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Abstract: Robust and computationally efficient numeric algorithms are required to simulate the
sintering process of complex ceramic components by means of the finite element method. This work
focuses on a thermodynamically consistent sintering model capturing the effects of both, viscosity
and elasticity, within the standard dissipative framework. In particular, the temporal integration
of the model by means of several implicit first and second order accurate one step time integration
methods is discussed. It is shown in terms of numerical experiments on the material point level that
the first order schemes exhibit poor performance when compared to second order schemes. Further
numerical experiments indicate that the results translate directly to finite element simulations.
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1. Introduction

The sintering of ceramics is accompanied by substantial volume reductions and,
in some cases, large shape distortions. In order to predict such phenomena and optimize
the production process of ceramic components, finite element simulations are in use for
at least three decades, see, e.g., Zipse [1], Kraft and Riedel [2] and the references cited
therein. These simulation methods have been developed with the primary goal to predict
the shrinkage and warpage of ceramic components during sintering, and to adjust the
dimensions of the green body accordingly. Though still not widely used in an industrial
context, this approach has the potential to reduce the need for the usual time-consuming
and expensive iterative experimental trial and error approach in process optimization.

Recently, there is growing interest in the modeling of sintering processes due to the
rapid progress of additive as well as multi-material manufacturing methods. In this context,
undesired shape distortions as well as the generation of residual stresses (i) due to the
presence of inhomogeneous temperature fields at the viscous-elastic transition during
cooling and (ii) as a result of the mismatch between material properties in multi-material
situations become important. Given the complexity of these phenomena and the geometry
of the manufactured components, the computational performance of sintering models
becomes relevant; and it is therefore desirable to implement robust and computationally
efficient numerical schemes. In this context, it is remarked that the present work focuses
on the robustness and efficiency of individual steps of temporal integration schemes.
Substantial further reductions of computational cost are possible by additionally utilizing
classical adaptive schemes like adaptive time stepping and hp-adaptive finite element
methods or model order reduction approaches. An example for the use of the latter in the
context of sintering simulations can be found in Sarbandi et al. [3]. A discussion of such
adaptive schemes is, however, beyond the scope of this contribution.

A thermodynamically consistent large strain/large deformation sintering model cap-
turing both, the viscous effects near the sintering temperature and the elastic effects at
temperatures below has been proposed by Stark and Neumeister [4]. In view of the need
for numerically efficient schemes, this model has been formulated within the standard
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dissipative framework, which facilitates the numerical solution by utilizing the variational
structure of the problem [5]. Furthermore, the use of a Lagrangian approach allows to
circumvent some of the conceptual difficulties associated with the usual rate-type formula-
tions of sintering models and their implementation into finite element codes. This concerns
in particular the consistent incorporation of elasticity into the model, which is non-trivial
if rate-type constitutive equations are used as a starting point [6] as well as the difficulty
involved in choosing appropriate work-conjugate strain measures and objective stress
rates [7]. A drawback of the Lagrangian approach is that the constitutive equations are in a
form, which is somewhat less intuitive to interpret than rate-type equations.

The focus of this work is to address some numerical aspects of the model of Stark
and Neumeister [4]. In particular, after a brief description of the model and the space-time
continuous equations, methods for spatial and temporal discretization are discussed, with a
focus on several generic first and second order accurate one step time integration schemes
for standard dissipative continua proposed in [5]. It is shown by means of a first set of
numerical experiments at the material point level that the theoretical rates of convergence
of the temporal discretization are indeed achieved in practice. Furthermore it is found
that the second order accurate schemes perform substantially better than the first order
schemes at about the same numerical cost. A second set of numerical experiments involving
the co-sintering of two different materials indicates that these results translate to finite
element simulations.

2. Sintering Model

Let Ω ⊂ R3 be the reference configuration of a three-dimensional material body,
with X ∈ Ω denoting a material point. Furthermore, let T ⊂ R be the time interval under
consideration, with t ∈ T denoting an instant of time. In particular, T = [t0, te) is assumed,
with t0 and te being the initial and the final time, respectively.

Based on the above definitions, the thermodynamic state variables

u :

{
Ω× T → R3

(X, t) 7→ u(X, t)

Ui :

{
Ω× T → R6

(X, t) 7→ Ui(X, t)

G :

{
Ω× T → R
(X, t) 7→ G(X, t)

are introduced. Here, u is the mechanical displacement field, which describes how the
placements of material points in the reference configuration are mapped onto their place-
ments in the current configuration. In particular, x(X, t) = X + u(X, t), with x(X, t) being
the placement of the material point X at time t. Ui is the (symmetric) inelastic stretch tensor,
which describes the viscous deformation of the body during sintering, and G represents
the average grain size of the ceramic material. These quantities are supplemented by the
initial conditions

u(X, t0) = 0

Ui(t0) = I

G(t0) = Gref,

with the constant Gref being the initial grain size. Furthermore, u may be subject to
Dirichlet type conditions depending on the problem studied, while it is assumed that no
such conditions are imposed on Ui and G.

