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Abstract: This is a brief survey of selected results obtained using the “transversality method” de-
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early development of the theory, restricting ourselves to self-similar and self-conformal iterated
function systems.
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1. Introduction

“Transversality” is a geometric and analytic property which comes up in many areas
of mathematics. Here we are concerned with transversality in a narrow sense: a technique
to obtain “almost sure” results for parametrized families of fractals. Although there were
parallel developments in the theory of random fractals, here we focus on deterministic
families. We start with a “historical” exposition, reflecting the author’s subjective viewpoint,
and, with a few exceptions, focus on relatively “old” results. We do not attempt to give
a comprehensive account of the literature on transversality techniques, which is vast.
Moreover, we mostly focus on self-similar and conformal systems, only mentioning self-
affine ones in passing. In the last section we present a “generalized projection scheme for
convolutions”, which may be new. Some parts of this article will be incorporated (in a
modified form) into the upcoming book [1].

2. Origins of the Method I: Projection Theorems

Here we recall the classical results on the Hausdorff dimension of orthogonal projec-
tions by Marstrand [2] and Kaufman [3], and their extensions by Mattila [4].

For θ ∈ [0, π) let Pθ be the orthogonal projection from the plane R2 to the line `θ

making the angle θ with the positive x-axis. We write Lm for the m-dimensional Lebesgue
measure and dimH for the Hausdorff dimension.

Theorem 1 (Marstrand). Let A ⊂ R2 be a Borel set. Then the following holds:

(i) dimH(Pθ(A)) = min{1, dimH(A)} for L1-a.e. θ ∈ [0, π);
(ii) If dimH(A) > 1, then L1(Pθ(A)) > 0 for L1-a.e. θ ∈ [0, π).

Proof sketch. Although the proofs appear in many books, we sketch them here, since they
provide a kind of a “template” for the transversality method. Rather than the original,
geometric method of Marstrand, we use the method of Kaufman [3] for part (i). The upper
bound for the dimension of the projection trivially holds for all θ, so we only need to verify
the lower bound. Fix an arbitrary 0 < α < min{dimH(A), 1}. By the potential-theoretic
characterization of the Hausdorff dimension, which goes back to Frostman [5], see [6]
(Corollary 6.6), there exists a probability measure µ supported on A such that

Eα(µ) =
∫ ∫
|x− y|−α dµ(x) dµ(y) < ∞. (1)
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Denote by µθ the push-forward measure onto the line `θ : µθ = Pθµ = µ ◦ P−1
θ . The idea is

to show that
J1 :=

∫ π

0

∫ ∫
|ξ − ζ|−α dµθ(ξ) dµθ(ζ) dθ < ∞. (2)

This would imply that µθ , a probability measure supported on Pθ(A), satisfies Eα(µθ) < ∞
for a.e. θ, hence dimH(Pθ(A)) ≥ α for a.e. θ, by the potential-theoretic characterization
of the Hausdorff dimension, which yields the desired claim. Using the definition of the
measure µθ and reversing the order of integration yields

J1 =
∫ ∫

A×A

∫ π

0
|〈x− y, eθ〉|−α dθ dµ(x) dµ(y)

=
∫ ∫

A×A
|x− y|−α

(∫ π

0
|〈w, eθ〉|−α dθ

)
dµ(x) dµ(y),

where eθ is the unit vector along `θ and w = x−y
|x−y| (note that x 6= y (µ× µ)-a.e. by (1)). The

inner integral I = Iw above does not depend on the unit vector w by rotational symmetry.
It is finite, since α < 1, due to the simple geometric fact:

L1({θ ∈ [0, π) : |〈w, eθ〉| ≤ r
})
≤ Cr, for all r > 0. (3)

Thus, J1 = I · Eα(µ) < ∞, completing the proof.

For part (ii), we sketch the proof of Mattila (following [7]), which uses differentiation
of measures. Since dimH(A) > 1, Frostman’s Lemma yields a probability µ supported on
A, with E1(µ) < ∞. Let µθ be the push-forward measure on Pθ(A), as above, and consider
the lower derivative of µθ with respect to the Lebesgue measure L1:

D(µθ , ζ) := lim inf
r→0

µθ(B(ζ, r))
2r

.

We would like to show that

J2 :=
∫ 2π

0

∫
D(µθ , ζ) dµθ(ζ) dθ < ∞.

This would imply that for L1-a.e. θ we have D(µθ , ζ) < ∞ for µθ-a.e. ζ, and then by a
standard differentiation of measures lemma (see [7], p. 36), we would obtain that µθ is
absolutely continuous with respect to the Lebesgue measure for such θ. Since µθ is a
probability measure on Pθ(A), this would mean that L1(Pθ(A)) > 0 for a.e. θ, as desired.

In order to estimate J2, we first use Fatou’s Lemma to get

J2 ≤ lim inf
r→0

(2r)−1
∫ π

0

∫
µθ(B(ζ, r)) dµθ(ζ) dθ.

Further, ∫
µθ(B(ζ, r)) dµθ(ζ) =

∫ ∫
1B(ζ,r)(ξ) dµθ(ξ) dµθ(ζ)

=
∫ ∫

1B(Pθ(y),r)(Pθ(x)) dµ(x) dµ(y).

Thus, exchanging the order of integration and integrating the characteristic function with
respect to L1, we obtain

J2 ≤ lim inf
r→0

(2r)−1
∫ ∫
L1({θ : |〈x− y, θ〉| ≤ r}) dµ(x) dµ(y).

