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Abstract: In this paper, we review some grid quality metrics and define some new quality measures
for quadrilateral elements. The curved elements are not discussed. Usually, the maximum value of
a quality measure corresponds to the minimum value of the energy density over the grid. We also
define new discrete functionals, which are implemented as objective functions in an optimization-
based method for quadrilateral grid generation and improvement. These functionals are linearly
combined with a discrete functional whose domain has an infinite barrier at the boundary of the set
of unfolded grids to preserve convex grid cells in each step of the optimization process.
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1. Introduction

Research on mesh generation in Computer Graphics, Scientific Visualization and
Computational Field Simulations has led to a substantial number of methods within the
last six decades. An exhaustive description of this field is beyond the scope of this paper;
one can refer to the many surveys available, see, e.g., Thompson et al. [1] and Lo [2].
However, that mesh generation in regions in 2D and 3D is a central task, used in numerical
methods for the solution of partial differential equations, using finite difference, finite
element and finite volume methods.

There is also a special interest in studying meshes formed by triangular elements. Our
interest here is to generate structured meshes with quadrilateral elements; however, all
of the discussion can be applied to unstructured meshes. The simplest way to generate a
structured mesh is via interpolation of the boundaries, but it is difficult to ensure that the
mesh thus obtained is a convex one. In 2010, Barrera et al. [3] provided a review of some
functionals and conditions that guarantee the existence of optimal meshes that are convex
over irregular planar regions.

Our interest now is to improve the mesh quality via controlling the shape of the
elements. The improvement of mesh quality can be carried out in two ways:

Clean-up. This consists of the elimination, insertion and reconnection of nodes to elim-
inate the worst elements. Some authors call that this procedure topological
optimization in the sense that the connectivity of the nodes is removed to
obtain an optimal configuration.

Smoothing. This consists of node repositioning without changing the connectivity of the
elements.

In both cases, the goal is to obtain a quality mesh with a low number of distorted
elements. To achieve this goal for a quadrilateral, it is neccesary to define an ad hoc
quality measure.

Definition 1 (González [4]). We say that a real-valued function µ(Q) over a quadrilateral Q is a
quality measure in the sense of Field-Oddy if it
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(1) Has the ability to detect degenerated elements;
(2) Is bounded and continuous;
(3) Is independent of scale;
(4) Is normalized;
(5) Is invariant under rigid transformations.

For practical purposes, it is convenient to define an acceptability interval [µ0, 1] for the
quality measure, i.e., when a quadrilateral has a suitable shape, outside of this interval, we
say that the quadrilateral does not have the desired shape. The acceptability interval are
defined empirically for each quality measure.

In this paper, we are interested in identifying the shape of the cells and in quantifying
the distortion of a quadrilateral when it is not a square or a rectangle. In the remainder of
this paper, we will discuss the most used quality measures for rectangles and then propose
new quality measures.

The remainder of this paper is structured as follows. The following, background
section presents the most used quality measures for rectangles based on angles. Section 3
then presents some new quality measures based on geometric properties. Section 4 then
presents some classical global quality metrics and proposes a statistical analysis of all
elements of the mesh. Section 5 then presents some concepts to grid quality improvement
using quality measures. Finally in the Section 6 then presents some new quality discrete
functionals for improvement of the mesh.

2. Background

Following the ideas behind the quality measures for triangles, it is straightforward to
define some figures that measure the shape of quadrilaterals. One of these is the aspect
ratio, which is defined by comparing to the ideal case when the quadrilateral is a rectangle;
it represents the ratio of the largest to the smallest sides. An estimator for this ratio was
discussed in 1987 by Robinson [5]. The idea is to associate a rectangle with the convex
quadrilateral: a rectangle passing through the midpoints of the sides of the quadrilateral,
see Figure 1.

Figure 1. PQRS is the rectangle associated by Robinson to quadrilateral ABCD.