In addition to the variables introduced above, the temperature history in the body
needs to be taken into account for the description of sintering processes. In this regard, it is
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for simplicity assumed that the temperature field is homogeneous in the body and known
a priori. As a consequence, the temperature field T = T(X, t) enters the below equations as
a parameter.

The sintering model is formulated in the standard dissipative framework [8–11] and
thus based on a Helmholtz free energy function(al), a dissipation function(al) and a power
function(al). The Helmholtz free energy is assumed to be of the form

Ψ
[
u, Ui, G; t

]
=
∫
Ω

ψ
[
F, Ui, G; T(X, t)

]
dV,

where dV denotes the volume element and F = ∇x the deformation gradient (Due to the
principle of material frame-indifference, ψ is required to depend on F only through the
right Cauchy–Green deformation tensor C = F> · F. However, as this work focuses on
numerics rather than physics, this aspect is not made explicit in the equations. For a detailed
discussion of physical aspects including material frame-indifference and material symmetry,
the reader is referred to [4]). The particular form for the Helmholtz free energy density ψ
used in this work is described in detail in [4] and briefly summarized in Appendix A.

For the dissipation functional, the generic relation

∆̊
[
U̇i, Ġ; Ui, G, t

]
=
∫
Ω

δ̊
[
U̇i, Ġ; Ui, G, T(X, t)

]
dV

is assumed, where ˙( ) denotes the time derivative. For the local dissipation function δ̊,
the form proposed in [4] is used, see also Appendix A for a brief summary.

The power functional P[u̇, U̇i, Ġ; t] accounts for external loads. It is assumed to be
linear in the rates u̇, U̇i, Ġ and is not further specified at this point. It is noted that it is
possible to additionally include a parametric dependency of P on the thermodynamic state
variables if needed.

Using the Helmholtz free energy functional, the dissipation functional and the power
functional, the space time continuous problem is

Find the unknowns (u, H) such that u(X, t0) = 0, and H(X, t0) = H0(X), and

0 = δΨ[u, H, δu̇, δḢ; t] + δ∆̊[Ḣ, δḢ; H, t]− δP[δu̇, δḢ; t] (1)

for all (δu̇, δḢ) and all t ∈ (T \ t0).

In these equations and in the following, Ui and G are jointly denoted by H in order
to shorten the equations. Furthermore, the notation is used here and henceforth that the
first variation of a functional I[x1, . . . , xn; y1, . . . , yn] is δI[x1, . . . , xn, δx1, . . . , δxn; y1, . . . , yn].
It is remarked in this context that δP does not depend on u̇ and Ḣ since P is linear in the
rates of the thermodynamic state variables.

The incremental variational principle (1) implies the mechanical equilibrium equations
and a set of local constitutive relations, which are discussed in detail in [4] and summarized
in Appendix A. The latter discussion does, however, not involve direct contributions of
the power functional to the evolution equations for H as such contributions are deemed
unphysical. The only reason for including a dependency of P on Ḣ into the power functional
is to enable for later application of the manufactured solution approach, which is used
to test the convergence behavior of the time integration methods by comparison with an
analytical solution.

3. Spatial and Temporal Discretization

The finite element method is used for the spatial discretization of the fields u and H.
In particular, u is discretized with standard Lagrange elements of degree k, while discontin-
uous Lagrange elements of degree k + 1 are used for all components of H. By choosing the
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support points of the latter elements to coincide with the quadrature points, the degrees
of freedom associated with H become local to the quadrature points. Firstly, this leads
to a substantial reduction of entries in the sparsity pattern of the finite element matrix
and, secondly, it allows for eliminating H at the quadrature point level just as in common
plasticity formulations as will be discussed below.

With regard to temporal discretization, the schemes described in [5] are slightly
adapted to the current situation. For self-containedness of the present work, these will be
briefly described in the following, although the reader is referred to [5] for details.

It is assumed throughout that the time interval [t0, te] is divided by the discrete
time points tn = t0 + n∆t, where n = 0, 1, . . . N and ∆t = (te − t0)/N. The numerically
approximated values of u and H at time tn are denoted by un and Hn, respectively; and
the initial values at time t0 of these quantities are given by u(X, t0) = u0(X) = 0 and
H(X, t0) = H0(X).

