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Abstract: Breast cancer has become a global health problem, ranking first in incidences and fifth in
mortality in women around the world. In Mexico, the first cause of death in women is breast cancer.
This work uses deep learning techniques to discriminate between healthy and breast cancer patients,
based on the banding patterns obtained from the Western Blot strip images of the autoantibody
response to antigens of the T47D tumor line. The reaction of antibodies to tumor antigens occurs
early in the process of tumorigenesis, years before clinical symptoms. One of the main challenges in
deep learning is the design of the architecture of the convolutional neural network. Neuroevolution
has been used to support this and has produced highly competitive results. It is proposed that neu-
roevolve convolutional neural networks (CNN) find an optimal architecture to achieve competitive
ranking, taking Western Blot images as input. The CNN obtained reached 90.67% accuracy, 90.71%
recall, 95.34% specificity, and 90.69% precision in classifying three different classes (healthy, benign
breast pathology, and breast cancer).

Keywords: Western blot; breast cancer; neuroevolution; convolutional neural networks

1. Introduction

Breast cancer has become a global health problem as it ranks first in the world in terms
of incidence and fifth in terms of cancer-related mortality [1]. In Mexico, breast cancer is
the first cause of death in women between 30 and 50 years of age, and since 2006, it has
replaced cervical cancer as a public health concern, and it is a major challenge for the health
system [2].

Breast cancer is identified by an accelerated and uncontrolled proliferation of mam-
mary epithelial cells. These are healthy cells that have an increased reproductive capacity;
they multiply and increase until they form tumors that, depending on their characteristics,
can be malignant or benign [3].

There are several complementary approaches to the diagnosis of breast cancer. The
tests traditionally used for diagnosis are breast examination, ultrasound, mammography,
and biopsy. During a breast exam, the doctor checks the lymph nodes in both breasts and
armpits for lumps or other abnormalities. This test identifies lumps of at least 3 mm, and
detection of this size has been clinically shown to be beneficial for patient survival. The
diagnostic percentage of this test is 40% to 69% [4].

Mammography is a diagnostic test, where an image is obtained and then analyzed and
interpreted by a specialist. It is an expensive, painful procedure, generally performed on
patients over 40 years of age. The percentage of diagnosis is from 63% to 87%, depending
on the age of the patient, as well as the density of the mammary tissue. Ultrasound or
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sonography is a diagnostic procedure that uses sound waves to detect cysts or malforma-
tions in the breasts. It is used complementarily to mammography and allows guiding the
taking of the biopsy. The diagnostic percentage is 68% to 98% [5]. A biopsy is a diagnostic
test that determines the presence or absence of cancer cells in a patient’s breast tissue. If the
type of biopsy is surgical, it can be a painful and invasive procedure [6].

The aforementioned diagnostic tests could be expensive, invasive, subjective, and
painful. In addition, they can be ineffective in the early detection of cancer since these tests
identify the disease when it is present in the patient and, most of the time, in an advanced
state. The detection of breast cancer in Mexico usually occurs in late stages because Mexican
women feel embarrassed when being examined by doctors, which decreases the possibility
of providing an effective and successful treatment. In addition, in México, not having
sufficient infrastructure to perform the procedure and not having enough trained and
certified radiologists to interpret the tests [7,8] is a limitation, which is why the number
of tests recommended by international organizations (19.9 mammograms per million
inhabitants) is not met. Thus, in Mexico, life expectancy is very low in relation to developed
countries [4]. Therefore, it is necessary to have tests that diagnose breast cancer early before
it manifests as tumors in patients.

