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Abstract: Exploration of solar irradiance can greatly assist in understanding how renewable energy
can be better harnessed. It helps in establishing the solar irradiance climate in a particular region
for effective and efficient harvesting of solar energy. Understanding the climate provides planners,
designers and investors in the solar power generation sector with critical information. However, a
detailed exploration of these climatic characteristics has not yet been studied for the Southern African
data. Very little exploration is being done through the use of measures of centrality only. These
descriptive statistics may be misleading. As a result, we overcome limitations in the currently used
deterministic models through the application of distributional modelling through quantile functions.
Deterministic and stochastic elements in the data were combined and analysed simultaneously when
fitting quantile distributional function models. The fitted models were then used to find population
means as explorative parameters that consist of both deterministic and stochastic properties of the
data. The application of QFs has been shown to be a practical tool and gives more information than
approaches that focus separately on either measures of central tendency or empirical distributions.
Seasonal effects were detected in the data from the whole region and can be attributed to the cyclical
behaviour exhibited. Daily maximum solar irradiation is taking place within two hours of midday
and monthly accumulates in summer months. Windhoek is receiving the best daily total mean, while
the maximum monthly accumulated total mean is taking place in Durban. Developing separate solar
irradiation models for summer and winter is highly recommended. Though robust and rigorous,
quantile distributional function modelling enables exploration and understanding of all components
of the behaviour of the data being studied. Therefore, a starting base for understanding Southern
Africa’s solar climate was developed in this study.

Keywords: solar irradiation; quantile; quantile function; median rankit; population mean

1. Introduction

With ample sunshine in the Southern African region, an exploratory study of solar
irradiation (SI) data can play a significant role in better understanding how this enor-
mous source of energy can be harnessed in a bid to satisfy the energy demands within
regional countries. However, solar irradiation is significantly affected by weather elements.
In addition, most, if not all, meteorological features have error distributions with finite
limits such that assuming normality of the distributions is not appropriate. As a result,
deterministic models have intrinsic limitations when dealing with weather data that is
characterised by such rapid-fluctuating uncertainties. Therefore, using the measures of
central tendency (such as the mean) only to describe the characteristics of solar irradiation
data is not enough. Exploring meteorological features using the statistics of the mean can
be a misleading summary of a distribution.
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As a result, to overcome these limitations, solar irradiation data can be modelled
using quantile functions. We can learn the data’s skewness, tails and outliers by plotting
quantile function graphs. The application of quantile functions to exploratory data analysis
considers the data’s deterministic and stochastic elements.

1.1. Rationale of the Study

The Southern African region’s solar irradiation data characteristics have not yet been
studied according to the best of our knowledge. Most authors have been interested in
forecasting solar irradiation, and they have been using locational data of at most three sites
from the region within the same country. Very little exploration of this data has been done.
The little exploratory analysis conducted has focused on measures of central tendency or
the statistics of the mean per se. In addition, of course, with the interpretation of measures
of dispersion, the standard error and kurtosis are the commonly used explorative statistics
to describe the variability of the data. However, data exploration that ends with measures
of central tendency and dispersion can be a misleading analysis [1]. The big challenge
comes with efforts to explore solar irradiation data in the Southern African region with a
minimum error of misleading results. A complete understanding of this data is desired.
Therefore, an approach that satisfies this completeness can be the introduction of quantile
functions in the exploratory analysis. In addition to the deterministic element, quantile
functions model the stochastic element of the data which cannot be done using the statistics
of the mean. The two elements of the solar irradiation data can be developed with a
common construction kit approach [2]. In addition, the use of quantile functions is part of
distributional modelling which cannot be done when exploring data using the statistics
of the mean. Moreover, the analysis of empirical distributions tends to focus on only the
stochastic element of the variable. Empirical distributions are much more suitable than
exploratory analysis for forecasting modelling.

1.2. Contribution of the Study

This explorative investigation helps with the establishment of the solar irradiance
climate in the Southern African region. Instead of exploring the deterministic compo-
nent only, and separately (by applying the statistics of central tendency) and then again
exploring separately the stochastic element through a simple analysis of empirical distribu-
tions, a complete exploration can be done through quantile distributional function models
(QDFMs). In addition, some approaches to solar irradiance modelling are non-parametric
like the complete-history persistence ensemble (CH-PeEn) developed by [3]. They lack
inferences of statistic(s) like population mean that can be used to describe the behaviour
of SI, especially the physical characteristics inherent in the stochastic component. The
statistical characteristics and climate of solar irradiation that are explored help planners
and designers in the solar panels manufacturing industry and solar power generation sector.
They can understand better the factors that affect the efficient generation of solar power.
The study may help investors to appreciate how investing in solar power generation can be
profitable financially and socio-economically by exposing the characteristics of Southern
African solar irradiation into the finance world. Experts in meteorological services will be
made aware of how solar irradiation weather studies can be enhanced. Researchers and
academics can be made aware of the new data exploratory technique of QDFMs which
completes the description of data characteristics by combining deterministic and stochastic
elements of variables.