3.1. Variationally Consistent Method

The “variationally consistent” discrete counterpart of (1) reads

Find the unknowns (un+1, Hn+1) such that

0 = δΨ[un+1, Hn+1, δun+1, δHn+1; tn+1]

+δ∆̊
[

Hn+1 −Hn

∆t
, δHn+1; Hn, tn+1

]
−δP[δun+1, δHn+1; tn+1]

(2)

for all (δun+1, δHn+1) and all n ∈ {0, 1, . . . N − 1}.

The method represents a first order accurate time integrator provided sufficient reg-
ularity of the problem. An advantage of this formulation is that the variational structure
of the space-time continuous problem is preserved, which makes the method particularly
attractive from the mathematical point of view. This concerns, e.g., the fact that the resulting
finite element systems are symmetric.

3.2. α-Family

The “α-family” introduces a real parameter α ∈ (0, 1], where α→ 0 corresponds to a
Forward Euler type scheme, α = 1/2 to a Crank–Nicolson-type scheme, and α = 1 to a
Backward Euler-type scheme (The α-family closely resembles the well-known θ-family for
the solution of ordinary differential equations; and in certain special cases the methods of
the α-family are equivalent to those of the θ-family. However, this is not the case in general.
Therefore, the term α-family is preferred to distinguish it from the standard θ-family.).
Moreover, the following quantities are defined:

uα
n = (1− α)un + αun+1

Hα
n = (1− α)Hn + αHn+1

tα
n = (1− α)tn + αtn+1.

Then, the time-discrete version of (1) reads
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Find the unknowns (un+1, Hn+1) such that

0 = (1− α)δΨ[un, Hn, δun+1, δHn+1; tn]

+αδΨ[un+1, Hn+1, δun+1, δHn+1; tn+1]

+δ∆̊
[

Hn+1 −Hn

∆t
, δHn+1; Hα

n, tα
n

]
−δP[δun+1, δHn+1; tα

n]

(3)

for all (δun+1, δHn+1) and all n ∈ {0, 1, . . . N − 1}.

For a sufficiently regular problem, the method is second order accurate for α = 1/2
and first order accurate else. However, the method is non-convergent for α < 1/2 for the
problem considered here. Furthermore, the finite element systems are unsymmetrical due
to the dependency of ∆̊ on Hα

n.

3.3. Modified α-Family

The “modified α-family” is a “predictor-corrector” method. In particular, the quantities
ûn+1, Ĥn+1 are introduced, which are “predictions” of un+1, Hn+1. During the predictor
step, the problem

Find the unknowns (ûn+1, Ĥn+1) such that

0 = (1− α)δΨ[un, Hn, δûn+1, δĤn+1; tn]

+αδΨ[ûn+1, Ĥn+1, δûn+1, δĤn+1; tn+1]

+δ∆̊
[

Ĥn+1 −Hn

∆t
, δĤn+1; Hn, tα

n

]
−δP[δûn+1, δĤn+1; tα

n]

(4)

for all (δûn+1, δĤn+1).

is solved. Based on the resulting predicted values, the corrector problem is

Find the unknowns (un+1, Hn+1) such that

0 = (1− α)δΨ[un, Hn, δun+1, δHn+1; tn]

+αδΨ[un+1, Hn+1, δun+1, δHn+1; tn+1]

+δ∆̊
[

Hn+1 −Hn

∆t
, δHn+1; Ĥα

n, tα
n

]
−δP[δun+1, δHn+1; tα

n]

(5)

for all (δun+1, δHn+1) and all n ∈ {0, 1, . . . , N − 1}, where Ĥα
n = (1 − α)Hn +

αĤn+1.

For the problem considered here, the method provides with the same theoretical rate
of convergence in time as the α-family, while retaining the symmetric, variational structure,
so that the finite element systems are symmetric.

3.4. Numerical Solution Algorithm and Implementation

In principle, a standard Newton–Raphson method can be used to solve (2)–(5). How-
ever, without modifications, this method exhibits poor convergence in some situations for
the problem studied here. The reason is that ψ contains a penalty type contribution of the
form −µρrel

0 Gref/G ln(1− ρrel
0 /Ji), with Ji = det (Ui), 0 < ρrel

0 < 1 and µ a “small” penalty
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parameter, see also Appendix A. Physically, this term ensures that no further densification
is possible as soon as all pores of the material all closed. Numerically, the term has the
effect that the step, which can be taken during a Newton–Raphson iteration, is often limited
by a few quadrature points for which the relative density ρrel = ρrel

0 /Ji approaches 1; and,
hence, a large number of iterations is necessary until the termination criterion is met or
the algorithm does not converge at all. There are several remedies to this situation. One
possibility is to adapt classical interior point algorithms with a logarithmic barrier function
and drive µ globally to the desired small value in several steps. However, this substan-
tially increases the number of assemblies and solutions of the global finite element system.
Therefore, the approach used in this work utilizes the fact that the degrees of freedom
related to H are local to each quadrature point as indicated above and can, therefore, be
eliminated at the quadrature point level by using a second local Newton–Raphson cycle.
This approach is essentially the same as in classical plasticity and involves the local compu-
tation of consistent tangents. This procedure does of course exhibit the same problem type
at the quadrature point level. However, due to the small number of unknowns, the local
Newton–Raphson cycle is still well-behaved for reasonably small values of µ.