Since breast cancer is a heterogeneous disease in which tumors express a variety of
aberrant proteins (antigens), which creates an immune response by the production of
autoantibodies against such tumor-associated antigens, it is possible to use this antitu-
mor reaction as an oncogenic signal before tumor formation manifests itself in the body.
Therefore, methods are being developed that identify autoantibodies that recognize tumor
proteins that are present up to four years before the disease is detected using the traditional
test [9]. Desmetz et al. [10], by evaluating autoantibody responses to some tumor-associated
antigens, have been able to accurately distinguish healthy patients from those with early
stage breast cancer, particularly carcinoma in situ. Thus, developing these methods could
help in the early detection of breast cancer, supporting mammographic screening, especially
in women under 50 years of age. However, it is necessary to probe its efficacy since this
kind of test changes with the genetical and phenotypical background of patients.

To that respect, Romo et al. [11] developed a method specific to Mexican women,
which confirms the presence of autoantibodies reacting to tumor cells in the T47D cell
line (ductal carcinoma of the breast), which are capable of discriminating between women
with and without breast disease. This was achieved by analyzing the bands expressed
in the one-dimensional Western Blot images of the autoantibody response to antigens of
the T47D tumor line. Although the results obtained are promising, the analysis of the
images is complex, subjective, and slow since it takes a month to create a binary base
(1 present and 0 absent proteins), from which the data are obtained for discrimination
between healthy patients and those with breast disease. On the other hand, an expert, with
the help of commercial software, is required to align the strip bands for each patient, but
the identification and final position of the bands depend exclusively and subjectively on
the expert. Consequently, more precise and automated tools are needed to identify these
banding patterns.

In recent years, artificial intelligence (AI) has used machine learning and computer
vision techniques to support processes such as the prevention and diagnosis of breast cancer.
Contributions have been made, for example, in image processing, to identify patterns that
make it possible to distinguish women with breast disease from those who do not have
the disease [12]. The images usually used to diagnose breast cancer are obtained from
mammary tissue by means of mammography, ultrasound, thermography, histopathology
(Whole Slide Image—WSI) [13,14], or they are images obtained from the reaction of the
immune system from a blood sample and processed with the Western Blot technique
(proteomic images) [15].

In addition, afterward, Sánchez-Silva et al. [15] proposed a semi-automated system to
avoid subjectivity and shorten image analysis time in Western blot images by analyzing
protein bands from the classification of patterns represented as time series [11]. These time
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series were obtained from the change in tone in the pixels of the bands. Because the time
series are of different lengths, they were manually standardized to a predefined length
using a geometric scaling transformation. The K-Nearest Neighbor (KNN) algorithm was
used to classify the time series, using the Euclidean, Mahalanobis, and correlation similarity
distances, achieving a classification percentage of 65.40% with three classes (healthy, benign
breast pathology, and breast cancer), and an 86.06% classification percentage with two
classes (healthy and breast cancer). The classification percentages achieved are similar to
those of the expert of reference [11]. However, the method is considered semi-automatic
since, to obtain the time series, an area is subjectively selected in each strip, which causes
the variation in the lengths of the time series and needs to be standardized. To improve the
work previously described in [16], it was proposed to analyze the bands of the Western Blot
images of antibodies that are reactive to antigens (tumor line T47D—ductal carcinoma),
using convolutional neural networks (CNN), and dispense by obtaining the time series of a
subjectively chosen area to perform the classification. A classification percentage of 68.24%
for three classes (healthy, benign breast pathology, and breast cancer) is obtained. The
classification percentage was statistically equivalent to that seen in [15], obtaining for two
classes (healthy and breast cancer) 86.00%. It is important to remark that the architecture
of the CNN used was handcrafted, so the architecture used does not ensure that the best
performance, in terms of accuracy, will be reached.

