the training phase, which would be when 20% is used for the testing phase. This CNN
model is structured as follows: four convolutional layers with 16, 16, 28, and 23 filters, with
a size of 3 × 3. This architecture uses four FCLs with 150, 10, 117, and 19 neurons and a
batch size of 8 with 12 epochs.
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Table 3. The best accuracy results and architectures obtained by the PSO. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons) Epoch Batch Size Error Accuracy (%)

10
4 3

12 32 0 100(12, 10, 17, 28) (65, 40, 73)

20
4 4

12 8 0 100(16, 16, 28, 23) (150, 10, 117, 19)

30
3 3

20 8 0.0022 99.78(16, 11, 22) (150, 10, 78)

40
5 3

20 8 0.0017 99.83(8, 16, 16, 32, 64) (10, 10, 10)

50
4 3

15 8 0.0033 99.67(13, 12, 24, 32) (99, 109, 54)

60
4 3

12 8 0.0056 99.44(8, 16, 32, 32) (150, 10, 150)

70
4 5

17 8 0.0067 99.33(14, 16, 25, 23) (104, 150, 10, 21, 50)

80
4 5

15 8 0.0125 98.75(16, 8, 32, 18) (150, 128, 10, 100, 10)

90
1 5

19 8 0.0249 97.51(16) (105, 150, 108, 100, 47)

The results achieved by the PSO are shown in Table 4. The results illustrate how the
accuracy (best and average) decreases as the percentage of images for the testing phase
increases, and this occurs because the CNN is trained with less information.

Table 4. The best, average, and worst accuracy values obtained by the PSO.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 - 100 -

20 100 99.66 99.17

30 99.78 99.59 99.22

40 99.83 99.51 99.25

50 99.67 99.49 99.20

60 99.44 99.17 98.72

70 99.33 98.72 98.00

80 98.75 98.08 97.54

90 97.51 97.15 96.14

5.2. WOA Results

In Table 5, the best architectures achieved by the WOA with different percentages of
images for the testing phase are shown. The best results are also obtained with 10% and
20% of images for the testing phase, where an accuracy of 100% is achieved (marked with
bold text in Table 5). The best architecture can be defined as the one that uses 20% for the
testing phase. This CNN model is structured as five CLs with 16, 16, 32, 32, and 64 filters,
with a size of 3 × 3 with five FCLs with 150, 88, 150, 100, and 50 neurons and a batch size
of 32 with 20 epochs.
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Table 5. The best accuracy results and architectures obtained by the WOA. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons) Epoch Batch Size Error Accuracy

(%)

10
3 4

19 8 0 100(9, 15, 21) (77, 84, 83, 27)

20
5 5

20 32 0 100(16, 16, 32, 32, 64) (150, 88, 150, 100, 50)

30
4 2

20 8 0.0022 99.78(13, 16, 32, 27) (150, 143)

40
5 4

20 8 0.0017 99.83(16, 13, 32, 32, 46) (150, 26, 136, 56)

50
5 5

20 8 0.0033 99.67(16, 13, 32, 32, 64) (150, 80, 150, 100, 50)

60
5 5

20 16 0.0056 99.44(16, 12, 32, 32, 64) (150, 137, 53, 55, 50)

70
4 4

20 8 0.0067 99.33(16, 14, 30, 32) (150, 150, 114, 26)

80
5 3

20 8 0.0121 98.79(16, 9, 32, 32, 54) (53, 150, 150)

90
3 3

20 8 0.0223 97.77(14, 10, 23) (11, 96, 102)

The results achieved by the WOA is shown in Table 6. The results show how the
accuracy (best and average) also decreases as the percentage of images for the testing phase
increases, except the best result using 40% of the images in the testing phase, which is
superior to the best value obtained using 30%.

Table 6. The best, average, and worst accuracy values obtained by the WOA.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 100 99.92 99.33

20 100 99.76 99.50

30 99.78 99.53 99.11

40 99.83 99.46 99.17

50 99.67 99.48 99.27

60 99.44 98.94 98.27

70 99.33 98.76 98.14

80 98.79 97.94 97.24

90 97.77 97.14 96.51

5.3. BA Results

The best architectures achieved by the BA with different percentages of images for the
testing phase are shown in Table 7. The best result is obtained with only 10% of images for
the testing phase, where an accuracy of 100% is achieved (marked with bold text in Table 7).
This CNN model is structured as follows: three CLs with 11, 10, and 28 filters, with a size
of 3 × 3, three FCLs with 121, 61, and 63 neurons, and a batch size of 16 with 14 epochs.
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This architecture uses less convolutional and fully connected layers than the previous ones,
which also obtained 100% accuracy.