1.3. Review of Literature

Several previous studies on solar irradiation in the Southern African region have been
conducted dating back to as early as 1983 by Jain. Unfortunately, only a few have included
study of the characteristics of radiation. The majority of the studies were concentrating
on measuring and/or predicting (forecasting) solar irradiation in the different countries
of the region. The earliest study that included an analysis of the characteristics of solar
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irradiation in the region, according to the best of our knowledge, was done by J. Andringa
in 1988. They used monthly averages to establish the SI pattern in Botswana. Another early
study was done by [4], and they concluded that SI data from Botswana showed weak non-
seasonal effects while moving average parameters showed strong seasonal effects. Later, [5]
reached the same conclusions as [6] after observing that Malawi SI data had average
daily maximums in October and minimums in January. This highly significant seasonality
characteristic in SI made [7] split the Ritchersveld training data set into two samples, one
from January to May and the other one from June to December. Ref. [7] are the only
authors so far, according to the best of our knowledge, who have done a periodogram
analysis of SI in the region. They identified the largest ordinate periods and produced the
harmonic frequencies of the ordinate periods. All of the ordinates they identified were
highly significant at a 1% level of significance when using a Fisher’s G-test. One of the latest
studies to confirm seasonality in SI data was done by [8] using the University of Pretoria
data. The interpretation of constructed box plots was used to deduce seasonality in the data.
They also came up with a monthly pattern of the data. Earlier on, [9] had already produced
a detailed daily SI pattern for Sebele data. They concluded that solar conditions during
the summer and winter months tend to be uniform over consecutive months (i.e., the SI
series had a memory of two months). Therefore, the data had a persistent pattern. The
same conclusion was also made by [10]. Ref. [11] discovered that the introduction of this
persistent pattern improved their model performance when predicting distillate production
while monitoring meteorological conditions at Malawi Polytechnic. On the other hand,
shortly before, their solar distilled water project [12] concentrated on the relationship
between SI and the sky clearness index. Their results confirmed that the SI pattern is
associated with sky clearness (sunshine duration) or cloud cover. Ref. [13] concurred
by deducing that the SI pattern depends on sunshine duration. Probably that was the
rationale [14] that applied the K-means algorithm when classifying sunshine duration into
four classes. Previously, [15] had already improved the quality of this classification by
cutting the hierarchical tree and further produced a fifth class of ‘good weather’ throughout
the day with intermittent clouds passing over.

Other researchers like [16–19] described the distribution of SI in different parts of SA
using the measures of skewness and kurtosis. They all found their data to be positively
skewed and platykurtic, that is, SI did not follow a normal probability distribution. The
non-normality of the data was confirmed by the constructed Q-Q plots which exhibited
non-linear relationships between the theoretical and sample quantiles. Refs. [16–19] went
further to extract non-linear trends from their respective data sets by fitting penalised
cubic smoothing spline functions. They also constructed time plots as well as density plots;
however, the time plots constructed by [19] exhibited some dominant cycles. In addition to
the various plots they constructed, they computed some measures like the minimum, mean,
median and quartiles to describe the SI. Though the data were from different parts of South
Africa, the different researchers reached the same conclusions regarding SI characteristics.

However, none of the previous studies reviewed in this study fitted a probability
distribution and used it to describe SI. They all concentrated on the statistics of the mean.
In contrast, we extend the property description of SI through application of the statistics
of quantiles. This includes analysing a fitted QDFM which has never been done in pre-
vious studies when investigating the characteristics of SI in the Southern African region
and beyond.

2. Materials and Methods

Expressing statistical ideas in terms of quantile functions gives a new perspective on
data exploration which is simpler and clearer. Quantile functions enable distributional
model development with a common construction kit approach including both the deter-
ministic and stochastic elements in the process. This implies that QDFM can present both
deterministic and stochastic components of SI. If we denote a quantile function Q(p) as a
function that gives quantile values for all probabilities p, 0 ≤ p ≤ 1 then a quantile can be
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defined as the observation that corresponds to a specified proportion of an ordered sample.
That is, if x lies on a proportion p of the way through the data set of n observations, then
x(r) lies a proportion pr of the way through the data set. Therefore, (x(r), pr) describes the
data where x(r) is the rth observation in the data set and pr =

r
n .

