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Abstract: An innovative cascade predictor is presented in this study to forecast the state of recurrent
neural networks (RNNs) with delayed output. This cascade predictor is a chain-structured observer, as
opposed to the conventional single observer, and is made up of several sub-observers that individually
estimate the state of the neurons at various periods. This new cascade predictor is more useful than
the conventional single observer in predicting neural network states when the output delay is
arbitrarily large but known. In contrast to examining the stability of error systems solely employing
the Lyapunov–Krasovskii functional (LKF), several new global asymptotic stability standards are
obtained by combining the application of the Linear Parameter Varying (LPV) approach, LKF and
convex principle. Finally, a series of numerical simulations verify the efficacy of the obtained results.

Keywords: cascade predictor; recurrent neural networks; delayed output; linear parameter varying
approach

1. Introduction

Over the past decades, delayed recurrent neural networks were successfully applied
in many fields, including pattern recognition, image processing, and combinatorial op-
timization [1–5], and the dynamic behaviors of RNNs have quickly become a research
hotspot. At present, many stability results about the dynamic behavior of RNNs have
been obtained [6–12]. Meanwhile, the state information of neurons is very important,
because it may participate in the design process of control law, such as feedback con-
trol. Therefore, neural networks’ state estimation research is of significant importance in
practical applications.

The issue of state estimation for RNNs is currently of great interest to many scholars,
and many significant results have been made [13–20]. In [13], the authors discussed the
state estimation problem for delayed RNNs and obtained delay-independent results using
LMI technique. The state estimation problem for Markov jump RNNs with distributed
delays was discussed in [14]; the authors proposed an effective LMI technique to solve the
problem of neuron states’ estimation. The state estimation problem of uncertain RNNs was
addressed via a robust state estimator in [15], and it was shown that the suggested robust
estimator can be ensured by the feasibility of solving a set of LMIs. An interesting delay
partition method was proposed in [17]; the authors used this method to investigate the
state estimation problem for delayed static neural networks. In [20], the authors solved the
memristive neural networks’ (MNNs) state estimation problem by using a novel full-order
state observer. It is well known that the effectiveness of the designed observer is usually
related to system parameters and the size of various time delays. For example, in most
of the works mentioned above, the output states do not have a time delay or the size of
the delay is limited to a small range, and a full-order observer is designed based on the
measured output. In [21], during the identification of RNN models, a subspace encoder
is co-estimated to reconstruct the state of the model from past input and output data.
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However, such an explicit form of an observer might run into difficulties if the state delay
is not known, and needs an excessively large number of past input–output samples.

For arbitrary large known output delays, it is still an open problem to construct an
effective observer to predict the current accurate states of the neuron. In fact, the proposal
of the cascade predictor in the field of nonlinear systems has attracted much attention from
researchers in recent years. In [22], the authors first proposed a cascade predictor for a
class of triangular nonlinear systems that have only output delay; the cascade predictor is
made up of a series of subsystems, and each subsystem has a similar structure. However,
due to the complexity of the structure of the cascade predictor in [22], the observation
estimation is not easily implemented by computer simulation. Since then, the cascade
predictor has been studied and a series of results have been achieved on such triangular
nonlinear systems with only output delay [23–25]. It can be observed that the cascade
predictor has a promising application value in the state estimation of delay systems. It will
be a challenge to incorporate cascade predictors into the state estimation of RNNs, and new
state estimation approaches may arise.

Inspired by the arguments mentioned above, we focus on the state estimation of
delayed RNNs based on cascade predictors. The designed cascade predictor is composed of
a limited amount of subsystems; each subsystem estimates the neuron states at different de-
lays, and the last subsystem estimates the current actual states of the neuron. The following
are the paper’s primary innovative ideas.

(1) This paper theoretically describes the reason why a single observer cannot observe
the neuron state information when the output delay is large enough. Then, inspired
by [22,23], we design a new cascade predictor for estimating the state of RNNs with state
and output delays. To our best knowledge, this is the first time that a cascade predictor has
been applied to state estimation in neural networks.

(2) For the activation function, most papers usually use the traditional Lipschitz
condition hypothesis; however, for the activation with the large Lipschitz constant, it
may indirectly lead to the conservatism of the design process and theoretical results.
To overcome these difficulties, a new reformulated Lipschitz property of the activation
function, which is the outcome of applying the LPV approach to the Lipschitz condition, is
provided. This property is motivated by [26,27] and can lessen conservatism in the observer
design process.

(3) In contrast to [14,16,20], the case when the output states have an arbitrarily large
delay is explored, and the state prediction problem of delayed RNNs is resolved based on
the measured output. A set of LMIs may be used to calculate the observer gain, and new
adequate requirements for the global asymptotic stability of each error system are obtained
based on the LKF, the LMI technique, and the convex principle.

The structure of this paper is as follows. The RNNs model and its associated assump-
tions are introduced in Section 2 of this article. The main results of this paper are presented
in Section 3. The efficiency of the results obtained is demonstrated in Section 4 by numerical
simulations. Section 5 closes with a general conclusion.