The actual implementation is based on the libraries GalerkinTools and IncrementalFE,
which leverage the capabilities of the open source finite element code deal.II [12,13] for
the case of standard dissipative formulations, see also [14]. In particular, the library
GalerkinTools provides with a “high-level” algorithm, which implements the local elim-
ination procedure just described in a generic way without reference to the actual rela-
tions used for the functionals. With these libraries, the only problem-specific part of
the implementation are the functions ψ(F, H; T) and δ̊(Ḣ; H, T) together with their gra-
dients and Hessians; and the implementation of the gradients and Hessians has been
carefully checked by comparison with results obtained from numerical differentiation.
For further details, the reader is referred to the documentation of GalerkinTools and In-
crementalFE and, in particular, to the documentation of the C++ class ScalarFunctionalLo-
calElimination of GalerkinTools (The source codes for the libraries GalerkinTools and Incre-
mentalFE are available together with corresponding documentations from the reposito-
ries https://github.com/sebastian-stark/GalerkinTools, accessed on 16 May 2023, and
https://github.com/sebastian-stark/IncrementalFE, accessed on 16 May 2023, respec-
tively).

3.5. Normalization and Initial Conditions

For the numerical experiments discussed below, the reference values T∗ = 1500 K,
G∗ = 0.1µm, t∗ = 1 h, σ∗ = 10 MPa and L∗ = 1 mm are used for normalization of the
equations. With this choice, the normalized quantities are

X̃ =
X
L∗

, t̃ =
t
t∗

, ∇̃( ) = ∇( )L∗, ˜̇( ) = ˙( )t∗, T̃ =
T
T∗

,

ũ =
u
L∗

, Ũi = Ui, G̃ =
G
G∗

, F̃ = F,

t̃0 =
t0

t∗
, t̃e =

t
t∗

, G̃ref =
Gref

G∗
,

ψ̃ =
ψ

σ∗
, ˜̊δ =

δ̊t∗

σ∗
.

Concerning the required initial condition for the grain size, Gref = 0.17µm is chosen.

4. Numerical Experiments

In this section, two examples are considered, which demonstrate the performance of
the time integration schemes. While the first example corresponds to free sintering of a
homogeneous block of material, the second example addresses the more complex situation
of co-sintering of a disc consisting of two different materials.

https://github.com/sebastian-stark/GalerkinTools
https://github.com/sebastian-stark/IncrementalFE
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4.1. General Approach

The same general approach is used to discuss both examples. In particular, the tem-
perature history is homogeneously prescribed according to

T(X, t) =


Tmin + 2

Tmax − Tmin

te
t if 0 ≤ t ≤ te

2

Tmax − 2
Tmax − Tmin

te

(
t− te

2

)
if

te

2
< t ≤ te,

which represents a linear ramp up between the temperatures Tmin and Tmax for a duration
of te/2 followed by a linear ramp down between Tmax and Tmin for the same duration.
In particular, Tmin = 293.15 K, Tmax = 1623.15 K, and te = 5 h are chosen.

As a starting point, numerical experiments with the choice P = 0 for the power
functional have been conducted for both examples in order to determine a well-converged
“reference solution”. For the first example, this concerns only the temporal discretization.
In contrast, for the second example, both the temporal as well as the spatial consideration
need to be considered. With regard to the temporal discretization, it has empirically been
found that the α-family with α = 1/2 and 1536 equally spaced time increments for the
entire time interval between t = 0 and t = te results in highly accurate numerical solutions
for both examples. The spatial discretization used to obtain a reference solution for the
second example will be discussed later.