2.1. Quantile Functions

If we let X be the random variable and p = P(X ≤ x) then we can formally define a
quantile function (QF) as follows:

xp = Q(p), (1)

where xp is the p-quantile of the population and p = F(x) is the cumulative distribution
function (CDF) such that,

Q(p) = F−1(p) and F(x) =F−1(x). (2)

That is, the plot of Q(p) against p corresponds to the plot of x against p. It has to
be noted that an empirical distribution replaces the cumulative distribution in practice.
According to [20], the p-quantile can be written as

xp = argmin︸ ︷︷ ︸
x

E
[
ρp(X− x)

]
,

for each p ∈ (0, 1) and ρp is the quantile loss function given by

ρp =

{
up, if u ≥ 0

u(p− 1), if u < 0.

Since this quantile loss function is not differentiable, then the statistics of central
tendency cannot be applied in a quantile analysis context. The estimate of the p-quantile
is computed as a sample quantile, and we consider Theorem 1 (the result of Linderberg’s
central limit theorem) when finding its asymptotic distribution.

Theorem 1. Given a random variable X with associated cumulative distribution function F(x),
that is continuous in a neighbourhood of the p-th quantile of interest, with f (xp) > 0. Then, the
asymptotic distribution of the sample quantile, x′p, is given by

√
n(x′p − xp)

d→ N(0, σ2),

where σ2 = p(1−p)
f 2(xp)

and N(0, σ2) represents the Gaussian distribution with zero mean and

variance σ2.

If we introduce S(p) as the QF of the basic form of a probability distribution, then

Q(p) = λ + ηS(p, α), (3)

where λ and η are the position and scale parameters, respectively, and α has components
that give the shape parameter of the ‘basic distribution’. We assume that:

1. the uniform transformation rule applies and
2. ordered Ur leads to the corresponding ordered Xr such that

Xr = Q(Ur).

We also introduce the statistics of the median and the median rankit, where percentiles
are applicable. So, we treat quantile basic forms as QDFM components to provide a flexible
and effective means of constructing distributions that mimic observed data properties. The
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most important property of quantile basic forms is that we can compute the population
mean by evaluating the integral of the QDFM overall percentiles [21,22],

µ =
∫ 1

0
Q(p)dp. (4)

This population mean describes simultaneously both the deterministic and stochastic
components of a variable. In addition, [18] listed the following two main properties of
quantile functions.

1. If X has a quantile distribution, R(p), on the positive axis, 0 ≤ x < 1, then the distri-
bution −R(1 − p) is the quantile distribution that is its reflection in the axis at x = 0,
called the reflected distribution on −1 < x ≤ 0.

2. The reciprocal 1/X has the reciprocal distribution 1/R(1 − p) also on 0 ≤ x < 1.

2.2. Method of Percentiles

The method involves equating population and sample quantiles (percentiles) on
distributions defined by their quantile functions. Percentiles are descriptive statistics of
positions (the centrality) of ordered data. These positions are the expected values of the
observations in the data set. Letting p(r), r = 1, 2, 3, . . ., n to be the corresponding ordered
sequence probabilities of X(1), X(2), X(3), . . ., X(n), then any quantile distribution X = Q(p)
can be generated from a uniform distribution U on the domain (0, 1) by X = Q(U). That is,
ordering X corresponds to ordering U as in (5) here under:

X(r) = Q(U(r)). (5)

We now obtain the mean of the distribution of the rth order statistic from the uniform
distribution as,

p(r) =
1

n + 1
, (6)

and the median is given by:

pM(r) = I IB(0.5, r, n + 1− r). (7)

IIB in (7) is the acronym for the inverse of the incomplete beta function. IIB(p, r, n + 1 − r)
generally gives the quantile distribution for the ordered statistics. Thus, the median for
X(r), technically called the median rankit is defined as

Median
(

X(r)

)
= Q

(
Median

(
U(r)

)
= Q(pM(r)). (8)

Therefore, we analyse the centrality of ordered data, which is ignored by most statisti-
cal estimation methods.

2.3. Parameter Estimation

The natural approach to estimating parameters using quantile-based models is the
method based on minimising the differences between ordered observations and their
predictions. That can be done using either the distributional least squares (DLS) technique
(which uses the mean rankit) and/or the distributional least absolute (DLA) technique.
The techniques are based on developing some measure of lack of fit (LoF), i.e., fitting
a distribution based on deviations between ordered observations and some measure of
position derived from the fitted model. In some cases, the mean rankit does not exist; as a
result, we extend the parameter estimation procedure by using the median rankit. Thus,
we introduce the DLA technique in the parameter estimation exercise. When applying the
DLA technique, the best QDFM fit is obtained from parameters that minimise,

DA = ∑
∣∣∣x(r) −M(r)

∣∣∣, (9)
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such that the measure of the best fit is the distributional mean absolute error (DMAE),
where

DMAE =
DA
n

. (10)

In Equation (9), M(r) is the median of the distribution of X(r) obtained from the median
rankit. The DLA technique is associated with the least absolute deviation (LAD) technique
in linear regression. LAD supersedes the ordinary least squares (OLS) technique in that it
is resilient to outliers and more accurate as the sample size gets larger. However, LAD is
computationally extensive.