This idea is usual in continuum mechanics. Robinson proposed a practical method of
calculating it by means of bilinear mapping between the unit square and the quadrilateral

x = e1 + e2ξ + e3η + e4ξη, (1)

y = f1 + f2ξ + f3η + f4ξη, (2)

where the e and f coefficients are realated to the nodal coordinates x1 to x4 and y1 to y4 by
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e1 = 1
4 (x1 + x2 + x3 + x4) e2 = 1

4 (−x1 + x2 + x3 − x4)

e3 = 1
4 (−x1 − x2 + x3 + x4) e4 = 1

4 (x1 − x2 + x3 − x4)

f1 = 1
4 (y1 + y2 + y3 + y4) f2 = 1

4 (−y1 + y2 + y3 − y4)

f3 = 1
4 (−y1 − y2 + y3 + y4) f4 = 1

4 (y1 − y2 + y3 − y4)

(3)

The meaning of the coefficients in Equation (3) is now shown in [5]. Which yields

aspect ratio = max
{

e2

f3
,

f3

e2

}
.

The associated rectangle has sides, which are parallel to the coordinate axes and pass
through the midpoints of the sides of the quadrilateral. In spite of its simplicity, this
analytic representation is not satisfactory since it depends on an orthogonal coordinate
system. In 2000, Field [6] reviewed this definition and suggested calculating the aspect
ratio of Robinson and orthogonalizing the main axes, and proposed a quality measure to
detect squares.

In 1989, Lo [7] reviewed the classical quality measure for triangles T(a, b, c) with side
lengths l1, l2 and l3,

gi = 4
√

3
area(Ti)

l2
1 + l2

2 + l2
3

(4)

which attains its optimum value in equilateral triangles, and again proposed calculating
each one of those values over the four Ti triangles, which are defined by the sides and
diagonals of a quadrilateral, but reordering these quantities in such a way that

g1 ≤ g2 ≤ g3 ≤ g4, (5)

and using

µ1(Q) =
g1g2

g3g4
, (6)

as a quality measure. The maximum value is 1 and it is obtained for rectangles. This is
a quality measure because it is continuous, bounded and identifies degenerate and even
non-convex quadrilaterals. The measure that Lo uses for triangles T is the reciprocal of the
number of conditions of a linear mapping µ(T) = 1/κ2(T), which Knupp [8] used in 2001
to measure the distortion of the elements. Locally, Lo’s measure may have more critical
points, which can be far from representing a rectangle.

Another measure of quality for quadrilaterals is described by van Rens et al. [9] as
follows: compute the inner angles θk and define

µ2(Q) =
4

∏
k=1

(
1−

∣∣∣∣ π
2 − θk

π
2

∣∣∣∣). (7)

This function is continuous, dimensionless and 0 ≤ µ2(Q) ≤ 1. One can see that µ2(Q) = 0
if Q is a triangle and µ2(Q) = 1 only if Q is a rectangle.

In 2012, Remacle et al. [10] described the Blossom-Quad algorithm to construct a
non-structured mesh with quadrilateral elements obtained from a previous triangulation
and used a cost function to produce a quality mesh. They used

µ3(Q) = max
{

1− 2
π

max
k

{
|π

2
− θk|

}
, 0
}

, (8)

and observed that if the value of this function is 1, Q is a perfect quadrilateral, and it is 0 if
any of the angles are greater than or equal to π, i.e., when the quadrilateral degenerates
into a triangle or is nonconvex. This function is also a quality measure.

As noted, unlike other measures for rectangles we have discussed up to this point, the
last two ones do not depend either on the shape of the quadrilaterals or the aspect ratio or
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proportion of their sides; they only measure how near or far away a quadrilateral is from
being a rectangle using only the internal angles.

Another function based on the inner angles was proposed by Wu [11]. This author
used the same idea as Lo: to order the inner angles θi so that θ1 ≤ θ2 ≤ θ3 ≤ θ4 and define

µ4(Q) =
θ1θ2

θ3θ4
. (9)

This function reaches its maximum value of 1 on rectangles. However, this is not a good
measure in the sense of Field-Oddy, since it is not capable of detecting degenerate quadri-
laterals.