Table 7. The best accuracy results and architectures obtained by the BA. CLs indicates the number of
convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons) Epoch Batch Size Error Accuracy

(%)

10
3 3

14 16 0 100(11, 10, 28) (121, 61, 63)

20
3 3

15 8 0.0017 99.83(14, 15, 20) (66, 69, 34)

30
4 4

20 8 0.0022 99.78(14, 13, 17, 31) (12, 43, 10, 75)

40
4 3

20 8 0.0033 99.67(15, 8, 16, 16) (150, 150, 10)

50
4 5

20 8 0.0027 99.73(16, 15, 32, 24) (150, 150, 150, 33, 28)

60
4 5

20 8 0.0050 99.50(15, 16, 26, 32) (35, 150, 50, 36, 10)

70
5 5

20 8 0.0072 99.28(8, 8, 32, 32, 64) (42, 150, 150, 100, 50)

80
3 4

20 8 0.0109 98.91(16, 8, 32) (50, 29, 150, 100)

90
2 4

12 8 0.0245 97.55(12, 11) (71, 75, 96, 25)

Table 8 shows the results achieved by the BA. For this metaheuristic, the accuracy (best
and average) also decreases as the percentage of images for the testing phase increases,
except the best result using 50% of the images in the testing phase, which is superior to the
best value obtained using 40%.

Table 8. The best, average, and worst accuracy values obtained by the BA.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 - 100 -

20 99.83 99.72 99.50

30 99.78 99.54 99.22

40 99.67 99.47 99.00

50 99.73 99.53 99.33

60 99.50 99.23 99.05

70 99.28 98.89 98.33

80 98.91 98.16 97.70

90 97.55 97.23 96.84

5.4. GWO Results

Table 9 shows the best architectures achieved using the GWO with different percent-
ages of images for the testing phase. The best results are obtained with 10% and 20% of
images for the testing phase as PSO and WOA, where an accuracy of 100% is achieved
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(marked with bold text in Table 9). The best architecture can be defined as the one that
uses 20% for the testing phase. This CNN model is structured in the following way: four
convolutional layers with 10, 8, 23, and 25 filters, with a size of 3 × 3 with three FCLs with
42, 139, and 32 neuron and a batch size of 8 with 20 epochs.

Table 9. The best accuracy results and architectures obtained by the GWO. CLs indicates the number
of convolutional layers with their number of filters, and FCLs indicates the number of fully connected
layers with their number of neurons.

%
Images for Testing

CLs
(Filters)

FCLs
(Neurons) Epoch Batch Size Error Accuracy

(%)

10
4 2

17 32 0 100(13, 8, 27, 24) (122, 104)

20
4 3

20 8 0 100(10, 8, 23, 25) (42, 139, 32)

30
3 2

10 8 0.0033 99.67(9, 8, 22) (38, 93)

40
4 4

20 8 0.0025 99.75(16, 16, 16, 30) (150, 67, 106, 10)

50
5 3

20 8 0.0033 99.67(8, 9, 32, 19, 64) (120, 81, 10)

60
4 5

20 8 0.0067 99.33(9, 12, 16, 29) (63, 10, 53, 15, 15)

70
4 3

16 8 0.0081 99.19(8, 8, 26, 32) (14, 102, 37)

80
3 1

15 8 0.0175 98.25(16, 13) (48)

90
1 4

11 8 0.0241 97.59(15) (107, 131, 117, 53)

Table 10 shows the results obtained by the GWO. The accuracy decreases as with the
other metaheuristics, but when 30% and 50% for the testing phase are used, the same result
(the best value) is obtained. It is important to mention that when using 40%, the accuracy is
better (the best value).

Table 10. The best, average, and worst accuracy values obtained by the GWO.

Images (Testing)
%

Best
%

Average
%

Worst
%

10 100 99.93 99.67

20 100 99.62 99.00

30 99.67 99.40 99.11

40 99.75 99.47 99.17

50 99.67 99.34 98.80

60 99.33 98.84 98.22

70 99.19 98.76 98.33

80 98.25 97.91 97.62

90 97.59 97.18 96.81
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5.5. Comparison of Results

In Tables 3, 5, 7 and 9, the best architectures generated by each metaheuristic are
presented, where it can be seen how the architectures can vary and still provide good
results without using architectures as complex as those of the pre-trained models.