2.4. Model Validation
2.4.1. Graphical Analysis

Ref. [22] recommended the use of graphical inspection of suitable plots for testing the
adequacy of quantile functions as shown in Table 1.

Table 1. QDFM validation plots.

Name of Plot y Against Comment

Fit observation x(r) Q’(pr)
Points to exhibit an

approximately linear pattern

Distributional plots fr = x(r) − Q’(pr) Q’(pr)
Points to be

randomly distributed

2.4.2. Chi-Square Goodness of Fit Test

Hosmer and Leme use a chi-square test statistic on the null hypothesis that the model
is a good fit for the data. An insignificant p-value indicates that we fail to reject the
null hypothesis.

3. Results and Discussions
3.1. Ground-Based Data

Ground-based data from the Southern African Universities Radiometric Association
Network (SAURAN) website was used, and the radiometric stations have geographical
locations as shown in Table 2. Some of the stations are currently inactive as shown on the
map in Figure 1.

Table 2. SAURAN stations.

Station Latitude Longitude Location Period

University of Venda (UV) −23.13100052 30.42399979 Venda April 2015–April 2022

University of Pretoria (UP) −25.75308037 28.22859001 Pretoria July 2017–June 2021

University of KwaZulu-Natal
Howard College (UKZNH) −29.87097931 30.97694969 Durban December 2015–September 2022

Stellenbosch University (SUN) −33.92810059 18.86540031 Cape Town July 2017–June 2021

Namibian University of Science
and Technology (NUST) −22.56500053 17.07500076 Windhoek July 2017–June 2021

University of Gaborone (UG) −24.6609993 25.93400002 Gaborone January 2015–November 2020

3.2. Hourly Solar Irradiance Distributional Modelling

Solar irradiance (SI) for a particular day is significantly affected by the time horizon.
This is supported by the time plots from all of the locations which have a general pattern
shown in Figure 2. When measured in hours starting from midnight to midnight, [23]
demonstrated that ignoring sidebands in the data causes overshoots just before sunrise and
after sunset. As a result, we use up to 3 cycles per day which consider the sidebands.
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Figure 2. Day’s hourly profile.

Ref. [23] modelled this hourly profile for a particular day through a Fourier series.
Thus, the mean function of SI in an hour for the three cycles in a day can be modelled
as follows:

yt = β0 + β1Cos
( π

12
t
)
+ β2Sin

( π

12
t
)
+ β3Cos

(
2π

12
t
)
+ β4Sin

(
2π

12
t
)
+ β5Cos

(
3π

12
t
)
+ β6Sin

(
3π

12
t
)
+ ε (11)

The Fourier series expansion model should satisfy the following constraints:

• ysunrise = ysunset = 0.
• ysunrise−1hr = ysunset+1hr = 0.

As a result, this profile is considered on the QDFM of the SI hourly distribution such
that we apply the following regression quantile distributional model as suggested by [2]:

Qy(p
∣∣t) = yt + ηS(p, α, γ, δ, τ) t = 1, 2, 3, . . . , 24. (12)

www.sauran.ac.zw
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where S(p, α, γ, δ, τ) is the basic quantile distribution function of the residuals (from the
Fourier series expansion model in (11)) described by α, γ, δ and τ, the respective shape,
scale, skewness and kurtosis parameters. We assume that E(ε) = 0 and S(0.5) = 0. That is, the
deterministic part of the distributional model in (12) becomes Galton’s median regression
line. This means that

M[S(Ur)] = S(p∗) = Mr (13)

which is called the median rankit for p* = IIB(0.5, r, n + 1 − r).