Notations: R, Z denote, respectively, the set of real numbers and the positive integer
set. Rn represents the n dimensional Euclidean space with the Euclidean norm ‖ · ‖. Rn×m

denotes the set of all n× m real matrices. The superscript “T” and “− 1” represent the
transpose and inverse of a matrix. X > Y (X < Y) means that X−Y is a positive (negative)
matrix. ‖A‖ denotes the operator norm of matrix A, i.e., A = (aij), ‖A‖ =

√
λmax(AT A),

where λmax(A) is the largest eigenvalue of A. diag{· · ·} represents a block diagonal matrix.
The symbol “ ∗ ” denotes the symmetric term of the matrix. Let τ > 0, C

(
[−τ, 0]; Rn)

denote the family of continuous functions ψ from [−τ, 0] to Rn. I stands for an identity
matrix with the proper dimensions.
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2. Problem Formulation

Consider the following RNNs with delayed output [28,29]:
ẋ(t) = −Ax(t) + W0 f

(
x(t)

)
+ W1 f

(
x(t− hx)

)
,

y(t) = Cx(t− hy),

x(s) = φ(s), s ∈ [−τ, 0],

(1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn denotes the state vector, A = diag{a1, · · · , an}
is a diagonal matrix with ai > 0, W0 and W1 represent the connection weight matrices,
f (x(t)) = [ f1(x1(t)), · · · , fn(xn(t))]T ∈ Rn denotes the activation function, C is a output
matrix, y(t) represents the measured output. hx, hy denote the known discrete delays, and
φ(s) ∈ C

(
[−τ, 0]; Rn) is an initial condition, τ = max{hx, hy}.

The primary objective of this research is to construct an effective observer that can
accurately predict the neuron states when the output delay hy is arbitrarily large yet known.
Next, for a subsequent analysis, the following corresponding lemmas are given.

Assumption 1. The activation function fi(·) is bounded and satisfies

| fi(u)− fi(v)| ≤ li|u− v|, ∀u, v ∈ R, (2)

where fi(0) = 0 and li > 0 is a Lipschitz constant.

Some conservative conditions in the observer design may result from the Lipschitz
condition of the activation function in (2). However, it is generally known that LPV
approach can reduce the Lipschitz condition’s conservatism, making it useful for designing
observers for nonlinear systems with a large Lipschitz constant [26,27]. Here, we will
extend this method to RNNs (1) and derive the subsequent lemma.

Lemma 1. The activation function f (·) has the following two properties that are equal:

(1) Lipschitz property: fi(·) is li -Lipschitz, i.e.,

| fi(xi)− fi(yi)| ≤ li|xi − yi|, ∀xi, yi ∈ R. (3)

(2) Lipschitz property reformulated: for all i = 1, · · ·, n, there exist functions ψii(t) : R → R
and constants γii, γii, such that

f (x)− f (y) =
n

∑
i=1

ψii(t)Hii(x− y), ∀x, y ∈ Rn (4)

with γii ≤ ψii(t) ≤ γii, where Hii = en(i)eT
n (i) and en(i) = [0, . . . ,

i−th︷︸︸︷
1 , . . . , 0]T ∈ Rn.

The proofs of Lemma 1 are similar to Lemma 6 and Lemma 7 in [26]; we omit it here.
Note that ψii(t) in (4) is expressed as follows

ψii(t) =

{
fi(xi)− fi(yi)

xi−yi
, xi 6= yi,

0, xi = yi.
(5)

Remark 1. Compared with the traditional global Lipschitz condition hypothesis of activation
functions in [13–16,30], the reformulation (4) in Lemma 1 offers a best less conservative Lipschitz
condition and deals with the activation functions f (x) with the best accuracy. For instance,
for f (x) = [tanh(x1) +

1
2 sin(x1), 1

2 cos(x2) +
1
2 (|x2 + 1| − |x2 − 1|)]T , we have γ11 = − 1

2 ,
γ11 = 3

2 , γ22 = − 1
2 , γ22 = 3

2 . For g(x) = [ 3
4 (|x1 + 1| − |x1 − 1|), 3

2 tanh(x2)]
T , we have

γ11 = 0, γ11 = 3
2 , γ22 = 0 , γ22 = 3

2 . If we use the global Lipschitz condition in Assumption 1,
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we can only obtain | fi(xi)− fi(yi)| ≤ 3
2 |xi − yi| and |gi(xi)− gi(yi)| ≤ 3

2 |xi − yi|, i = 1, 2, we
cannot accurately distinguish between f (x) and g(x), and the related properties of f (x) and g(x)
cannot be effectively utilized.

Lemma 2 (Finsler’s Lemma [31]). For x ∈ Rn, M ∈ Rn×n is a symmetric matrix, and the
matrix G ∈ Rm×n, such that rank(G ) < n. The subsequent properties are equivalent:

(1) xT Mx < 0, ∀x ∈ Rn/G x = 0, x 6= 0,

(2) G⊥
T

MG⊥ < 0,

where G⊥ is a right orthogonal complement of G .

Lemma 3 (Moon’s Inequality [32]). Assume that x(s) ∈ Rna , y(s) ∈ Rnb are defined on the
interval Ω and Y ∈ Rna×nb . Then, for matrices D ∈ Rna×na , T ∈ Rna×nb and Z ∈ Rnb×nb ,
the following holds:

−2
∫

Ω
xT(s)Yy(s)ds ≤

∫
Ω

[
x(s)
y(s)

]T

·
[

D T −Y
∗ Z

]
·
[

x(s)
y(s)

]
ds,

where [
D T
∗ Z

]
> 0.