3. New Quality Measures

In the previous section, we had reviewed some measures that characterize rectangles
and also pointed out some intervals of acceptability to decide if a quadrilateral is close to
the desired shape. However, which rectangle is it close to?

3.1. Quality Measure of Rectangles

A very interesting problem in computational geometry is the following: given a cloud
of points, calculate the rectangle of the minimum area that contains them. It is known that
this problem can be raised directly on the convex hull of the cloud of points, and therefore
the problem can be regarded as calculating a rectangle of minimum area that contains a
convex polygon.

We propose the use of the rectangle of minimum area to define a distortion measure
of the quadrilateral in the sense that it measures how close or far a quadrilateral Q is from
being a rectangle, Figure 2.

Example 1. For the quadrilateral A(−6.84, 7.5), B(−10,−4), C(11.81,−1.38) and D(9.27, 11.94),
the rectangle of minimum area is A′BCD′ with an aspect ratio of 1.62. See Figure 2.

Figure 2. A′BCD′ is the rectangle of minimum area for quadrilateral ABCD and RUTS is the rectangle
associated by Robinson for Example 1.

On one hand, the cell area ac, is less than the rectangle area; that is, ac ≤ aR, and it is
easy to see that

2ac − aR
aR

≤ 1;

see Lassak [12] for the proof. The quotient thus defined reaches its maximum value of 1 on
rectangles. Therefore, we propose the value

µr1(Q) =
2ac − aR

aR
(10)
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as a new quality measure to characterize rectangles.
One must note that µr1(Q) is a good quality measure according to Field-Oddy, and

µr1(Q) = 0 if Q is a triangle.
Another good quality measure in this sense is

µr2(Q) =
2a−
aR

, (11)

where
a− = min{a1, a2, a3, a4} (12)

and ai are the area of the four triangles defined by taking the four vertices of a quadrilateral
into groups of three.

3.2. New Aspect Ratio

Using the rectangle of minimum area for Q, we propose the use of the ratio of the
largest to the smallest side as the aspect ratio. This measure is invariant under rigid and
scaling transformations. This measure is better than Robinson’s aspect ratio. It is easy
to construct an example for which the Robinson aspect ratio is 1 but the quadrilateral is
distorted following the next example.

Example 2. For the quadrilateral A(3.53, 10.21), B(−10, −4), C(11.81, −1.38) and D(9.27,
11.94), Robinson’s aspect ratio is 1.00 but using the rectangle of minimum area NBCD, the aspect
ratio is 1.62. See Figure 3.

Figure 3. NBCD is the rectangle of minimum area for quadrilateral ABCD and JKLM is the rectangle
associated by Robinson for the Example 2.

As we have discussed, some measures to characterize rectangles are based on the inner
angles. Another way to achieve this is to ask Q to be a parallelogram and one of its inner
angles to be a right one. As it is, we use a measure that imposes a particular condition on a
rectangle instead of one on the form of Q .

Our interest is to characterize the rectangles geometrically. A well-known result in the
literature is as follows:

Theorem 1. Let Q be a quadrilateral of vertices A, B, C and D whose sides are a, b, c and d.
The quadrilateral Q is a rectangle if and only if the area of the quadrilateral is written as

aR =
1
2

√
(a2 + c2)(b2 + d2). (13)

The proof of this result can be found in Josefsson [13]. The interesting fact about this
theorem is that it provides of an analytical expression of the area of a hypothetical rectangle
formed by the sum of the squares of the opposite sides of Q and compares the square of
the area of Q to identify how far it is from being a rectangle.
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On the other hand, following the proof of the theorem, it is easy to see that the area ac
of any convex quadrilateral satisfies

2ac ≤
√
(a2 + c2)(b2 + d2). (14)

Using this idea, we propose the measure

µR(Q) =
2a−√

(a2 + c2)(b2 + d2)
(15)

where a− is defined in Equation (12).
The measure µR(Q) is a good quality measure in the Field-Oddy sense, since it is

continuous, bounded and capable of indentifying degenerate quadrilaterals (to triangles),
as well as to identify if a quadrilateral is non-convex. This measure reaches its optimal
value of 1 for rectangles.