In the work developed in [17], they propose to automate the detection of breast
cancer, analyzing the regions of invasive ductal carcinoma (IDC) tissues in 162 whole-
slide images (WSI), from which 277,524 patches were obtained in digital format, RGB
with a size of 50 × 50 pixels. Patches were labeled with the value of 1 for IDC positive
and 0 for IDC negative. Three CNN’s architectures obtained through experimentation
were used, achieving a classification accuracy of 87%. In [18], detecting breast cancer
using thermographic images is proposed. Thermographic images capture the heat map
of the breasts and their surroundings. The analysis of this type of images is based on
the assumption that in a breast cancer process, blood vessels are formed and inflamed,
producing an increase in temperature in that area. They used 3895 thermographic images
of breasts in JPEG format with a dimension of 640 × 480 pixels, obtaining the information
to generate 140 patients, of which 98 were healthy patients and 42 were cancer patients.
For the classification, a CNN, whose parameters were optimized by means of the Bayes
optimization algorithm, was used, obtaining an accuracy of 98.95%. In the work presented
in [19], the objective was to differentiate malignant from benign breast cancer tumors,
classifying histopathology images using convolutional neural networks. They use the
BreakHis database, formed with histopathological images of mammary tissues with breast
cancer from 82 patients. This database consists of 7909 images of microscopic biopsies, of
which 2480 are benign and 5229 are malignant, each image has four magnification levels
(40×, 100×, 200×, and 400×). The CNN architecture was obtained from the importation
of previously trained layers from CNN AlexNet [20], achieving a classification accuracy
of 89.66%. In [21], it was proposed to predict HER2 expression (a protein that is used as
a marker of breast cancer) by analyzing ultrasound images of preoperative breast cancer
patients, using a deep learning model based on DenseNet. The model was trained with
108 patients and validated with 36 patients, obtaining an accuracy of 80.56%. In [22], a
framework for the classification of breast cancer from mammographic images is proposed.
A pre-trained network (EfficientNet-b0) is used to classify two databases of mammography
images. The first database is CBIS-DDSM, achieving a classification accuracy of 95.4%, and
the second database is INbreast, achieving a classification accuracy of 99.7%.

Although CNNs are very competitive, their main disadvantage is the necessity to
design their components (architecture), which in most cases is performed manually and
by trial and error, consuming a lot of time in finding a suitable architecture that adapts to
the requirements. Given that most network architectures have many convolution layers,
filters of different sizes, and some hyperparameters at the moment of being executed, they
demand excessive computational costs, both in time and in memory [23].
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Several solutions have been proposed to deal with this matter; one of the most used
in recent years is neuroevolution, a technique inspired by the biological process of the
evolution of the human brain, through the use of evolutionary computing, which has made
good progress toward optimizing the design of CNN architectures [24].

One of the most important parts of neuroevolution for the design of CNNs is neural
coding, which corresponds to the computational representation of an artificial neural
network. A suitable coding will allow for the creation of a design with a competitive
performance and more efficient and less complex structures.

In this work, the DeepGA neuroevolution algorithm proposed by Vargas-Hakim et al. [25]
is used as a framework for neuroevolution. It is based on the fundamentals of genetic
algorithms, exploitation (by crossing) and exploration (by mutation), and has three fun-
damental characteristics: (1) A hybrid coding, which combines blockchains and binary
codings; (2) The use of evolutionary operators to handle this type of encoding; (3) A linear
aggregation fitness function to evaluate individuals based on their classification accuracy
and the number of parameters. The goal of this work, which uses neuroevolution, is to auto-
matically obtain a convolutional neural network architecture suitable for our problem and
to classify the bands of the Western Blot images of antibodies reactive to antigens (tumor
line T47D—carcinoma ductal). According to studies [26–28], the reaction of antibodies to
tumor antigens occurs early in the process of tumorigenesis, years before clinical symptoms
appear, contrary to mammographic images, WSI (Whole-Slide Images/histopathology),
and ultrasound, that detect a tumor process that already exists. On the other hand, the
CNN architecture obtained by neuroevolution prevents either configuring a CNN by hand
or using a trained CNN, in addition to improving the classification obtained, as described
in [16].

2. Materials and Methods

The pipeline process proposed in this work is described in Figure 1.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 4 of 12 
 

 

Several solutions have been proposed to deal with this matter; one of the most used 
in recent years is neuroevolution, a technique inspired by the biological process of the 
evolution of the human brain, through the use of evolutionary computing, which has 
made good progress toward optimizing the design of CNN architectures [24]. 