3.2.1. Venda and Gaborone Hourly Quantile Profiles

The ‘fitdistrplus’ R package developed by [24] automatically selects the best distri-
bution that particular data follows. The package estimates the distribution parameters
through a default maximum likelihood optimisation algorithm. As a result, the residuals
on fitting the SI Fourier series for the Venda and Gaborone hourly profile followed a skew
normal type 2 (SN2) distribution with the probability distribution parameters as estimated
in Table 3. The ‘gamlss.dist’ R package developed by [25] was used to fit the distributions
as shown in Figure A1. That is, the fitted QDFM is as shown in (14),

Qy(p
∣∣t) = β0 + β1Cos

(
π
12 t
)
+ β2Sin

(
π
12 t
)
+ β3Cos

( 2π
12 t
)
+ β4Sin

( 2π
12 t
)
+ β5Cos

( 3π
12 t
)

+β6Cos
( 3π

12 t
)
+ η

 α + γ
δ Φ−1

(
p(1+δ2)

2

)
, p ≤ (1 + δ2)

−1

α + γδΦ−1
(

p(1+δ2)−1+δ2

2δ2

)
, p > (1 + δ2)

−1.

(14)

so that the model parameters are as shown in Table 4.

Table 3. Venda and Gaborone distributional parameters.

Location Shape Scale Skewness

Venda 22.676906 −2.308079 −5.612271
Gaborone 23.233404 2.127659 −1.204687

Table 4. Venda and Gaborone model parameters.

Location β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 η̂

Venda 143.24 −327.52 −55.60 148.90 57.37 −17.33 18.81 2.02

Gaborone 422.36 −372.09 −92.34 163.73 71.42 −16.13 −6.71 −8.17

3.2.2. Durban, Pretoria, Cape Town and Windhoek Hourly Quantile Profiles

The residuals on Durban followed a skew exponential power type 3 distribution and
the Cape Town and Windhoek profiles followed a sinh-arcsinh distribution. However, the
skew exponential power type 3 and sinh-arcsinh probability distributions do not have
corresponding quantile functions as yet. As a result, the closest alternative probability
distribution is a normal or Cauchy distribution. The results in Table 5 show that the normal
distribution better fits the residuals for the three locations than the Cauchy distribution.
Thus, the fitted normal distributions (as second best fits) using the ‘fitdistrplus’ R package
are shown in Figure A1.

The Durban and Cape Town residuals from the Fourier series model had means
of −2.3122 × 10−16 and 1.1102 × 10−16 and standard deviations of 11.0653 and 13.4113
respectively. The residuals had also respective skewness of 0.051 and −0.055. As a result,
the fitted QDFM is

Qy(p
∣∣t) = β0 + β1Cos

(
π
12 t
)
+ β2Sin

(
π
12 t
)
+ β3Cos

( 2π
12 t
)
+ β4Sin

( 2π
12 t
)
+ β5Cos

( 3π
12 t
)

+β6Cos
( 3π

12 t
)
+ η

[
µ + σΦ−1(p)

]
.

(15)
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Table 5. Residual fitted distribution comparisons.

Location Metric Normal Cauchy

Durban AIC 187.4920 199.3287
BIC 189.8481 201.6848

Cape Town AIC 196.7216 211.7815
BIC 199.077 214.1376

Windhoek AIC 218.9350 222.8473
BIC 221.2911 225.2034

The residuals from the Windhoek and Pretoria deterministic models had a mean
(µNUST = 0.2567696, µUP = −1.15597) and standard deviation of (σNUST = 21.3035529,
σUP = 2.77733). However, the residuals from the Windhoek and Pretoria deterministic
models have respective skewness of 0.162308 and −0.1442648, which cannot be ignored
(that is, the skewness cannot be approximated to zero). That is, the residuals are suggesting
some skewness, so considering a skewed lambda quantile distribution (in Equation (16))
for the residuals will give better results [21]. Therefore, we fit the following QDFM for
the Pretoria and Windhoek hourly profiles. Thus, the estimated parameters are shown
in Table 6.

Qy(p
∣∣t) = β0 + β1Cos

(
π
12 t
)
+ β2Sin

(
π
12 t
)
+ β3Cos

( 2π
12 t
)
+ β4Sin

( 2π
12 t
)
+ β5Cos

( 3π
12 t
)

+β6Cos
( 3π

12 t
)
+ η

2σ

[
(1− δ)pσ − (1 + δ)(1− p)σ]. (16)

Table 6. Pretoria, Cape Town and Windhoek model parameters.