Based on the reference solutions, manufactured analytical solutions to a time-continuous
(but, in the case of the second example, spatially discrete) problem have been obtained
for both examples by the procedure described in the following. For this purpose, let qn,i
denote the finite element solution for the i-th finite element degree of freedom of the
reference calculation at time instant tn. Then, the data points (tn, qn,i) have been used to
obtain a time-continuous function qa

i (t) for each finite element degree of freedom by cubic
spline interpolation (for the actual implementation of the spline interpolation, the cubic
spline interpolation library of Kluge [15] has been used). By combining the resulting time-
continuous functions with the finite element interpolation, the analytical solution ua(X, t),
Ha(X, t) is obtained. The corresponding power functional consistent with this analytical
solution follows from (1) and reads

P[u̇, Ḣ; t] = δΨ[ua(X, t), Ha(X, t), u̇, Ḣ; t] + δ∆̊[Ḣa(X, t), Ḣ; Ha(X, t), t]. (6)

This power functional has then been used for all subsequent calculations. It is remarked that
this manufactured solution approach has the advantage to allow for a comparison of the
numerical results with an analytical solution while ensuring that an example is considered,
which is representative of a realistic physical situation. In particular, the power P associated
with the analytical solution remains very close to zero throughout the entire time interval
under consideration since the reference solution is well converged for the choice P = 0,
provided that there are no errors in the implementation. Such errors would, however, most
likely become evident in subsequent convergence studies using the manufactured solution.

Based on the manufactured solutions, convergence studies have been performed for
both examples using the power functional according to Equation (6). The starting point for
these calculations is to take a single time increment for the time range 0 ≤ t < 1/3te. Subse-
quently, the time range 1/3te < t ≤ 2/3te is split into 128 time increments, followed by a sin-
gle time increment again between 2/3te < t ≤ te. This approach is suitable because the elas-
tic behavior is dominant below temperatures of approximately Tmin + 2/3(Tmax − Tmin),
such that long time steps are permissible. In contrast, smaller time steps are needed in the
viscous range at higher temperatures due to rapid sintering. It is remarked in this context
that the number of time increments required to obtain reasonable results in the latter range
could be substantially reduced by adaptive time stepping. This would, however, compli-
cate the discussion and has, therefore, not been implemented. Based on the computation
with 130 time increments in total, the number of time increments has been increased to
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Nt = 130 · 2mt
by uniform refinement, where mt is the refinement cycle. In particular,

calculations with mt = 0, 1, . . . , mt,max have been performed, with mt,max = 10 for the
variationally consistent method as well as the α-family and the modified α-family with
α = 1; and with mt,max = 8 for the α-family and the modified α-family with α = 1/2.
With further temporal refinement, no further increase of the accuracy of the solution has
been observed with the methods with α = 1/2, which is most likely caused by the limited
numerical accuracy related to the use of double precision numbers. In order to actually
assess the convergence behavior in time by comparison with the manufactured analytical
solution, the error e(m

t) is, for each mt = 0, 1, . . . , mt,max, evaluated according to

e(m
t) =

√√√√√∥∥∥F̃(mt)
N − F̃a

N

∥∥∥
L2

+
∥∥∥Ũi(mt)

N − Ũi,a
N

∥∥∥
L2

+

∥∥∥∥∥∥ G̃(mt)
N − G̃a

N
G̃ref

∥∥∥∥∥∥
L2

,

with F̃a being the deformation gradient corresponding to ũa, the subscript N referring to
the solution after the last time increment (i.e., at t = tN = te), and the bracketed superscript
referring to the number of refinements in time.

4.2. Numerical Experiment 1

In the first numerical experiment, the free sintering behavior (i.e., without applied
tractions and displacement constraints other than those minimally needed to remove rigid
body motions) of a homogeneous body is considered. For this situation, the shape of the
body is not of interest and, therefore, the situation can be reduced to a single material point.
In practice, this has been implemented using a single finite element having unit volume.

Results

Figure 1 shows the solution obtained with the α-family and α = 1/2 with mt = 3
refinements in time. It is clearly visible, that the sintering happens rapidly in the time range
2 < t̃ < 2.5, and this sintering is accompanied by rapid grain growth. Furthermore, it is
remarked that the differences in the total volume change as described by J̃ = det(F̃) and the
inelastic volume change as described by J̃i = det(Ũi) are attributable to thermal expansion.

The temporal convergence behavior is discussed in terms of the results shown in
Figure 2. In particular, Figure 2a shows the errors e(m