In Figure 9, the accuracy values (best, average, and worst) shown in Tables 4, 6, 8
and 10 are graphically shown. We can see that the PSO (Figure 9a) and BA (Figure 9c)
always achieve an accuracy of 100% when 10% of the images are used for the testing phase
(90% for training and validation). Meanwhile, the WOA and GWO only achieved the
same value in some experiments using the same percentage of images. Using 50% of the
percentage of images, we can see how the BA and PSO have very parallel values, which
indicates that there is not much difference between their values (best, average, and worst),
which could indicate greater stability between the results obtained in their experiments.
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The average convergence during the learning phase of the 20 runs for each percentage
of images (from 10 up to 90) obtained with each metaheuristic is depicted in Figure 10. It
can be observed that when different percentages of images are used for the testing phase,
the behavior of the PSO and BA is very similar. Even with only 10% of the images used
for testing, both the PSO and BA achieve an error of 0 by iterations 6 and 4, respectively.
Meanwhile, WOA and GWO exhibit similar behavior when 60%, 70%, 80%, and 90% of the
images are used for the testing phase.
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Figure 10. Convergence of accuracy error for: (a) PSO; (b) WOA; (c) BA; (d) GWO using different
percentages of images for the testing phase.

The accuracy and loss curves with their respective validation of the best models are
depicted in Figure 11. These models achieved an accuracy of 100%. The figure shows how
the accuracy and loss have similar behavior to their validation.

Table 11 shows the averages (accuracy) obtained by each optimization algorithm.
As results show, the average decreases when the percentage of images for testing in-
creases, which means the CNN has less information to learn. Only two metaheuristics can
achieve 100% accuracy: PSO and BA. Figure 12 shows graphically the accuracy achieved
by the metaheuristics.

Table 11. Summary of accuracy results obtained by the metaheuristics.

Images (Testing)
%

PSO
%

WOA
%

BA
%

GWO
%

10 100 99.92 100 99.93

20 99.66 99.76 99.72 99.62

30 99.59 99.53 99.54 99.40

40 99.51 99.46 99.47 99.47

50 99.49 99.48 99.53 99.34

60 99.17 98.94 99.23 98.84

70 98.72 98.76 98.89 98.76

80 98.08 97.94 98.16 97.91

90 97.15 97.14 97.23 97.18
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The errors achieved by each metaheuristic are shown in Table 12. These results are
utilized to perform statistical comparisons in the next section. These errors are graphically
shown in Figure 13.
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Table 12. Summary of error results obtained by the metaheuristics.

%
Images (Testing) PSO WOA BA GWO

10 0 0.0008 0 0.0007

20 0.0034 0.0024 0.0028 0.0038

30 0.0041 0.0047 0.0046 0.006

40 0.0049 0.0054 0.0053 0.0053

50 0.0051 0.0052 0.0047 0.0066

60 0.0083 0.0106 0.0077 0.0116

70 0.0128 0.0124 0.0111 0.0124

80 0.0192 0.0206 0.0184 0.0209

90 0.0285 0.0286 0.0277 0.0282

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 19 of 23 
 

 

Table 12. Summary of error results obtained by the metaheuristics. 

% 
Images (Testing) 

PSO WOA BA GWO 

10 0 0.0008 0 0.0007 
20 0.0034 0.0024 0.0028 0.0038 
30 0.0041 0.0047 0.0046 0.006 
40 0.0049 0.0054 0.0053 0.0053 
50 0.0051 0.0052 0.0047 0.0066 
60 0.0083 0.0106 0.0077 0.0116 
70 0.0128 0.0124 0.0111 0.0124 
80 0.0192 0.0206 0.0184 0.0209 
90 0.0285 0.0286 0.0277 0.0282 

 
Figure 13. The accuracy error achieved by the metaheuristics. 

Figures 12 and 13 graphically show the results obtained in this study. It can be seen 
that when a percentage between 10% and 50% is used for the testing phase, the PSO, 
WOA, and BA have similar good behavior. Meanwhile, when the percentage increases, it 
can be observed that the BA has a better accuracy, which means less error. In Table 13, the 
results achieved with the best average of accuracy are shown using other metrics (Recall, 
Precision, and F1 Score). The results show that the BA achieved better results in the other 
metrics, proving the effectiveness in metrics such as the F1 Score, where a combination of 
Recall and Precision is performed. 

Table 13. Average results using Accuracy, Recall, Precision, and F1 Score. 

Metric PSO WOA BA GWO 
Accuracy  100 99.92 100 99.93 

Recall  97.05 96.28 99.77 95.80 
Precision  80.07 82.67 84.47 81.38 
F1 Score  86.18 87.31 90.54 86.40 

6. Statistical Comparison 
This section shows statistical comparisons where the averages (errors) achieved by 

each optimization algorithm are used. In this work, the Wilcoxon signed-rank tests are 
utilized, where the value of α depends on the statistical significance. Table 14 shows the 

Figure 13. The accuracy error achieved by the metaheuristics.