An acceptability interval to consider that the quadrilateral is a rectangle under this
measure is [0.95, 1].

3.3. Quality Measure of Parallelograms

Let Q be an oriented quadrilateral of vertices P1P2P3P4. The latter defines four oriented
triangles T1 = T(P4, P1, P2), T2 = T(P1, P2, P3), T3 = T(P2, P3, P4) and T4 = T(P3, P4, P1),
see the Figure 4.

Figure 4. The four oriented triangles defined by a quadrilateral grid cell.

Let ai be the area of the four oriented triangle and ac be the area of grid cell Q, we
have

g1 =
a1

ac
, g2 =

a2

ac
, g3 =

a3

ac
, g4 =

a4

ac
(16)

It is easy to see that a quadrilateral is a parallelogram if and only if

g1g2 = g3g4 =
1
4

, (17)

The proof is based on follow: on one side

g1 + g3 = g2 + g4 = 1. (18)

On the other hand
g1 = g2 (19)

if and only if corresponding sides are parallel. But if we impose that g1 and g2 are equal
1/2, g3 = g4 so that the other sides are parallel, see [4]. A quality measure to characterize
parallelograms is

µp1(Q) = 4 min{g1g2, g3g4}. (20)



Math. Comput. Appl. 2023, 28, 95 7 of 16

This measure is invariant under rigid and scaling transformations.
In the Figure 5 it is shown differents level curves for µp1(Q).
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(a) (b)

Figure 5. Level curves for (20) where (a) Q has 3 fixed vertices (0, 0), (2, 0) and (0.5, 2) and (b) Q has
3 fixed vertices (0, 0), (2, 0.5) and (0.5, 2).

Now, we reorder these quantities in such a way that

g1 ≤ g2 ≤ g3 ≤ g4, (21)

and use
µp2(Q) =

g1g2

g3g4
, (22)

as a quality measure. Again, the maximum value is 1 and it is obtained for parallelograms.
This is a quality measure because it is continuous, bounded and identifies degenerate and
even non-convex quadrilaterals, see [4].

In the Figure 6 it is shown different level curves for µp2(Q).

0.1
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0.7
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Figure 6. Level curves for (22) where (a) Q has 3 fixed vertices (0, 0), (2, 0) and (0.5, 2) and (b) Q has
3 fixed vertices (0, 0), (2, 0.5) and (0.5, 2).
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3.4. Quality Measure of Squares

An ideal mesh is one in which its cells are close to being squares. If µ(T) is a good
quality measure for triangles, the harmonic mean of the four triangles Ti is

µs(Q) = σ
4

∑4
i=1

1
µ(Ti)

, (23)

If rewriting µs(Q) in the form

µs(Q) =
4σµ(T1)µ(T2)µ(T3)µ(T4)

µ(T2)µ(T3)µ(T4) + µ(T1)µ(T3)µ(T4) + µ(T1)µ(T2)µ(T4) + µ(T1)µ(T2)µ(T3)
, (24)

we obtain a good quality measure for quadrilaterals, because it is continuous, bounded,
invariant under the rigid and scaling transformations and identifies degenerate and even
non-convex quadrilaterals, since it inherits those properties from µ(T). Here, σ is a normal-
ization parameter.

To characterize squares, we require a property µ(T) as seen from

Theorem 2. If µ(T) is a good quality measure for triangles according to Field-Oddy, in which for
isosceles right triangle the highest energy among all right triangles is achieved, µs(Q) defined in
(24) is a quality measure in the Field-Oddy sense and characterizes squares at their maximum value.

Proof. The proof is very simple; it is based on the fact that the four triangles must be
congruent to have the same energy. From this it follows that the triangles must be right
triangle or they do not form a quadrilateral. Now, if the lowest energy contained for right
triangle only occurs when they are isosceles right triangle then µs(Q) defined in (24) only
detects squares at its maximum value.