t) for the different cases consid-
ered. It can be seen that all results are consistent with the expected rates of convergence,
i.e., the variationally consistent method and the other methods with α = 1 exhibit a rate
of convergence of kt = 1, while the methods with α = 1/2 are associated with a rate of
convergence of kt = 2. While the variationally consistent method is associated with the
highest accuracy at a given time step size among the first order methods, the α-family
produces slightly more accurate results than the modified α-family for the second order
methods with α = 1/2. Figure 2b is used to further discuss the absolute error levels. For this
purpose, the transient grain size solution is compared for the time interval 2.5 ≤ t̃ ≤ 3
for selected cases. In particular, the α-family is considered for α = 1 and α = 1/2; and
for both cases the solutions obtained for mt = 0 and mt = 3 are compared. Hardly a
difference can be noticed between the solutions for mt = 0 and mt = 3 for α = 1/2. I.e.,
for α = 1/2, the solution can be considered converged for mt = 0 already. This contrasts
with the results obtained for α = 1. In this case, substantial error is involved for mt = 0,
and even for mt = 3 there is still a slight difference to the corresponding solution obtained
with α = 1/2, which may be taken as the converged reference solution. Taking into account
that the computation time needed for a single time increment is virtually the same for all
values of α, it becomes clear that the α-family performs substantially better with α = 1/2
than with α = 1. In practice, this translates to savings of computational time of more than
one order of magnitude for a pre-defined error level if α = 1/2 is used. For the case of
the modified α-family with α = 1/2, the advantage is nominally slightly less because the
corrector step requires additional Newton–Raphson iterations. However, depending on the
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linear solver, this disadvantage can be compensated for by utilizing the fact that the linear
systems associated with the modified α-family are, in contrast to the α-family, symmetric.
In addition, positive-definiteness of the system can usually be expected, although this
property cannot be guaranteed in the large deformation context. Concerning the first order
methods, the variationally consistent method and the modified α-family with α = 1 have
similar advantages over the α-family with α = 1 in that the linear systems are symmetric
and usually positive definite.
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Figure 1. Transient solution obtained with mt = 3 and α = 1/2 with the α-family.

10−3 10−2 10−1 100
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

2−mt

e(
m

t
)

kt = 2

kt = 1

Variationally consistent
α-family, α = 1
modified α-family, α = 1
α-family, α = 1/2
modified α-family, α = 1/2

2.5 2.6 2.7 2.8 2.9 3
2.8

3

3.2

3.4

3.6

3.8

4

t̃

G̃

α-family, α = 1, mt = 0
α-family, α = 1, mt = 3
α-family, α = 1/2, mt = 0
α-family, α = 1/2, mt = 3

(a) (b)

Figure 2. Results for temporal convergence behavior: (a) Errors e(m
t) for different methods; (b) Tran-

sient solution for grain size G for selected cases.

4.3. Numerical Experiment 2

In the second numerical experiment, the co-sintering of two layers with different
material properties is considered. To simplify matters, an axisymmetric situation is assumed
as illustrated in Figure 3. The geometry is a circular cylinder with radius Ra = 20 mm
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and total thickness d = 1 mm. The spatial region occupied by the cylinder is described by
0 < R ≤ Ra and −d/2 ≤ Z ≤ d/2 with regard to the radial coordinate R and the axial
coordinate Z. The computational domain Ω is split into the two subdomains Ω1 and Ω2,
with Ω1 being associated with Z ≤ 0 and Ω2 with Z > 0. In Ω2, the same constitutive
relations are used as in the first numerical experiment, while the viscosity tensor η is scaled
by a factor of 2 in Ω1 compared to the values given in Appendix A (i.e., the quantity η0
introduced in Appendix A is multiplied by 2). This causes substantially slower sintering in
Ω1, thus leading to bending of the cylinder towards the positive Z-direction. In order to
eliminate the axial rigid body translation, which is still possible in the axisymmetric setting,
the point R = 0, Z = 0 is fixed in the axial direction. Furthermore, the problem described in
Sections 2 and 3 for the fully three-dimensional case is appropriately modified to account
for the axisymmetric situation. As a consequence, two-dimensional finite elements can
be used for spatial discretization, which facilitates the convergence studies by reducing
computational times and, therefore, allows for a higher number of refinements of the
discretization. For the calculations shown below, k = 2 is generally chosen. I.e., quadratic
Lagrange finite elements are used to discretize u. These perform much better than their
linear counterparts for the bending situation considered here.

Figure 3. Computational domain for numerical experiment 2.

4.3.1. Finite Element Grid

In order to obtain a high quality finite element grid, several grid sizes have been
attempted for the reference calculation. Based on a comparison of the solutions, the grid
shown in Figure 4 has finally been used to determine the manufactured solution and for all
subsequent calculations. The figure also includes the outlines of the deformed shape of the
disc at the end of the simulation for this grid as well as a grid obtained after three uniform
global grid refinement steps. It can be seen that the deformed shapes are indistinguishable
and, therefore, the unrefined grid is considered sufficiently accurate.

0 5 10 15 20
−1

0

1

2

3

4

R̃

Z̃

undeformed grid
deformed outline, no mesh refinement
deformed outline, 3 times globally refined

Figure 4. Undeformed finite element grid used for calculations, together with deformed geometry
corresponding to the reference solution at the end of the computation (R̃ = R/L∗, Z̃ = Z/L∗).