3. Results
3.1. Single Observer

In this section, we will employ a full-order observer to handle the matter of RNNs’
state estimation. First, in order to accurately estimate the RNNs’ state information, we will
design the full-order observer based on the measured delayed output as

˙̂x(t) = −Ax̂(t) + W0 f
(
x̂(t)

)
+ W1 f

(
x̂(t− hx)

)
+ L

(
Cx̂(t− hy)− y(t)

)
, (6)

where x̂(t) is an estimation of the state x(t) of (1). Then, by defining the estimation error
e(t) = x̂(t)− x(t), we can obtain the error system given, as follows

ė(t) =− Ae(t) + W0∆ f (t) + W1∆ f (t− hx) + LCe(t− hy), (7)

where ∆ f (t) = f
(
x̂(t)

)
− f

(
x(t)

)
. Due to Lemma 1, there are functions ψii(t) and ψhx

ii (t),
such that 

∆ f (t) =
n

∑
i=1

ψii(t)Hiie(t),

∆ f (t− hx) =
n

∑
i=1

ψhx
ii (t)Hiie(t− hx),

(8)

where ψhx
ii (t) = ψii(t− hx).

Define the time-varying matrices Ψ(t) = diag{ψ11(t), · · · , ψnn(t)}, Ψhx (t) = diag
{ψhx

11(t), · · · , ψhx
nn(t)}, and bounded convex setHn, where the vertex set ofHn is defined as

VHn =
[
φ = diag[φ11, φ22, · · · , φnn] ∈ Rn×n|φii ∈ {γii, γii}

]
. (9)
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It is obvious that time-varying matrix parameters Ψ(t) and Ψhx (t) belong to the bounded
convex setHn. Now, we define the following matrices:

A
(
Ψ(t)

)
= −A + W0

n

∑
i=1

ψii(t)Hii = −A + W0Ψ(t),

B
(
Ψhx (t)

)
= W1

n

∑
i=1

ψhx
ii (t)Hii = W1Ψhx (t),

(10)

then, by using (10), the LPV error system (7) can be reconstructed as

ė(t) = A
(
Ψ(t)

)
e(t) + B

(
Ψhx (t)

)
e(t− hx) + LCe(t− hy). (11)

The sufficient condition for the global asymptotic stability of error system (11) is presented
in the following theorem.

Theorem 1. The error system (11) is globally asymptotically stable for all hy ∈ [0, h∗], if there exist
matrices P > 0, Q > 0, M > 0, Z > 0, S > 0, a matrix R, and positive scalars ρi > 0, i = 1, 2,
such that for ∀Ψ, Ψhx ∈ VHn , the following LMIs hold with observer gain L = P−1R:

Ω1 PB(Ψhx ) +
Z
hx

RC + S
h∗ hxAT(Ψ)P h∗AT(Ψ)P

∗ Ω2 0 hxBT(Ψhx )P h∗BT(Ψhx )P
∗ ∗ Ω3 hxCT RT h∗CT RT

∗ ∗ ∗ Ω4 0
∗ ∗ ∗ ∗ Ω5

 < 0, (12)

where Ω1 = PA(Ψ) + AT(Ψ)P + Q + M − Z
hx
− S

h∗ , Ω2 = −Q − Z
hx

, Ω3 = −M − S
h∗ ,

Ω4 = −hx(2ρ1P− ρ2
1Z) and Ω5 = −h∗(2ρ2P− ρ2

2S).

Proof. Consider the following Lyapunov–Krasovskii functions as

V(t) =eT(t)Pe(t) +
∫ t

t−hx
eT(τ)Qe(τ)dτ +

∫ t

t−hy
eT(τ)Me(τ)dτ

+
∫ 0

−hx

∫ t

t+β
ėT(τ)Zė(τ)dτdβ +

∫ 0

−hy

∫ t

t+β
ėT(τ)Sė(τ)dτdβ, (13)

and the time derivative of V(t) can be evaluated as

V̇(t) =2eT(t)Pė(t) + eT(t)Qe(t)− eT(t− hx)Qe(t− hx) + eT(t)Me(t)

− eT(t− hy)Me(t− hy) + hx ėT(t)Zė(t)−
∫ t

t−hx
ėT(τ)Zė(τ)dτ

+ hy ėT(t)Sė(t)−
∫ t

t−hy
ėT(τ)Sė(τ)dτ. (14)

Applying the Jensen’s Inequality [33], we can obtain

−
∫ t

t−hx
ėT(τ)Zė(τ)dτ ≤ − 1

hx
∆eT

hx
(t)Z∆ehx (t), (15)

−
∫ t

t−hy
ėT(τ)Sė(τ)dτ ≤ − 1

hy
∆eT

hy
(t)S∆ehy(t), (16)

where ∆ehx (t) = e(t)− e(t− hx), ∆ehy(t) = e(t)− e(t− hy).
By using (14)–(16), V̇(t) satisfies

V̇(t) ≤ χT(t)Υ(hx, hy)χ(t), (17)
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where

χ(t) = [ėT(t), eT(t), eT(t− hx), eT(t− hy), ∆eT
hx
(t), ∆eT

hy
(t)]T ,

Υ(hx, hy) =



hxZ + hyS P 0 0 0 0
∗ Q + M 0 0 0 0
∗ ∗ −Q 0 0 0
∗ ∗ ∗ −M 0 0
∗ ∗ ∗ ∗ − Z

hx
0

∗ ∗ ∗ ∗ ∗ − S
hy


.