Some measures µ(T) for triangles with those properties are

µ1(T) = 4
√

3
A

l2
1 + l2

2 + l2
3

, µ2(T) = 2
r
R

, µ3(T) =
4
√

3
9

A
R2 , µ4(T) =

4√
3

A
l2
max

where µ1(T) was proposed by Joe, [14], µ2(T) is the radius ratio measure, µ3(T) is described
by Shewchuk and µ4(T) is Cavendish’s measure, see [15].

Using the quadrilateral Q with 3 fixed vertices (0, 0), (2, 0) and (0, 2), µ(Q) is a function
of (x, y). In the Figure 7 it is shown the level curves for µs(Q) using µ1(T) and µ2(T).

(a) (b)

Figure 7. Level curves for (24) using (a) µ1(T) and (b) radius ratio µ2(T).
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4. Some Global Quality Metrics

In many applications, it is necessary to identify the utility of a mesh through the
assessment of the quality of all the mesh elements.

The assessment of the quality of a mesh can be achieved through

(1) A visual or exploratory or inspection;
(2) Qualitative evaluation or shape parameters;
(3) Statistical analysis.

A first visual evaluation can involve analyzing the distribution in a histogram of
values of a chosen good-quality measure µ(Q) or metric δ(Q). A second visual assessment
can be performed by looking at a color map on a quality-dependent color scale. In this
section, we will attempt to describe some methods or techniques with which to carry out a
global qualitative assessment of the mesh by assigning a value to the mesh.

Allievi and Casal [16] proposed two measures for qualitative evaluation of orthogo-
nality of the mesh. The first criteria is the maximum deviation of orthogonality given by

MDO = max
i,j
{|90◦ − θi,j|} (25)

and the second is the mean deviation of orthogonality given by

ADO =
1

(n− 1)(m− 1)

m−1

∑
i=2

n−1

∑
j=2
|90◦ − θi,j|, (26)

where θi,j are the internal angles of the mesh.
Now, let µ(Q) be a measure of quality. Other global criteria used frecuently is the

average quality of a mesh G, or the mean quality, defined as

MQ = µ̄(G) =
1
N

N

∑
i=1

µ(Qi), (27)

where N is the number of elements in G. Another global measure well known is the
standard deviation or the mean square error:

MSE = σ2 =

√√√√ 1
N

N

∑
i=1

(µ(Qi)− µ̄(G))2, (28)

which is a value that represents the averages of all the individual differences of the obser-
vations with respect to a common reference point, which is the arithmetic mean.

As it is well known, a greater value of MSE corresponds to a greater dispersion of
the values, in this case µ(Q) with respect to its mean MQ. For this reason, researchers are
using the geometric mean as a measure of global quality of the mesh for a measure µ(Q)
given by

SP = β = N

√√√√ N

∏
i=1

µ(Qi). (29)

This quantity is well known in the literature as the mesh shape parameter or simply shape
parameter, see [2].

The natural approach to evaluate the quality of an mesh from that of its elements
consists of considering the best and worst element qualities, the arithmetic mean, the mean
square error and the shape parameter. For the mesh of the Figure 8 with ADO = 13.21,
MDO = 76.17, the corresponding results for differents quality measures are given in Table 1.
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Table 1. Summary of quadrangle quality measures for the mesh in Figure 8.

Shape Name µ(Q) Min Max MQ MSE SP

Parallelogram
AreaI 0.0381 0.9998 0.9169 0.1081 0.9068

AreaII 0.0117 0.9973 0.8615 0.1510 0.8284

Rectangle

Lo1989 0.0160 0.9941 0.7597 0.1901 0.7241

ScaledJacobian 0.2391 1.0000 0.9384 0.0975 0.9318

ScaledJacobianM 0.0457 0.9965 0.8639 0.1361 0.8478

MinRect2015 0.0555 0.9942 0.7929 0.1837 0.7607

Rectangles2015 0.0719 0.9983 0.8999 0.1170 0.8890

Square

Lo1985 0.0339 0.9897 0.4792 0.2362 0.4162

Hua1995 0.0830 0.9996 0.5302 0.2573 0.4621

Knupp2000 0.0365 0.9993 0.5113 0.2588 0.4402

Pebay2002 0.0591 0.9814 0.6119 0.2208 0.5670

Hmean2017E 0.0797 0.9996 0.5292 0.2578 0.4607

Hmean2017R 0.0788 0.9996 0.5292 0.2578 0.4606

Hmean2017r 0.0297 0.9996 0.5351 0.2485 0.4713

We believe that a statistical approach should be used to qualify and quantify the
geometric quality of a mesh. The shape parameter for squares or rectangles can be combined
with a statistical analysis of all the elements of the mesh in the following order:

(1) How many elements are squares?
(2) How many elements are rectangles with aspect ratio less than 4?
(3) How many elements are parallelograms with aspect ratio less than 4?

We will say that the remainer cells are distorted. This can be performed as follows:
consider three measures of quality µs(Q), µr(Q) and µp(Q) for squares, rectangles and
parallelograms, and exclude rectangles from squares and parallelograms from rectangles.
Let us exclude, respectively, large-aspect-ratio rectangles and large skew elements. Now let
us represent those elements in a colormap, see Figure 8.

Figure 8. Characterized mesh elements with different shapes.
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This technique can be very useful for meshes over irregular regions such as lakes
or reservoirs.

In this paper the quality measure for curved elements are not discussed, but a good
reference for curvilinear finite elements is [17].

5. Grid Quality Improvement
On Distortion of the Mesh

In general, if µ(Q) is a good quality measure for quadrilaterals, a way of measuring
the distortion of a quadrilateral Q with respect to µ(Q) is using

f (Q) =
1

µ(Q)
, (30)

because if f (Q) is much greater than 1, the cell will be far from the value for which µ(Q)
characterizes the geometric shape of the cell Q (square, rectangle, parallelogram, etc.)
and we can say that Q is a distorted quadrilateral with respect to that measure. Usually,
the maximum value of a quality measure corresponds to the minimum value of the energy
density over the grid, see Ivanenko [18].

Under this idea, the distortion of the mesh G can be measured as the average of the
distortions of all the cells

F(G) =
1

Ne

Ne

∑
k=1

1
µ(Qk)

, (31)

where Ne its the number of the cells. Using this concept, we have the following definition:

Definition 2. A grid Ĝ has better quality than the mesh Ḡ if

F(Ĝ) < F(Ḡ), (32)

where F(G) is a distorsion measure.

As an optimization problem, improving the quality of a G mesh can be considered as
the problem

G∗ = arg min
G

F(G) =
1

Ne

Ne

∑
k=1

1
µ(Qk)

, (33)

where the inner nodes of G are the unknowns. In this context, the discrete grid generation
problem can be posed, in general, as a large scale optimization problem. The optimiza-
tion problem is a large-scale one when the mesh dimensions m× n are very large. It is
important to note that the initial mesh G0 must be convex and remain so in each step of
the optimization process. We use for this a Newton-like methods with bound constraints
L-BFGS-B [19].

Usually, the quality measures for quadrilaterals are non-differentiable functions; in an
optimization process, it is better to build a convex function with similar characteristics to
the quality measure.

6. New Quality Discrete Functionals

From the proof of Theorem 1, it is easy to see that

2ac ≤
√
(a2 + c2)(b2 + d2), (34)

for any convex quadrilateral, then

fR(Q) =
(a2 + c2)(b2 + d2)

4a2
c

, (35)
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is a positive convex function whose critical points are rectangles. With this function, we
can define a discrete functional FR(G) over all the grid cells

FR(G) =
1

Ne

Ne

∑
k=1

fR(Qk). (36)

In Figure 9, the shape of the surface of FR is sketched.

(a) (b)

Figure 9. Level curves for (a) fR(Q) and (b) fr(Q) where Q has 3 fixed vertices (0, 0), (2, 0) and (0, 1).

We propose to combine this functional with a convex area functional Sw(G) defined
in [3]. This functional has an infinite barrier at the boundary of the set of unfolded grids.