One of the most important parts of neuroevolution for the design of CNNs is neural 
coding, which corresponds to the computational representation of an artificial neural net-
work. A suitable coding will allow for the creation of a design with a competitive perfor-
mance and more efficient and less complex structures. 

In this work, the DeepGA neuroevolution algorithm proposed by Vargas-Hakim et 
al. [25] is used as a framework for neuroevolution. It is based on the fundamentals of ge-
netic algorithms, exploitation (by crossing) and exploration (by mutation), and has three 
fundamental characteristics: (1) A hybrid coding, which combines blockchains and binary 
codings; (2) The use of evolutionary operators to handle this type of encoding; (3) A linear 
aggregation fitness function to evaluate individuals based on their classification accuracy 
and the number of parameters. The goal of this work, which uses neuroevolution, is to 
automatically obtain a convolutional neural network architecture suitable for our problem 
and to classify the bands of the Western Blot images of antibodies reactive to antigens 
(tumor line T47D—carcinoma ductal). According to studies [26–28], the reaction of anti-
bodies to tumor antigens occurs early in the process of tumorigenesis, years before clinical 
symptoms appear, contrary to mammographic images, WSI (Whole-Slide Images/histo-
pathology), and ultrasound, that detect a tumor process that already exists. On the other 
hand, the CNN architecture obtained by neuroevolution prevents either configuring a 
CNN by hand or using a trained CNN, in addition to improving the classification ob-
tained, as described in [16]. 

2. Materials and Methods 
The pipeline process proposed in this work is described in Figure 1. 

 
Figure 1. Proposed pipeline process. 

  

Figure 1. Proposed pipeline process.



Math. Comput. Appl. 2023, 28, 72 5 of 11

2.1. Western Blot Strips Database

For this study, a database containing 150 images corresponding to nitrocellulose
membrane strips with the expression of bands obtained with the Western Blot of the
reaction of antibodies to specific protein antigens (T47D) has been used. Image acquisition
was performed following a protocol in a controlled environment, in addition to using
commercial editing software for image enhancement, as described in [11]. A total of
50 of the images correspond to patients with breast cancer, 50 to patients with benign
pathology, and 50 to healthy patients. These images have been provided by the Biology and
Integral Health area of the Biological Research Institute of the Universidad Veracruzana,
following ethical standards and the acquisition of informed consent from the patients who
participated. The protocol was reviewed and approved by the Research Ethics Committee
of the General Hospital of Mexico “Dr. Eduardo Liceaga” (DI/12/11/03/064). The study
conforms to the Code of Ethics of the World Medical Association (Declaration of Helsinki),
printed in the British Medical Journal (18 July 1964).

2.2. Image Preprocessing

The color images provided by the area of Biology and Integral Health of the Institute
of Biological Research of the Universidad Veracruzana are composed of an average of
18 strips in which the bands of patients of the antibody reaction to specific protein antigens
are expressed (T47D). In total, 50 strips were obtained from healthy patients, 50 strips from
patients with benign breast disease, and 50 strips from patients with breast cancer.

Sánchez-Silva et al. [15] carried out experiments with color and grayscale images and
determined that color was not relevant, so they chose to work with grayscale images. Due
to the above and for the sake of simplicity in image processing, the color images were
converted to grayscale in this study. On the other hand, based on previous experiments
carried out with the CNNs, it has been established that the ideal transformation for the size
of the strips in this work is 256 × 256 pixels.

2.3. Data Augmentation

CNNs require a large amount of data for feature extraction, as well as for training
and testing, which are used for network architecture evaluation. In the medical area, it is
difficult to have many images. To solve this problem, data augmentation is used, which
consists of applying affine transformations (such as rotation, scaling, and/or translation)
to the images of the original database to generate additional images and increase the
diversity of the training set, since CNNs can classify objects in different orientations. It is
recommended that the applied transformations are carried out on small scales so as not to
alter the nature of the images.