Moreover, it follows from the error system (11) and the definition of yhx (t) and yhy(t) that
Γ
(
Ψ(t), Ψhx (t)

)
χ(t) = 0 with

Γ
(
Ψ(t), Ψhx (t)

)
=

I −A
(
Ψ(t)

)
−B
(
Ψhx (t)

)
−P−1RC 0 0

0 −I I 0 I 0
0 −I 0 I 0 0

.

Therefore, the error system (11) is globally asymptotically stable if, for all Γ
(
Ψ(t),

Ψhx (t)
)
χ(t) = 0 with χ(t) 6= 0, there holds χT(t)Υ(hx, hy)χ(t) < 0. Then, according

to Lemma 2 and the convexity principle [34], χT(t)Υ(hx, hy)χ(t) < 0 is equivalent to(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0, ∀Ψ, Ψhx ∈ VHn , (18)

where Γ⊥(Ψ, Ψhx ) is a right orthogonal complement of Γ(Ψ, Ψhx ) and

Γ⊥(Ψ, Ψhx ) =



A(Ψ) B(Ψhx ) P−1RC
I 0 0
0 I 0
0 0 I
I −I 0
I 0 −I

. (19)

Further, (18) can be rewritten asPA(Ψ) +AT(Ψ)P + Q + M PB(Ψhx ) RC
∗ −Q 0
∗ ∗ −M

+ hxΠ1ZΠT
1

− 1
hx

Π2ZΠT
2 + hyΠ1SΠT

1 −
1
hy

Π3SΠT
3 < 0, ∀Ψ, Ψhx ∈ VHn , (20)

where Π1 = [A(Ψ),B(Ψhx ), P−1RC]T , Π2 = [I,−I, 0]T and Π3 = [I, 0,−I]T . Since Z > 0
and S > 0, (20) cannot hold when hy is large enough. Therefore, there exists an upper bound

h∗ for hy such that (20) holds when hy ∈ [0, h∗], and
(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0,
∀Ψ, Ψhx ∈ VHn is a sufficient condition for (18).

By employing a Schur complement [34],
(
Γ⊥(Ψ, Ψhx )

)TΥ(hx, hy)Γ⊥(Ψ, Ψhx ) < 0 with
∀Ψ, Ψhx ∈ VHn is equivalent to

Ω1 PB(Ψhx ) +
Z
hx

RC + S
h∗ hxAT(Ψ)Z h∗AT(Ψ)S

∗ Ω2 0 hxBT(Ψhx )Z h∗BT(Ψhx )S
∗ ∗ Ω3 hxCT RT P−1Z h∗CT RT P−1S
∗ ∗ ∗ −hxZ 0
∗ ∗ ∗ ∗ −h∗S

 < 0, (21)
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with ∀Ψ, Ψhx ∈ VHn , then, multiplying both sides of (21) on the left and on the right
by diag{I, I, I, PZ−1, PS−1} and its transpose, respectively, and using the inequalities
−PZ−1P ≤ −2ρ1P + ρ2

1Z, −PS−1P ≤ −2ρ2P + ρ2
2S, we can deduce that (12) is a suffi-

cient condition for (21). We finish the proof.

Remark 2. Different from the stability analysis of the nonlinear error system in [12,13,15,16,20],
we provide an LPV formulation of the error system for RNNs with Lipschitz activation functions,
which leads us to study the stability of the linear error system (11) by using the convexity principle.
Obviously, our LPV-based approach is a useful tool for the state estimation of RNNs.

Remark 3. It follows from Theorem 1, which depends on the output delay, that the designed full-
order observer (6) cannot predict the current state of RNNs (1) if hy � h∗. This is due to our
inability to choose the appropriate observer gain L to stabilize the error system (11). From the later
numerical simulations, it is clear that this is a drawback of the full-order observer. In addition,
the conditions shown in (12) can be checked against a set of fixed values by standard LMI routines
and an estimate of h∗ is obtained. The algorithm for finding a feasible solution to (12) is summarized
as follows:
Step 1: Fix the value of h∗ to constant h and make an initial guess for h.
Step 2: Fix the value of ρ1, ρ2 to some constants ρ1, ρ2 and make an initial guess for the values of
ρ1, ρ2.
Step 3: Solve the LMI (12) for L with the fixed values ρ1, ρ2 and h; if a feasible value of L cannot
be computed, return to step 2 to reset the initial values of ρ1 and ρ2; if a feasible value of L can be
computed, return to step 1 and increase the value of h until L cannot be solved.