Figures 12 and 13 graphically show the results obtained in this study. It can be seen
that when a percentage between 10% and 50% is used for the testing phase, the PSO, WOA,
and BA have similar good behavior. Meanwhile, when the percentage increases, it can be
observed that the BA has a better accuracy, which means less error. In Table 13, the results
achieved with the best average of accuracy are shown using other metrics (Recall, Precision,
and F1 Score). The results show that the BA achieved better results in the other metrics,
proving the effectiveness in metrics such as the F1 Score, where a combination of Recall
and Precision is performed.

Table 13. Average results using Accuracy, Recall, Precision, and F1 Score.

Metric PSO WOA BA GWO

Accuracy 100 99.92 100 99.93

Recall 97.05 96.28 99.77 95.80

Precision 80.07 82.67 84.47 81.38

F1 Score 86.18 87.31 90.54 86.40

6. Statistical Comparison

This section shows statistical comparisons where the averages (errors) achieved by
each optimization algorithm are used. In this work, the Wilcoxon signed-rank tests are
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utilized, where the value of α depends on the statistical significance. Table 14 shows the
critical values with different statistical significance levels. A significance level of 0.10 is
used in this work.

Table 14. Critical values for the Wilcoxon signed-rank test.

n
α

0.02 0.05 0.10

9 3 6 8

Table 15 shows the results of the statistical tests performed among all the metaheuris-
tics. The null hypothesis assumes that means are equal, which contradicts the alternative
hypothesis. The null hypothesis can be rejected if the column “W” value is equal to or
smaller than the “W0” based on the critical value with a 0.10 significance level. All possible
comparisons were performed among the four metaheuristics studied in this work. The
results exhibit a significant difference between the PSO and GWO. Meanwhile, the BA
achieves significant differences against the other metaheuristics, allowing a better face
mask classification.

Table 15. Summary of Wilcoxon test results.

Methods Negative Sum
(W−)

Positive Sum
(W+)

Test Statistic
(W)

Degrees of Freedom
(m) W0 = Wα,m

BA
PSO 41 3 3 9 8

BA
WOA 41 3 3 9 8

BA
GWO 44 0 0 9 8

PSO
WOA 34 10 10 9 8

PSO
GWO 39 5 5 9 8

WOA
GWO 33 10 10 9 8

The results obtained with the method applying the bat algorithm allowed us to obtain
better results, especially when less percentage is utilized for the training phase of the CNNs
applied to face mask classification.

7. Conclusions

In this work, four swarm intelligence metaheuristics were applied to perform a com-
parison. A face mask database is used as a training, validation, and testing set to prove the
proposed CNN design. This database has three classes: no mask, incorrect mask, and mask.
The metaheuristics applied to CNN architecture design were PSO, WOA, BA, and GWO.
These algorithms were implemented to CNN optimization applied to face mask multiclass
classification, where hyperparameters of CNN were sought: the number of convolutional
layers, filters, number of fully connected layers, neurons, batch size, and epoch. The results
showed that some average convergences of the metaheuristics have a similar behavior
when different percentages of images for the testing phase are utilized. The PSO and BA
achieved an average of 100% accuracy when 10% of the images for the testing phase were
used (leaving 90% for training and validation), but the BA converged faster than the PSO.
The Wilcoxon signed-rank tests are utilized to compare results, and there is a statistical
difference when the PSO and GWO are compared. However, when comparing the BA
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against PSO, WOA, and GWO, there is a statistical difference, which indicates that the BA
allows for achieving better results than the other metaheuristics analyzed in this study
when hyperparameters of convolutional neural networks are searched for the face mask
classification. Results achieved in previous works and the results obtained in this work
show that the performance of each optimization algorithm will depend on its application.
In this work, only 3000 images were used, and different percentages of images were used
for each phase to find optimal architectures with fewer images performing comparisons
among swarm intelligence algorithms. The real implementation implies that optimized
models have learned enough with the idea of not invading privacy and not having to train
the models with specific persons. The optimized architectures could perform a correct
face mask classification independently whether images of a person were used or not to
train the model. The comparison performed in this work will allow us, as future work,
to select those optimized architectures with a better percentage of accuracy and continue
with the implementation in a real-time system. Although metaheuristics allow for optimal
architectures with high accuracy, several limitations must be addressed in future works,
such as the use of novel types of face masks not considered in this work, which would
lead us to the need to evaluate their behavior. The dataset used to train and evaluate the
architectures uses different face positions. However, it would be important to work with
images with different kinds of illumination, especially for future work on implementing
these architectures in real systems. Also, in future works, the comparison of these meta-
heuristics will be implemented by applying them to other intelligent techniques, such as
fuzzy logic for parameter adjustment or fuzzy control.
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