For this study, 200 additional images have been generated for each of the classes, with
which a database containing 750 images has been obtained. The affine transformations that
were used randomly and with a range of degrees, movement or size, are: (a) Rotation, with
a degree range of 10 to 30; (b) Translation with a movement range of 0.1 to 0.3; (c) Scaling
with a size range of 0.5 to 1; (d) Gaussian blur, with a kernel size of 7.

2.4. CNN Neuroevolution

Neuroevolution is an approach that harnesses evolutionary algorithms to optimize
the artificial neural networks, inspired by the fact that natural brains are the products of an
evolutionary process [29].

To find a CNN architecture that achieves a balance between complexity and efficiency
for the classification of Western Blot strips, the DeepGA neuroevolution algorithm [25] has
been used. The first step was adjust the parameters of the algorithm, which are shown in
Table 1. DeepGA is formed by a neuroevolutionary framework based on genetic algorithms.
Their goal is to obtain competitive CNNs through flexible hybrid coding combined with
binary and blockchain coding. The parameters required by DeepGA are the population size
(N = 20), the number of generations (T = 50), the crossover rate (CXPB = 0.7), the mutation
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rate (CXPB = 0.3), and the size of the tournament (S = 5); these values were manually
adjusted experimentally. The adjustment of mutation rate (MUPB) and crossover rate
(CXPB) was performed until sufficient diversity was obtained throughout the scan. Both
the size of the population and the number of generations were established by virtue of time
and available computational resources, for which it was not necessary to use automatic
methods for parameter adjustment. The best architecture obtained by DeepGA is shown in
Figure 2.

Table 1. List of parameters used in DeepGA.

Parameters Values

Population Size 20
Number of Generation 50

Crossover Rate 0.7
Mutation Rate 0.5

Tournament Size 4

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 6 of 12 
 

 

population size (N = 20), the number of generations (T = 50), the crossover rate (CXPB = 
0.7), the mutation rate (CXPB = 0.3), and the size of the tournament (S = 5); these values 
were manually adjusted experimentally. The adjustment of mutation rate (MUPB) and 
crossover rate (CXPB) was performed until sufficient diversity was obtained throughout 
the scan. Both the size of the population and the number of generations were established 
by virtue of time and available computational resources, for which it was not necessary to 
use automatic methods for parameter adjustment. The best architecture obtained by 
DeepGA is shown in Figure 2. 

Table 1. List of parameters used in DeepGA. 

PARAMETERS VALUES 
Population Size 20 

Number of Generation 50 
Crossover Rate 0.7 
Mutation Rate 0.5 

Tournament Size 4 

 
Figure 2. Deep-CNN architecture. Figure 2. Deep-CNN architecture.



Math. Comput. Appl. 2023, 28, 72 7 of 11

2.5. Evaluation of the Convolutional Neural Network

From the best architecture obtained in DeepGA, we proceeded to evaluate the convo-
lutional neural network. For this, a set of 750 Western Blot strips was used, and through
the hold-out technique, 70% of the data were used to train the network and the remaining
30% to test it. From the results obtained, the accuracy, recall, specificity, and precision of
the network for the classification of the Western Blot strips were calculated.

The accuracy is calculated from the total number of predictions that the algorithm
classified correctly divided by the total number in the data set (Equation (1)).

Accuracy = (correctly classified images)/(total images) (1)

The recall is the number of elements correctly identified as positives out of the total
number of true positives (Equation (2)).

Recall = TP/(TP + FN) (2)

Specificity is the number of items correctly identified as negative out of the total
number of negatives (Equation (3)).

Specificity = TN/(TN + FP) (3)

Precision is the number of elements correctly identified as positive out of a total of
elements identified as positive (Equation (4)).

Precision = TP/(TP + FP) (4)

2.6. Comparison and Statistical Analysis

The result of Western Blot strip classification accuracy obtained in this work was
compared by statistical test with the classification accuracy obtained in [15,16], with the
aim of obtaining statistical significance between them.