3.2. Cascade Predictor

If h � h∗, the full-order observer (6) will fail. In this case, cascade predictor design
can be used to solve this problem. Let h =

hy
m , m ∈ Z and define

xi(t) :


ẋi(t) = −Axi(t) + W0 f (xi(t)) + W1 f (xi(t− hx)), t ∈ [(m− i)h,+∞),

xi(s) = φ(s− (m− i)h), s ∈ [−τ + (m− i)h, (m− i)h],

(22)

where i = 1, 2, · · · , m. Through mathematical analysis, we obtain xi(t) = x(t− hy + i · h) =
xi+1(t − h), i = 1, 2, · · · , m − 1 and xm(t) = x(t). Then, the cascade predictor can be
constructed as

˙̂x1(t) =− Ax̂1(t) + W0 f
(
x̂1(t)

)
+ W1 f

(
x̂1(t− hx)

)
+ L1

(
Cx̂1(t− h)− y(t)

)
,

˙̂x2(t) =− Ax̂2(t) + W0 f
(
x̂2(t)

)
+ W1 f

(
x̂2(t− hx)

)
+ L2

(
Cx̂2(t− h)− ŷ1(t)

)
,

...
˙̂xm(t) =− Ax̂m(t) + W0 f

(
x̂m(t)

)
+ W1 f

(
x̂m(t− hx)

)
+ Lm

(
Cx̂m(t− h)− ŷm−1(t)

)
,

(23)

where φi(s) ∈ C
(
[−τ1, 0]; Rn) is an initial condition for the subsystem x̂i, i = 1, 2, · · · , m,

τ1 = max{hx, h}, and ŷi(t) = Cxi(t), i = 1, 2, · · · , m − 1. In the cascade predictor (23),
the subsystem x̂i(t) estimates the state xi(t), i = 1, 2, . . . , m− 1, and the subsystem x̂m(t)
estimates the state x(t).

Remark 4. The idea behind the cascade predictor (23) is that regardless of how long the output
delay hy is, we can split it into m small time periods. Then, each sub-observer x̂i(t) in the cascade

predictor estimates the delayed state x(t− hy + i hy
m ), and the last sub-observer x̂m(t) estimates the

current state x(t). Compared with [14–20], which discuss the state estimation of neural networks
with only a small output delay or even no output delay using a full-order observer, the output delay
hy in this paper is arbitrarily large yet known, and, in this sense, this is an advancement in the
study of neural networks’ state estimation.
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Remark 5. Moreover, the idea of this novel predictor was first proposed in [22], and the authors
used this predictor with a chain structure for a class of triangular nonlinear systems with only the
output delay. In this paper, we will discuss the state estimation problem of RNNs with both the state
delay and output delay using this novel cascade predictor.

Next, define the estimation error ei(t) = x̂i(t)− xi(t), i = 1, 2, · · · , m; then, similar to
(10)–(11), which use the LPV approach, we can obtain the following error systems{

ė1(t) = A
(
Ψ(t)

)
e1(t) + B

(
Ψhx (t)

)
e1(t− hx) + L1Ce1(t− h),

ėj(t) = A
(
Ψ(t)

)
ej(t) + B

(
Ψhx (t)

)
ej(t− hx) + LjCej(t− h)− Ljej−1(t), j = 2, 3, · · · , m.

(24)

Theorem 2. For given output delay hy and scalar m ∈ Z , the error systems (24) are globally
asymptotically stable if there exist matrices Pj > 0, Qj > 0, Mj > 0, Zj > 0, Sj > 0, Xi > 0,
Di > 0, i = 1, 2, · · · , m, matrices Ri, Yi, Ti, i = 1, 2, · · · , m and a positive scalar γ > 0, such that
Li = P−1

i Ri, i = 1, 2, · · · , m and the following LMIs are satisfied:
Ξi −Ti + PiB(Ψhx ) −Yi + RiC γA(Ψ)Pi
∗ −Qi 0 γBT(Ψhx )Pi
∗ ∗ −Mi γCT RT

i
∗ ∗ ∗ −2γPi + hxZi + hSi

 < 0, (25)

with ∀Ψ ∈ VHn , ∀Ψhx ∈ VHn and [
Xi Yi
∗ Si

]
< 0, (26)

[
Di Ti
∗ Zi

]
< 0, (27)

where Ξi = PiA(Ψ) +AT(Ψ)Pi + Ti + TT
i + Yi + YT

i + hxDi + hXi + Qi + Mi.

Proof. The stability of the error systems (24) will be proved gradually:
Step 1: we consider the first error system e1(t) in (24):

ė1(t) = A
(
Ψ(t)

)
e1(t) + B

(
Ψhx (t)

)
e1(t− hx) + L1Ce1(t− h). (28)

Using the Newton–Leibniz formula, we have
e1(t− hx) = e1(t)−

∫ t

t−hx
ė1(τ)dτ,

e1(t− h) = e1(t)−
∫ t

t−h
ė1(τ)dτ,

(29)

then, ė1(t) in (28) can be reconstructed as

ė1(t) =
[
A
(
Ψ(t)

)
+ B

(
Ψhx (t)

)
+ L1C

]
e1(t)−B

(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ − L1C

∫ t

t−h
ė1(τ)dτ. (30)

Constructing the Lyapunov–Krasovskii functions as follows
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V1(t) =

V11(t)︷ ︸︸ ︷
eT

1 (t)P1e1(t) +

V12(t)︷ ︸︸ ︷∫ t

t−hx
eT

1 (τ)Q1e1(τ)dτ +

V13(t)︷ ︸︸ ︷∫ t

t−h
eT

1 (τ)M1e1(τ)dτ

+

V14(t)︷ ︸︸ ︷∫ 0

−hx

∫ t

t+η
ėT

1 (τ)Z1 ė1(τ)dτdη +

V15(t)︷ ︸︸ ︷∫ 0

−h

∫ t

t+η
ėT

1 (τ)S1 ė1(τ)dτdη . (31)

then, the derivative of V11(t) along (30) is as follows

V̇11(t) =eT
1 (t)