4.3.2. Results

In the same way as for the numerical experiment 1, the errors e(m
t) are shown in

Figure 5. A comparison of the latter figure with Figure 2a shows that the results are very
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similar apart from the absolute error level and the fact that now all first order methods
exhibit virtually the same convergence behavior. Consequently, the same conclusions can
be drawn for the component level as for the material point level.
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Figure 5. Errors e(m
t) for different methods for numerical experiment 2.

5. Concluding Remarks

In this work, a previously published model for the sintering of ceramic materials has
been investigated with regard to temporal discretization. Several first and second order
accurate one-step schemes have been considered at the material point level and at the com-
ponent level. It has been shown by numerical experiments that the theoretically expected
rates of convergence are achieved in practice as well. The most important conclusion from
this work is that the second order accurate methods discussed in this work are superior to
the first order accurate methods. As a consequence, substantial savings of computational
time are possible with these schemes; and their use is recommended whenever possible.
Aspects not discussed in this work are the application of the methods to situations with
thermomechanical coupling, spatial discretization, and adaptive time stepping. All of these
are of substantial practical importance and need to be addressed in the future.
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Appendix A. Constitutive Equations of the Sintering Model

In the following, the particular forms for the Helmholtz free energy density ψ and
the local dissipation function δ̊ as well as the resulting local constitutive equations are
briefly summarized. It is remarked that the equations stated below are representative of a
particular alumina ceramic material; and details of the constitutive equations are discussed
in [4].

Appendix A.1. Helmholtz Free Energy Density ψ

The Helmholtz free energy density is assumed to be split according to

ψ
(

F, Ui, G; T
)
= ψel

(
C, Ui; T

)
+ ψif

(
Ji, G; T

)
,

where C = F> · F is the right Cauchy–Green deformation tensor, Ji = det(Ui), ψel rep-
resents an elastic contribution, and ψif represents a microstructural contribution, which
constitutes the main driving force for sintering.

The form of the elastic contribution is motivated by an assumed multiplicative split of
the deformation gradient F into a thermoelastic part Fte and a rotation-free inelastic part Ui

according to F = Fte ·Ui. Fte may be further split into a rotation Rte and a thermoelastic
stretch Ute according to Fte = Rte ·Ute, where Rte may represent large rotations. In contrast,
the thermal expansion strains and the elastic strains are, in the context of sintering, usually
“small”, such that Ute ≈ I, with I being the unit tensor. Hence, the elastic contribution
to the Helmholtz free energy density can be based on the usual small strain expression.
In particular,

ψel
(

C, Ui; T
)
=

Ji

2

[
Ete − εt(Ji; T)

]
: Cel(Ji; T) :

[
Ete − εt(Ji; T)

]
,

where Cel(Ji; T) is the elasticity tensor, εt(Ji; T) the thermal expansion tensor, and

Ete =
1
2

(
Fte> · Fte − I

)
=

1
2

(
Ui−1 · C ·Ui−1 − I

)
is the thermoelastic Lagrange–Green strain tensor (which is small compared to unity).
The elasticity tensor and the thermal expansion tensor are assumed to be isotropic. I.e.,

Cel =
Y

1 + ν
I

sym
� I +

Yν

(1− 2ν)(1 + ν)
I⊗ I,

and
εt = εtI,

where Y = Y(Ji; T) is Young’s modulus, ν = ν(Ji; T) is Poisson’s ratio, εt = εt(Ji; T)

describes the isotropic thermal expansion, and the tensor product A = a
sym
� b corresponds

to the coordinate form Aklmn = (akmbln + almbkn)/2.
With regard to the microstructural contribution, the relation

ψif
(

Ji, G; T
)
= Ji Gref

G
ψif,0

(
Ji; T

)
is assumed.
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The particular functional forms chosen for Y, ν, εt and ψif,0 read

Y = Y0

[
1 +

YT
Y0

(
T − TY

)]
e−CY(1−ρrel),

ν = ν0,

εt = Cte
1

[
2
(

eTte
1 /T − 1

)−1
+
(

eTte
1 /(2T) − 1

)−1

−2
(

eTte
1 /Tte

2 − 1
)−1
−
(

eTte
1 /(2Tte

2 ) − 1
)−1

]
,

ψif,0 = ρrel
[
Cif + f if(ρrel)− µ ln

(
1− ρrel

)]
.