The data were analyzed using one-way analysis of variance (ANOVA) for independent
groups, with treatment as the factor, followed by the Tukey post hoc test for multiple mean
comparisons. The results are expressed as mean + standard error of the mean, and the
significance level was set at p < 0.05. The assumptions of normality and homogeneity were
verified. The data were analyzed using the MINITAB17 software program.

3. Experimentation and Results

To obtain the classification accuracy of the Western Blot strips with the support of
neuroevolution and convolutional neural networks, the following process was carried out:

1. The CNN obtained through the DeepGA neuroevolution algorithm (CNN-DeepGA)
was trained, taking as input data the database of 750 Western blot strips; 250 belong
to the class of healthy patients, 250 to the class of patients with benign pathology, and
250 to the class of patients with cancer. The parameters with which CNN-DeepGA
was executed have been shown in Table 1;

2. Training CNN-DeepGA consisted of only 10 epochs (as suggested by [30]); Adam’s
optimizer was used with a learning rate of 1 × 10−4. For training, we used 70% of the
data set (525 images out of 750 total), while accuracy/error was calculated using 30%
(225 images out of 750 total) of the remaining set for testing;

3. To evaluate the performance of CNN-DeepGA, 10 executions were carried out, obtain-
ing the average and the standard deviation of the accuracy in each of the executions,
as shown in Table 2;

4. To handle biases, such as overfitting and underfitting, a data augmentation was
performed by increasing the original size of examples for each class five times, going
from 50 to 250 images in each class. On the other hand, the images were obtained
in a controlled environment and an editing software program was used to improve
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them [11]. The hold-out technique was used for the evaluation of the model; 70% of
the data were used for training the network and the remaining 30% for testing it;

5. The performance of the Alexnet pretrained CNN [20] was tested with 150 Westen Blot
strip images (50 healthy, 50 benign breast pathology, and 50 breast cancer). For the
training consisting of 100 epochs, Adam’s optimizer was used with a learning range of
1 × 10−4. For the training set, 70% of the data set was used, while the accuracy/errors
were calculated using 30% of the data set;

6. Regarding the ANOVA statistical test that was applied to establish if there was a
significant difference between the results obtained in this work and those achieved
in [15] and [16], the results are shown in Tables 3–5, respectively.

Table 2. Results of CNN-DeepGA performance evaluation.

Accuracy

1 95.83
2 94.82
3 94.76
4 83.33
5 87.77
6 87.50
7 83.48
8 87.50
9 91.67
10 100.00

Average 90.67
Standard deviation 5.60

Table 3. Accuracy results.

Executions
KNN Time

Series-Geometric
Scaling [15]

Handcrafted
CNN [16] Alexnet [20] CNN-DeepGA

1 71.11 68.89 50.00 95.83
2 66.66 66.67 45.95 94.82
3 62.22 64.44 54.05 94.76
4 64.44 68.89 39.19 83.33
5 64.44 62.22 45.95 87.77
6 60.50 64.44 48.65 87.50
7 71.11 71.11 55.41 83.48
8 60.50 66.67 54.05 87.50
9 68.88 66.67 55.41 91.67
10 64.44 64.44 45.95 100.00

Average 65.43 66.44 49.46 90.67
Stand. Dev. 3.94 2.66 5.34 5.60

Table 4. Analysis of the mean and standard deviation results.