Location β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 η̂

Durban 186.88 −300.05 −27.46 145.53 28.01 −26.56 −11.13 1.089

Cape Town 220.88 −309.44 −111.00 110.03 91.52 −6.93 −11.83 1.034

Windhoek 267.82 −400.60 −137.34 159.85 114.20 −27.07 −29.39 3676.63

Pretoria 247.62 −362.25 −54.47 163.33 51.28 −23.25 −10.66 −312.92

3.2.3. Hourly Population Means

On average, the daily maximum irradiance was observed at 13:00 on all the stations
considered, with either the second or third maximum taking place at 12:00 or 14:00. Using
the hourly profile QDFMs fitted for each location, we can then estimate the population
means at 12:00 up to 14:00 as follows:

µt =

1∫
0

Q(p|t)dp , t = 12, 13, 14. (17)

Now, some QDFMs discussed in previous sections include the inverse cumulative dis-
tribution function (CDF) of the standard normal distribution, Φ−1(p). We adopt the method
suggested by [26] of probabilistic polynomial approximations to evaluate the inverse. Re-
searchers like [27,28] and the latest [29] concentrated on approximating the CDF. Ref. [29]
are claiming to have the most accurate approximation using both the MATLAB Global
Optimization Toolbox and BARON, but they did not document evaluating the inverse of
the CDF. The approximation developed by [26] is explicit and has an acceptable maximum
absolute percentage relative error (APRE) of 1.4 × 10−2. We find their approximation
function simple and very accurate for the purposes of estimating the population mean SI in
any time interval of interest. Therefore, Table 7 shows the estimated population mean of
the average SI for 12:00, 13:00 and 14:00 time hours at each location.
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Table 7. 12:00–14:00 population means (Wh/m2).

Location 12:00 13:00 14:00

Venda 704.5501 724.3324 664.2824
Pretoria 792.3848 798.1858 720.3530
Durban 653.7334 646.0031 566.3265

Cape Town 647.2710 702.8115 690.4624
Windhoek 856.5969 927.0284 892.8881
Gaborone 789.5647 814.5785 756.4473

That is, for a period of 13:00 ± 2 h we can have an accumulative radiation of at least
3000 Wh/m2 which is the amount of energy required to fully charge a 12 Volt and 250 Amp
solar battery. This means that given the correct solar panel capacity such a solar battery
can be fully charged in at least five hours i.e., a period from 11:00 up to 15:00 at any of the
locations in the Southern Africa region.

3.3. Daily Total SI Distributional Modelling

The daily total SI distribution is not that significantly influenced so much by other
variables in such a way that it is not necessary to consider other meteorological features
when modelling its quantile distribution. That is, a day’s total SI distribution for a particular
month is presumed identical. The basic quantile functions S(p,α), considered on each
month’s daily total fitted QDFMs at the locations under study are shown in Table 8. If we
look at the population mean daily totals in Table 9, location by location then the maximums
in a year were all received in summer (i.e., either November, December or January), except
for Windhoek which has its maximum in autumn. The maximum population mean daily
totals are shown in bold for each location. All locations receive their population mean daily
total minimums in winter. Our results contrast with the conclusion drawn by [6] who had a
maximum taking place in October and a minimum in January, though they analysed daily
averages for Malawi.

Table 8. Probability distributions’ quantile functions.

Probability Distribution Quantile Function

Normal µ + σΦ−1(p)

Lognormal Exp(µ + σΦ−1(p))

Skewed Lambda 1
2σ ((1− δ)pσ − (1 + δ)(1− p)σ)

Weibull α(− log(1− p))1/γ

Gumbel α + γ log (− log(1− p))

Reverse Gumbel α− γ log (− log(1− p))

Logistic α + γ log
(

p
1−p

)
Cauchy α + γTan(π(p− 0.5))

Weibull Type 3 β(− log(1− p))1/γ

We see it as not a proper descriptive analysis to consider the daily average because the
minimum SI on every single day is always zero. In addition, SI is always approximately
equal to zero from sunset progressing through the night up to sunrise. However, on some
clear nights, we may have significant but very low SI readings. As a result, meaningful
daily average analysis has to exclude readings from sunset up to sunrise when targeting
the solar power generation industry. On the other hand, comparing the mean daily totals
across the locations on each month Windhoek receives the maximum (daily population
mean totals with an asterisk) in 75% of the year except for January, February and October.
It is Cape Town, instead, which receives maximums in those other three months.
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Table 9. Daily total population means (Wh/m2).

Month Venda Pretoria Durban Cape
Town Windhoek Gaborone

January 5808.48 6570.46 7419.84 8350.78 * 7966.67 7045.33

February 5118.63 5796.38 5569.62 7339.92 * 6655.05 6741.43

March 5328.46 5549.78 5727.71 5478.89 6969.69 * 5847.43

April 4218.16 4563.87 3869.33 4241.18 5855.68 * 5143.91

May 4189.18 4626.59 2832.39 3321.19 5183.17 * 4593.42

June 4207.39 4002.05 3543.30 2380.00 4946.30 * 4292.30

July 4463.09 4554.78 3146.75 3077.00 5109.11 * 4522.42

August 4338.57 5237.01 4393.84 3331.33 10,342.86 * 3966.38

September 5820.81 6381.69 4684.33 4937.00 10,678.41 * 6310.75

October 5441.11 6508.65 5773.34 7396.06 * 7342.81 6881.60

November 5992.28 7045.96 5197.02 7909.29 8022.61 * 7370.91

December 5786.87 7165.13 7118.95 8392.25 8799.95 * 6856.38

Maximum 5992.28 7165.13 7419.84 8350.78 10,678.41 7370.91

Minimum 4189.79 4002.05 2832.39 2379.96 4946.30 4292.30
* means a monthly maximum and bold means a locational maximum.