[
P1A

(
Ψ(t)

)
+AT(Ψ(t)

)
P1 + P1B

(
Ψhx (t)

)
+ BT(Ψhx (t)

)
P1 + R1C + CT R1

]
× e1(t)− 2eT

1 (t)P1B
(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ − 2eT

1 (t)R1C
∫ t

t−h
ė1(τ)dτ. (32)

According to Lemma 2 and (26)–(27), we have

−2eT
1 (t)P1B

(
Ψhx (t)

) ∫ t

t−hx
ė1(τ)dτ ≤hxeT

1 (t)D1e1(t) + 2eT
1 (t)

[
T1 − P1B

(
Ψhx (t)

)]
×
[
e1(t)− e1(t− hx)

]
+
∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ, (33)

−2eT
1 (t)R1C

∫ t

t−h
ė1(τ)dτ ≤heT

1 (t)X1e1(t) + 2eT
1 (t)[Y1 − R1C]

[
e1(t)− e1(t− h)

]
+
∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ. (34)

By (32)–(34), V̇11(t) satisfies

V̇11 ≤eT
1 (t)

[
P1A

(
Ψ(t)

)
+AT(Ψ(t)

)
P1 + TT

1 + T1 + YT
1 + Y1 + hxD1 + hX1

]
e1(t)

− 2eT
1 (t)

[
T1 − P1B

(
Ψhx (t)

)]
e1(t− hx)− 2eT

1 (t)
[
Y1 − R1C

]
e1(t− h)

+
∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ +
∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ. (35)

The derivatives of V12(t), V13(t), V14(t) and V15(t) are as follows

V̇12(t) =eT
1 (t)Q1e1(t)− eT

1 (t− hx)Q1e1(t− hx), (36)

V̇13(t) =eT
1 (t)M1e1(t)− eT

1 (t− h)M1e1(t− h), (37)

V̇14(t) =hx ėT
1 (t)Z1 ė1(t)−

∫ t

t−hx
ėT

1 (τ)Z1 ė1(τ)dτ, (38)

V̇15(t) =hėT
1 (t)S1 ė1(t)−

∫ t

t−h
ėT

1 (τ)S1 ė1(τ)dτ, (39)

and for arbitrary constant γ > 0, we have

−2γėT
1 (t)P1

[
ė1(t)−A

(
Ψ(t)

)
e1(t)−B

(
Ψhx (t)

)
e1(t− hx)− P−1

1 R1Ce1(t− h)
]
= 0. (40)

Combining (35)–(40), we obtain

V̇1(t) ≤ ξT
1 (t)Ω1ξ1(t), (41)
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where ξ1(t) = [eT
1 (t), eT

1 (t− hx), eT
1 (t− h), ėT

1 (t)]
T and

Ω1 =


Ξ1 −T1 + P1B

(
Ψhx (t)

)
−Y1 + R1C γA

(
Ψ(t)

)
P1

∗ −Q1 0 γBT(Ψhx (t)
)

P1
∗ ∗ −M1 γCT RT

1
∗ ∗ ∗ −2γP1 + hxZ1 + hS1

.

Due to ∀Ψ ∈ VHn , ∀Ψhx ∈ VHn , according to the convex principle, one obtains

Ω1 < 0, ∀Ψ, Ψhx ∈ VHn , (42)

which leads to V̇1(t) < 0. Then, it follows from (41) that

V̇1(t) ≤ −λmin(−Ω1)ξ
T
1 (t)ξ1(t) ≤ −λmin(−Ω1)eT

1 (t)e1(t), (43)

this indicates that the error system e1(t) is globally asymptotically stable. Obviously,
conditions (25) ensure that Ω1 < 0 holds.

Step j: To recursively prove the stability of the error system ej(t), we assume that
ej−1(t) is globally asymptotically stable. Similar to (28) and using the Newton–Leibniz
formula, ej(t) (j = 2, 3, · · · , m) can be rewritten, as follows

ėj(t) =
[
A
(
Ψ(t)

)
+ B

(
Ψhx (t)

)
+ LjC

]
ej(t)−B

(
Ψhx (t)

) ∫ t

t−hx
ėj(τ)dτ − LjC

∫ t

t−h
ėj(τ)dτ

− LjCej−1(t). (44)

Then, we construct the following Lyapunov–Krasovskill functions

Vj(t) =

Vj1(t)︷ ︸︸ ︷
eT

j (t)Pjej(t) +

Vj2(t)︷ ︸︸ ︷∫ t

t−hx
eT

j (τ)Qjej(τ)dτ +

Vj3(t)︷ ︸︸ ︷∫ t

t−h
eT

j (τ)Mjej(τ)dτ

+

Vj4(t)︷ ︸︸ ︷∫ 0

−hx

∫ t

t+η
ėT

j (τ)Zj ėj(τ)dτdη +

Vj5(t)︷ ︸︸ ︷∫ 0

−h

∫ t

t+η
ėT

j (τ)Sj ėj(τ)dτdη . (45)