F(G) = (1− σ)Sw(G) + σFR(G), (37)

where σ > 0. In addition, the function

fR(Q) =
(a2 + c2)(b2 + d2)

4a2
c

, (38)

can be interpreted (by cells) as a normalization (with respect to the Jacobian) of Knupp’s
area-orthogonality functional defined in [20]

fao(Q) = (a2 + c2)(b2 + d2). (39)

As we have discussed, since the quality measures are usually non-differentiable
functions, it is difficult to use them as objective functions; it is advisable to design the
convex and differentiable functions f (Q), whose optimal values also satisfy µ(Q) ≈ 1 for a
specific quality measure µ(Q).

As it is known, a rectangle is a parallelogram, so its opposite sides are equal. The diag-
onals of a rectangle are equal and bisect each other. In Figure 10, we can see those elements.

With this idea, we propose to use a convex functional of the form

Fp(G) = ∑
i,j
‖

pi,j + pi+1,j+1

2
−

pi+1,j + pi,j+1

2
‖2, (40)

over all elements of the grid G. Locally, this functional has a critical point in the cells
formed by parallelograms, see Khattri [21].
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Figure 10. Diagonals of a quadrilateral and the segment joining the midpoints between them.

Optimizing Fp(G) is an attempt to produce parallelograms. Now, we define a discrete
functional to obtain rectangles. For each cell of G let us measure the square of the difference
of the square of diagonals

Fd(G) = ∑
i,j
(‖pi,j − pi+1,j+1‖2 − ‖pi+1,j − pi,j+1‖2)2; (41)

combining both functionals, we obtain

Fr(G) = (1− α)Fp(G) + αFd(G). (42)

If where α ≥ 0 is chosen to allow that shape of the cells can be flexible. In the practice we
use α = 0.5. Fr(G) is a positive and convex functional, which has a critical point in a mesh
formed by rectangles (including squares). This can always be achieved if we guarantee that
in each optimization step the mesh is convex.

Therefore, we use Sw(G) to guarantee and preserve the convexity of the mesh, and com-
bine it with the latter functional in the form

F(G) = (1− σ)Sω(G) + σFr(G). (43)

Thus, with a linear convex combination between Sω(G) and Fr(G), one can generate
both convex grid and close to being rectangles.

7. Examples

For both functionals, we can obtain optimal grids whose cells have a very large aspect
ratio, see Figure 11.

Now, for control of the aspect ratio, we propose to use an area (volume) distortion
measure functional

FA(G) =
N

∑
q=1

1
α(4q)2 + δα(4q)

2, (44)

over all the N signed areas of all the grid cell triangles. Here, δ > 0 is an adequate value,
see [4]. This distortion measure has a barrier on the boundary of the set of grids consisting
of convex quadrilateral cells and it is very similar to the one proposed by Garanzha [22],
but now we have a better control of the global distribution of the area.

For the mesh optimized using the functional (37) with area control, we show in
Figure 12 the color maps for two quality measures.

For the mesh optimized using the functional (43) with area control, we show in
Figure 13 the color maps for two quality measures.
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Figure 11. A mesh over the Strait of Gibraltar.

(a)

(b)

Figure 12. Color map of (a) rectangles quality measure and (b) rectangle of minimum area qual-
ity measure.
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(a)

(b)

Figure 13. Color map of (a) rectangles quality measure and (b) rectangle of minimum area qual-
ity measure.

As it is well known, for irregular regions, the distorted cells accumulate near the border.

8. Conclusions

In conclusion, this paper presented an overview of classical quality measures and
introduced new quality measures for quadrilaterals that help to improve meshes and the
aspect ratio. We show that our aspect ratio is better than the one proposed by Robinson.
We propose that a statistical approach should be used to qualify and quantify the geometric
quality of a mesh. In addition, we have proposed new functionals for grid generation as
alternatives for area-orthogonal grid generation. These functionals are based on the fact
that the maximum value of a quality measure corresponds to the minimum value of the
energy density over the grid.
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Future work in this area could include extending some of these ideas to 3D, as well
as exploring the potential of functionals for volume grid generation, which need to be
further investigated.
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