3.4. Monthly Total SI Distribution Modelling

The monthly total SI for a particular year is significantly affected by the month. The
deterministic component of monthly totals is suspected to be affected by the seasons of
summer and winter because from Table 9 we can conclude that the daily population mean
totals are affected by seasonal variation. This agrees with the results of [30], which showed
that SI greatly changed its pattern according to seasonal variation. Figure 3 exhibits some
cyclical variations in the monthly totals at all locations. As a result, we can attribute these
cyclical variations to seasonal effects that were also discovered by [5–7] from different
countries in Southern Africa. Thus, our cycle must have a period of 12 months. Therefore,
we can fit the deterministic component of the monthly totals as the following trigonometric
regression model:

yt = β0 + β1Cos
( π

12
t
)
+ β2Sin

( π

12
t
)
+ ε (18)

If a trend is observed on the time series plot of the monthly totals, then a trend
component can be added to the deterministic model as follows:

yt = β0 + β1t + β2Cos
( π

12
t
)
+ β3Sin

( π

12
t
)
+ ε. (19)

Thus, the quantile distribution of the monthly totals can now be modelled as

Qy(p
∣∣t) = yt + ηS(p, α, γ), (20)

where S(p, α, γ) is the quantile distribution function of the residuals, ε, from the trigonomet-
ric regression model. However, the time series plots exhibited in Figure 3 show that we can
suspect a trend in the Pretoria and Venda monthly totals’ time series, but fitting both the
trigonometric regression models with and without a trend gave the results in Table 10. We
can conclude that monthly total solar irradiance in the Southern African region is neither
increasing nor decreasing. There is no significant trend in SI monthly totals from year to
year. However, it is evident that due to global warming, atmospheric temperatures are
increasing [31–33]. In contrast, our time series plots and model comparisons do not show
that. Thus, the effects of global warming may not be influencing SI in the Southern African
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region. Rather, in variable selection concepts, the temperature is a significant explanatory
variable for SI as demonstrated by researchers like [8,16,34,35] who had the meteorological
feature as one of the important predictors of SI in their forecasting models. As a result, all
of the QDFMs for the monthly totals are fitted without considering trend regression being
part of the deterministic component.
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Table 10. Trend model AIC comparison.

Location With Without

Venda 266.7684 265.613
Pretoria 256.3586 255.4424

The residuals for Cape Town and Durban followed sinh-arcsinh and skew exponential
power type 2 distributions, respectively. Like the sinh-arcsinh distribution, the skew
exponential power type 2 distribution does not have an existing quantile function. Likewise,
we compare the closest two distributions to them as shown in Table 11. As a result, the better
distribution was the normal distribution. Figure A4 shows the fitted normal distributions.

Table 11. Comparisons of residual distributions on Cape Town.

Location Metric Normal Cauchy

Cape Town AIC 187.4920 199.3287
BIC 189.8481 201.6848

Durban AIC 268.5895 271.3327
BIC 269.5593 272.3025

The residuals in the other locations were best fitted by the distributions shown in
Table 12 and are also shown graphically as in Figure A4. Our results are in tandem with
the results from [36]. The original residual distributions are different over the year and



Math. Comput. Appl. 2023, 28, 86 13 of 22

the day. However, because some distributions do not have existing quantile functions,
Durban and Cape Town had the same second-best-fitted distribution over the day and the
year. The fitted QDFMs for the monthly totals have the estimated parameters as shown in
Table 12. All stations received maximum total population mean solar irradiation during
summer and minimum in winter. These results agree with the seasonality in SI observed by
researchers who studied the meteorological feature in Southern Africa. Durban is receiving
the maximum total population mean all year round of all the locations considered, while the
minimum is received in Cape Town (Figure 4). Therefore, Durban is the best location to set
up a solar farm in the region when considering the monthly accumulated solar irradiation.

Table 12. Monthly total SI model parameters.