Taking the derivative of Vj1(t) along with (44), we have

V̇j1(t) =eT
j (t)

[
PjA

(
Ψ(t)

)
+AT(Ψ(t)

)
Pj + PjB

(
Ψhx (t)

)
+ BT(Ψhx (t)

)
Pj + RjC + CT Rj

]
×

ej(t)− 2eT
j (t)PjB

(
Ψhx (t)

) ∫ t

t−hx
ėj(τ)dτ − 2eT

j (t)RjC
∫ t

t−h
ėj(τ)dτ

− eT
j (t)RjCej−1(t). (46)

Now, by using Young’s inequality [27], we obtain

−eT
j (t)RjCej−1(t) ≤ ε1eT

j (t)ej(t) +
1
ε1
‖RjC‖2‖ej−1‖2, (47)

with ε1 > 0. Then, similar to (33)–(34) in step 1 and using (46)–(47), we have

V̇j1 ≤eT
j (t)

[
PjA

(
Ψ(t)

)
+AT(Ψ(t)

)
Pj + TT

j + Tj + YT
j + Yj + hxDj + hXj + ε1 I

]
ej(t)

− 2eT
j (t)

[
Tj − PjB

(
Ψhx (t)

)]
ej(t− hx)− 2eT

j (t)[Yj − RjC]ej(t− h)

+
∫ t

t−hx
ėT

j (τ)Zj ėj(τ)dτ +
∫ t

t−h
ėT

j (τ)Sj ėj(τ)dτ +
1
ε1
‖RjC‖2‖ej−1‖2. (48)
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For arbitrary constants γ > 0 and ε2 > 0, we obtain
− 2γėT

j (t)Pj
[
ėj(t)−A

(
Ψ(t)

)
ej(t)−B

(
Ψhx (t)

)
ej(t− hx)− P−1

j RjCej(t− h)

+ P−1
j RjCej−1(t)

]
= 0,

− 2γeT
j (t)RjCej−1(t) ≤ ε2eT

j (t)ej(t) +
γ2

ε2
‖RjC‖2‖ej−1‖2.

(49)

Then, combining the derivative of ∑5
i=2 Vji(t) and using (48)–(49), we have

V̇j(t) ≤ ξT
j (t)Ω̂jξ j(t) + (

1
ε1

+
γ2

ε2
)‖RjC‖2‖ej−1‖2, (50)

where ξ j(t) = [eT
j (t), eT

j (t− hx), eT
j (t− h), ėT

j (t)]
T ,

Ω̂j =


Ξ̂j −Tj + PjB

(
Ψhx (t)

)
−Yj + RjC γA

(
Ψ(t)

)
Pj

∗ −Qj 0 γBT(Ψhx (t)
)

Pj
∗ ∗ −Mj γCT RT

j
∗ ∗ ∗ −2γPj + hxZj + hSj + ε2 I


and Ξ̂j = PjA

(
Ψ(t)

)
+ AT(Ψ(t)

)
Pj + Tj + TT

j + Yj + YT
j + hxDj + hXj + Qj + Mj + ε1 I.

Similar to Ω1 in step 1, if

Ω̂j < 0, ∀Ψ, Ψhx ∈ VHn (51)

is true, we have

V̇j(t) ≤ −λmin(−Ω̂j)eT
j (t)ej(t) + (

1
ε1

+
γ2

ε2
)‖RjC‖2‖ej−1‖2. (52)

Then, employing the comparison Lemma [35], we can conclude that if ej−1(t) is globally
asymptotically stable, then ej(t) is also globally asymptotically stable.

Furthermore, it not difficult to observe that Ω̂j = Ωj + ε1ΠT
1 Π1 + ε2ΠT

2 Π2, where
Π1 = [I, 0, 0, 0]T , Π2 = [0, 0, 0, I]T , and

Ωj =


Ξj −Tj + PjB(Ψhx ) −Yj + RjC γA(Ψ)Pj
∗ −Qj 0 γBT(Ψhx )Pj
∗ ∗ −Mj γCT RT

j
∗ ∗ ∗ −2γPj + hxZj + hSj

 < 0.

Since ε1 and ε2 are selected arbitrarily, Ωj < 0 ensures that Ω̂j < 0 holds when ε1 and ε2
are sufficiently small. Finally, it observes that conditions (25) ensure that Ωj < 0 holds. We
finish the proof.

Remark 6. It follows from Theorem 2 that for a given output delay hy, whether the LMI set (25),

(26) and (27) have feasible solutions depends on the size of the parameter h =
hy
m . Obviously, for a

large output delay of hy, a sufficiently large m can ensure that the LMI sets (25), (26) and (27) have
feasible solutions. However, the complexity of the cascade predictor is proportional to m; in other
words, a larger m will reduce the observational performance of the cascade predictor. Therefore, we
should choose a suitable value of m to balance the stability requirement and the complexity limitation
of the cascade predictor.