Factor N Average Stand. Dev. 95% CI

KNN 10 65.43 3.94 (62.52, 68.35)
Handcrafted-CNN 10 66.44 2.662 (63.531, 69.357)

Alexnet pretrained CNN 10 49.46 5.34 (46.55, 52.37)
CNN-DeepGA 10 90.67 5.60 (87.75, 93.58)

Table 3 shows the results obtained from the accuracy averages of the time series classi-
fication with the KNN classification algorithm (65.43%), the handcrafted CNN (66.44%),
Alexnet pretrained CNN (49.46), and CNN-DeepGA (90.67%). The classification accuracy
with KNN and the handcrafted CNN are statistically equivalent, and the Alexnet pretrained
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CNN accuracy showed the lowest values. However, the accuracy of the CNN-DeepGA
classification is better and statistically significant considering the other three compared
approaches. It is important to remark that the same data set was used on the different runs
executed on all algorithms. Figure 3 shows the confusion matrix obtained. Table 5 shows
the different metrics used to evaluate the CNN architecture obtained through DeepGA.
As mentioned above, an accuracy of 90.67% was obtained; likewise, a recall of 90.71%, a
specificity of 95.34%, and a precision of 90.69% were also obtained.

Table 5. Metrics used to evaluate the CNN architecture obtained through DeepGA.

Metric %

Accuracy 90.67
Recall 90.71

Specificity 95.34
Precision 90.69
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4. Conclusions

Breast cancer is a pathology that has spread throughout the world; it is the leading
cause of death in adult women in our country. Commonly used diagnostic tests provide the
existence and stage of the disease. However, it is necessary to develop effective detection
techniques for this pathology. The response of the immune system to tumor antigens
could be the answer to this problem. As mentioned throughout this study, there have
been attempts to detect breast cancer early, using the immune response supported by
artificial intelligence techniques, such as computer vision and machine learning. Early
detection of breast cancer will improve the prognosis, provide adequate treatment, and
reduce patient mortality.

It have been reported in some studies that the architecture of the convolutional neural
network used has been obtained either manually through experimentation [17], by optimiz-
ing the CNN parameters using other algorithms, such as Bayes optimization [18], using a
previously trained CNN [19,31], or by taking advantage of the structure of a predefined net-
work [21]. In this work, it was proposed to use neuroevolution to generate a convolutional
network architecture that has competitive complexity and efficiency for the classification of
Western Blot strips. This was achieved by generating a CNN of four convolutional layers,
which allowed a satisfactory execution in terms of time and memory, and a classification
accuracy of 90.67%, a recall of 90.71%, a specificity of 95.34%, and precision of 90.69%.

Comparing our results with state-of-the-art research [15,16] and the Alexnet pretrained
CNN, which also uses images of the reaction of antibodies to tumor antigens (proteomic
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images), we observed that the classification percentage was exceeded. Through the ANOVA
statistical test, we observe that the best results are statistically significant, as we can see in
Table 4.

However, the literature also shows that the diagnosis of breast cancer is carried out
using images of breast tissue, coupled with machine learning. It has been mentioned in
various works that images of breast tissue are obtained by histopathology (Whole Slide
Image—WSI), thermography, ultrasound, and mammography. In [17,19], WSI images
were used, reaching an accuracy of 87% and 89.66%, respectively. In [18], thermographic
images were analyzed, achieving an accuracy of 98.95%. In [21], ultrasound images are
used, and they obtain an accuracy of 80.56%. In [22], the authors used two databases
of mammographic images (CBIS-DDSM, INbreast) and obtain an accuracy of 95.4% and
99.7%, respectively.

The architecture of the convolutional network obtained with the DeepGA algorithm
allowed us to reach an adequate performance for it and to minimize the time used to find the
best configuration of the CNN. On the other hand, the time and subjectivity in the analysis
of Western Blot strips continue to be reduced when compared to a proteomics specialist.

While a good rank percentage was achieved with CNN DeepGA, improvement is pos-
sible. To achieve this, as future work is proposed to change the DeepGA hyperparameters
to obtain a CNN that provides a better classification percentage than the one obtained in
addition to exploring the use of another classifier in the last layer of CNN DeeppGA, as
well as changing the percentage of data used in training and testing.

This work allowed us to obtain a fast and efficient automatic method for the discrimi-
nation of Western Blot images of healthy patients, benign breast pathology patients, and
breast cancer patients.
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