Location Probability
Distribution β̂0 β̂1 β̂2 η̂ α̂ γ̂

Venda R. Gumbel 1,678,882.00 −8767.19 40,937.26 2013.06 −768.98 9.11

Pretoria R. Gumbel 3,692,969.00 −9175.68 20,756.98 4163.51 −852.62 8.72

Windhoek SN2 −24,798,121 −5434.35 36,610.50 2870.26 8700.05 −0.69

Location Probability
Distribution β̂0 β̂1 β̂2 η̂ µ̂ σ̂

Cape Town Normal 155,245.11 12,380.08 82,328.01 −39.04 −2.31 × 10−16 11.06526

Durban Normal 197,409.84 3445.95 37,525.34 2536.12 2488.44 9834.54

Gaborone Normal 148,521.33 22,150.61 41,991.97 2372.42 2863 23,670.46Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 14 of 23 
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Figure 4. Monthly population mean totals (Wh/m2).

3.5. Model Validations

The Hosmer and Lemeshow (HL) goodness of fit test done on all of the fitted QDFMs
had a p-value greater than 0.05 to indicate that all of the QDFMs were good fits to the
respective data. In addition, a runs test on all the fitted models showed that the QDFMs
were generating random fitted values except for the Venda and Gaborone monthly QDFMs.
The Hosmer and Lemeshow p-values as well as those for the runs test are shown in Table 13.

All of the fit-observation plots were approximately linear as shown in Figures A2 and A5.
All of the distributional residual plots did not exhibit any pattern. The points on the plots
were haphazardly distributed on the scatter plots as shown in Figures A3 and A6. Therefore,
all of the fitted models are valid to use in describing the characteristics of solar irradiation
in the locations studied.
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Table 13. Goodness of fit test p-values.

Location Hourly QDFM Monthly QDFM

HL Runs test HL Runs test

Venda 1 0.09498 1 0.0154
Pretoria 1 1 1 0.2259
Durban 1 0.4038 1 0.5431

Cape Town 1 0.4038 1 0.2154
Windhoek 1 0.4038 1 0.2259
Gaborone 1 0.2105 1 0.0154

4. Conclusions

The main objective of this study was not to predict but to explore the behaviour of SI
using the unpopular quantile distributional functions modelling approach. The application
of QFs has been shown to be a practical tool and gives more information than the use of
only empirical distributions when exploring data. Both the deterministic and stochastic
elements inherent in SI could be modelled on par to give a complete description of data
characteristics. Application of the Fourier series in our residual analysis gave a direct
physical interpretation of the deterministic component while QFs modelled the stochastic
element. It enabled the representation of seasonality in the data when we considered
different seasons. However, the seasonal modelling could be done over the year at once
like the study from [37]. Therefore, the QDFM structure was developed by combining the
two modelling components.

Although QDFMs are comprehensive and powerful data exploration tools, some prob-
ability distributions do not have existing QFs. This emerges as a drawback in accurately
estimating the stochastic properties inherent in the data that follow such probability dis-
tributions. Therefore, further studies can be done on developing QFs of such probability
distributions. Another challenge is approximating the inverse of the cumulative stan-
dardised normal distribution function. The approximations developed so far are complex.
More studies can be done on simplifying the approximation process as well as increasing
its accuracy.

Daily SI recorded on an hourly time horizon is cyclical, and that pattern can be
modelled using a Fourier series. In the Southern African region, the meteorological feature
is received on the earth’s surface at a maximum between 12:00 and 14:00 depending on
seasonal variations, but on average the maximum is experienced during the 13th hour of the
day throughout the whole year. Therefore, maximum solar power generation can be done
within two hours of midday at any location in Southern Africa regardless of any weather
conditions. Maximum daily totals are generally being received during summer (November,
December and January) across the region except at Windhoek where the maximum true
mean daily total is being received in autumn. We also conclude that Windhoek can be the
best solar power generation location in the region when considering daily accumulated
solar irradiation because it had the maximum daily population mean total in 9 months of
the year, then followed by Cape Town. However, if we consider the monthly accumulated
solar irradiance, then Durban is the best location to set up a solar farm in the region. All
maximum monthly population mean totals are received at that location in the region. The
monthly total SI across the region is a maximum in summer and a minimum in winter.
This shows that SI is highly seasonal in the region. Therefore, we suggest that when
forecasting SI in the region the modelling process should be split into summer models and
winter models. Though seasonal in nature, we can also conclude that Southern Africa’s
solar irradiance is not being influenced by global warming yet. With such solar irradiance
climatic information, then, planners, designers and investors in the solar power generation
industry can use this research when identifying where, when and how effective and efficient
electricity generation can be operationalised in this region.
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Finally, we acknowledge the availability of some meteorology approaches that can be
used to further describe the climate of solar irradiation. Therefore, this research creates a
starting platform for understanding solar irradiance climate in Southern Africa.
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