4. Numerical Simulation

This section provides a series of numerical simulations to demonstrate the efficacy of
our results.
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Let x(t) = [x1(t), x2(t)]T . Consider the RNNs (1) with the following parameters:

A =

[
1 0
0 1

]
, W0 =

[
2.0 −0.1
−5.0 3.0

]
, W1 =

[
−1.5 −0.1
−0.2 −2.5

]
, C =

[
3 0.3

0.3 3

]
,

hx = 1, φ(s) = [2, 2]T , f
(
x(t)

)
= [tanh(x1(t)), tanh(x2(t))]T ,

where hy exists if we take the value later. It can be observed from Figure 1 that these RNNs
have complex chaotic behaviors. Then, from Theorem 1, it follows that there is a nonfeasible
solution to the LMI set (12) when h∗ > 0.24. Therefore, when hy ≤ 0.24, we only use the
full-order observer (6). When hy > 0.24, we use the cascade predictor (23).

-1 -0.5 0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6

Figure 1. The phase space trajectory of RNNs (1).

Example 1. For hy = 0.23, assume that the initial conditions of the full-order observer x̂ are
x̂(s) = [−2,−2]T , s ∈ [−1, 0). Then, from Theorem 1, we can obtain feasible solutions:

P =

[
15.9540 0.3889
0.3889 2.3080

]
, L =

[
−1.4728 0.1894
1.1641 −2.3357

]
.

The simulation results are shown in Figures 2 and 3. Figure 2 represents the trajectory profiles of
x̂(t) and x(t), which implies the validity of our designed full-order observer (6). Figure 3 represents
the converged trajectory of ‖e(t)‖ = ‖x̂(t)− x(t)‖, which implies the convergence performance of
the full-order observer (6). However, when h = 0.25, it can be observed from Figures 4 and 5 that
the full-order observer cannot accurately estimate the state of the original system and the estimation
error ‖e(t)‖ becomes larger, since h = 0.25 is greater than h∗ = 0.24.

Figure 2. Profile on trajectories of x(t) and x̂(t).
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Figure 3. The estimation error ‖e(t)‖.
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Figure 4. The state xi(t) and x̂i(t), i = 1, 2.
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Figure 5. The estimation error ‖e(t)‖.

Example 2. This example considers the case hy > 0.24; thus, we only use the cascade predictor (23).
(i) For hy = 0.5, we select m = 5 and h = 0.1 and assume that the initial conditions

of x̂i, i = 1, · · · , 5 are x̂i(s) = [−2,−2]T , s ∈ [−1, 0). Then, from Theorem 2, we obtain
feasible solutions:

Pi =

[
142.1455 −3.8554
−3.8554 16.5776

]
, Li =

[
−1.5129 0.1483
1.5729 −2.8071

]
(i = 1, · · · 5).

As illustrated in Figures 6 and 7, the cascade predictor is valid and the estimation error ‖e5(t)‖ =
‖x̂5(t)− x(t)‖ finally converges to 0.
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Figure 6. Profile on trajectories of x(t) and x̂5(t).
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Figure 7. The estimation error ‖e5(t)‖.

(ii) For hy = 1, we select m = 10 and h = 0.1 and assume that the initial conditions
of x̂i, i = 1, · · · , 10 are x̂i(s) = [−1,−1]T , s ∈ [−1, 0). Since the value of h is equal to the
value of h in i), the observer gain Li (i = 1, · · · , 10) can be equal to the observer gain in (i).
Then, from Figures 8 and 9, it is clear that the cascade predictor is valid, and the observer error
‖e10(t)‖ = ‖x̂10(t)− x(t)‖ finally converges to 0.

Figure 8. Profile on trajectories of x(t) and x̂10(t).
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Figure 9. The estimation error ‖e10(t)‖.

Example 3. This example will further discuss the effect of the size of the output delay on the
convergence of the two predictors. The simulation results are shown in Figures 10–12, and the
influence of m and h on the convergence time is given in Table 1, where “*" denoting the single
observer is not valid (hy > h∗).

From Table 1, we can clearly observe that for both predictors, the output delay is directly
proportional to the convergence time, and the larger the output delay, the longer the convergence
time. In addition, from the experimental results, it can be concluded that, although the cascade
predictor can solve the problem of an arbitrarily large output delay, as hy increases, we will have to
choose more subsystems to transmit the state information, which leads to the accumulation of error
information and increases the cost of observation.

Table 1. The convergence time for two types of predictors by setting observer error ‖e‖ = 0.1.

Predictor\hy hy = 0.1 hy = 0.2 hy = 0.5 hy = 1 hy = 1.5 hy = 2

Convergence time
Simple observer 1.6 8.5 * * * *

Cascade predictor 1.8 (m = 1) 3.6 (m = 2) 9.1 (m = 5) 16.3 (m = 10) 27.4 (m = 15) 31.5 (m = 20)
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6

Figure 10. Convergence of single observer at different delays.
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Figure 11. Convergence of cascade predictor at different delays.
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Figure 12. Convergence of cascade predictor at different delays.

5. Conclusions

In this research, we investigate the RNNs’ state estimation by proposing an output-
predicting and LPV approach. Due to the LPV approach, LKF and convex principle, several
new conditions for the global asymptotic stability of the error system have been established.
Compared with the traditional observer in [14–20], the chain-structured cascade predictor
is more useful in the state estimation of neural networks. Different from [12,13,15,16,20],
we use the LPV approach to convert nonlinear error dynamic systems into linear error
systems, which greatly reduces the difficulty of the stability analysis. Finally, a series of
numerical simulations show the effectiveness of the cascade predictor.
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