In these equations,

Y0

MPa
= 416000,

YT
MPa/K

= −52.5,
TY
K

= 293.15, CY = 3.95,

ν0 = 0.24,

Cte
1 = 0.0025068,

Tte
1

K
= 1065,

Tte
2

K
= 293.15,

Cif

MPa
= 17.6,

µ

MPa
= 0.0034,

Gref

µm
= 0.17,

f if

MPa
= −32.6

(
ρrel − 1

)
+ 4.9

[
1

1 + e−19(ρrel−0.757)
− 1

1 + e−4.617

]
,

and

ρrel = ρrel(Ji) =
ρrel,0

Ji

is the relative density, with ρrel,0 = 0.584 being the initial relative density. It is noted that
the logarithmic penalty term −µ ln

(
1− ρrel

)
in ψif,0 ensures that ρrel < 1. The penalty

parameter µ > 0 must be chosen as small as possible in order to ensure that the term affects
the constitutive behavior only for values of ρrel very close to 1, and as large as necessary in
order to avoid pathological numerical behavior. For the value of µ chosen here, the impact
of the penalty term on the sintering stress remains below 1% for ρrel / 0.99 [4].

Appendix A.2. Local Dissipation Function δ̊

The local dissipation function is split according to

δ̊
(

U̇i, Ġ; Ui, G, T
)
= δ̊η

(
U̇i; Ui, G, T

)
+ δ̊G

(
Ġ; Ui, G, T

)
,

where δ̊η is related to viscous dissipation, while δ̊G describes the dissipative grain growth
process. For the latter quantities, the relations

δ̊η
(

U̇i; Ui, G, T
)
=

Ji

2
di : η

(
Ji, G; T

)
: di

δ̊G
(

Ġ; Ui, G, T
)
=

Ji

2
ξ
(

Ji, G; T
)

Ġ2

are assumed, with

di =
1
2

(
U̇i ·Ui−1

+ Ui−1 · U̇i
)
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being the inelastic stretching tensor, η the viscosity tensor, and ξ a “micro dissipation
coefficient”. The viscosity tensor is assumed to be isotropic. In particular,

η = 2η I
sym
� I +

2ηνv

1− 2νv I⊗ I,

where η = η(Ji, G; T) is the shear viscosity and νv = νv(Ji, G; T) is the viscous Poisson ratio.
The particular functional forms chosen for η, νv and ξ read

η = η0(ρ
rel)

(
G

Gref

)3
eTη

1 /T−Tη
1 /Tη

2 ,

νv = νv
0 (ρ

rel),

ξ = ξ0(ρ
rel)eTξ

1 /T−Tξ
1 /Tξ

2 .

In these equations,

Tη
1

K
= 57731,

Tη
2

K
= 1523.15,

Gref

µm
= 0.17,

η0

MPa h
= 0.689 + 2.43ρrel +

228

1 + e−200(ρrel−0.752)

[
0.0148−

(
ρrel − 0.865

)2
]

,

+ 13.7
(

ρrel
)130

,

νv
0 = −0.58 + 1.24ρrel − 0.23

(
ρrel
)4.1

,

Tξ
1

K
= 47000,

Tξ
2

K
= 1523.15,

ξ0

MPa h/µm2 = ρrel
{

249 + 2.64 · 104
(

1− ρrel
)2.46

+ 102
[

1− 2

1 + e−126(ρrel−0.819)

]}
.

Appendix A.3. Local Form of the Constitutive Equations

Using that Ute ≈ I and Jte = det(Ute) ≈ 1, it can be shown [4] that

σco =
1
Jte Ute · [Cel : (Ete − εt)] ·Ute ≈ Cel : (Ete − εt). (A1)

Here,
σco = Rte> · σ · Rte

is obtained by rotating the Cauchy stress σ by Rte. Since ‖Ete‖ and ‖εt‖ are both small
compared to unity, the relation (A1) closely resembles the usual thermoelastic relation valid
for infinitesimal strains.

The evolution equations for the inelastic (sintering) stretch Ui and the grain size G
may be written as

σco − σsI =
1
Jte η : di ≈ η : di (A2)

Gref

G2 ψif,0 = ξĠ, (A3)

where

σs =
1
Jte

∂ψ̂

∂Ji ≈
∂ψ̂

∂Ji

is the sintering stress. In the definition of the latter, it has been exploited that the particular
form used for the Helmholtz free energy density permits to introduce a function ψ̂ such
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that ψ̂(Ete, Ji, G; T) = ψ(F, Ui, G; T). It is pointed out that the sintering stress also involves
contributions related to the change of the elastic material behavior as the relative density of
the material evolves, which naturally result from the inherent thermodynamic consistency
of the approach. However, these are typically insignificant compared to the contributions
related to the changes of interfacial energy density. It is evident that (A2) has the form of
the usual relation between stress and strain rate applicable for purely viscous materials.
Furthermore, the evolution Equation (A3) for the grain size suggests a cubic grain growth
behavior at fixed temperature and relative density, i.e., G3 − G∗3 = K(t− t∗), where G and
G∗ denote the grain size at time t and t∗, respectively, and K is a constant depending on
temperature and relative density.
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