By the geometric fact (3), we have L1({θ : |〈x− y, θ〉| ≤ r}) ≤ Cr|x− y|−1, hence J2 ≤
CE1(µ) < ∞, completing the proof.
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The method of integration over the parameters was also used to obtain estimates on
the dimension of exceptions in the above results. In fact, Kaufman [3] proved that if A is a
Borel set in R2 of Hausdorff dimension dimH(A) = s < 1, then

dimH
(
{θ : dimH(Pθ(A)) < s}

)
≤ s.

The proof is similar to the proof of Theorem 1(i), using integration with respect to the ap-
propriate Frostman measure [0, π). Falconer [8] showed that if dimH(A) = s ∈ (1, 2), then

dimH
(
{θ : L1(Pθ(A)) = 0}

)
≤ 2− s.

Falconer’s proof makes use of the Fourier transform.

In order to state the higher-dimensional generalization of Marstrand’s Theorem, let
G(d, n) be the Grassmanian manifold of m-dimensional linear subspaces of Rd, and let γd,n
be the Haar measure on G(d, n). For V ∈ Rd denote by PV the orthogonal projection from
Rd onto V.

Theorem 2 (Mattila). Let A ⊂ Rd be a Borel set.

(i) dimH(PV(A)) = min{n, dimH(A)} for γd,m-a.e. V ∈ G(d, n);
(ii) If dimH(A) > n, then Ln(PV(A)) > 0 for γd,n-a.e. V ∈ G(d, n).

The proof is essentially the same as for Theorem 1, with the geometric inequality (3)
replaced by the more general

γd,n
(
{V ∈ G(d, n) : |PVx| ≤ r}

)
≤ Cd · rn|x|−n, for all x ∈ Rd \ {0} and r > 0. (4)

For results on exceptional sets in higher dimensions, see the survey [9].

3. Origins of the Method II: Iterated Function Systems and Dynamics

We start by recalling the background, which is standard, in order to set the notation.
Consider an iterated function system (IFS) of uniformly contracting (injective) maps F =
{ f1, . . . , fm} in Rd. By Hutchinson’s Theorem [10], there exists a unique non-empty compact
set Λ = ΛF , called the attractor of the IFS, satisfying

Λ =
d⋃

j=1

f j(Λ).

Moreover, given a probability vector p = (p1, . . . , pm), there exists a unique Borel probabil-
ity measure ν = νp(F ), called the invariant measure for the probabilistic IFS, such that

νp =
m

∑
j=1

pj f jνp.

Denote by Σm = A∞ the symbolic space of one-sided infinite sequences ω = ω0ω1 . . ., with
A = {1, . . . , m}, equipped with the product discrete topology. The natural projection is the
map Π : Σm → Rd, defined by

Π(ω) = lim
n→∞

fω0 ...ωn(x0), ω ∈ Σm,

for an arbitrary x0 ∈ Rd, where fω0 ...ωn = fω0 ◦ · · · ◦ fωn . Then Λ = Π(Σm) is the attractor
of the IFS, and if p is a probability vector, then the push-forward νp = Πµp is the corre-
sponding invariant measure, where µp = pN is the infinite product (Bernoulli) measure
on Σm.
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If f j are affine contractions, that is, f j(x) = Ajx + tj for a contracting non-singular
linear map Aj : Rd → Rd and a vector tj ∈ Rd, then F is called a self-affine IFS, and its
attractor and invariant measures are called self-affine. If, moreover, Aj is a similarity, i.e.,
Aj = rjOj, for some rj ∈ (0, 1), and Oj is an orthogonal transformation, then the attractor
and invariant measures are self-similar. The numbers rj are called the contraction ratios.

If F is a self-similar IFS, the “natural” cover of the attractor Λ = ΛF is by the cylinder
sets Λu, with u ∈ An, where Λu = fu(Λ). This immediately yields the upper bound for the
Hausdorff dimension of the attractor:

dimH(ΛF ) ≤ s(F ), where s = s(F ) is such that
m

∑
j=1

rs
j = 1. (5)

We call s(F ) the similarity dimension of the self-similar IFS. For the invariant measure νp
we have

dimH(νp) ≤ s(F , p) :=
H(p)

χ(F , p)
, (6)

where H(p) = −∑m
j=1 pj log pj is the entropy of the probability vector (and of the Bernoulli

measure) and χ(F , p) = −∑m
j=1 pj log rj is the Lyapunov exponent of the probabilistic

IFS. A fundamental problem in fractal geometry is to determine when the inequalities (5)
and (6) are actually equalities. The simplest case is when the “cylinders” of the attractor
Λj = f j(Λ) are all mutually disjoint; then we say that the Strong Separation Condition (SSC)
holds. If there exists a non-empty open set U such that f j(U) ⊂ U and all fi(U), f j(U) are
mutually disjoint for i 6= j, then the Open Set Condition (OSC) holds. By a well-known result
of Moran [11] and Hutchinson [10], the OSC implies equality in (5) and (6). Difficulties
begin when the cylinders “overlap” (although the term itself is somewhat vague). It is
generally believed that in the general case, “typically”,

dimH(ΛF ) = min{d, s(F )} and dimH(µp) = min{d, s(F , p)}, (7)

and if s(F , p) > d, then “typically” µp is absolutely continuous with respect to the Lebesgue
measure Ld. The transversality method was developed with this goal in mind.

3.1. Early Work on Fractals and Attractors of Overlapping Construction

The pioneering paper [12] by Kenneth Falconer was, perhaps, the first where the ques-
tion of Hausdorff dimension for self-similar sets with overlaps was studied. He considered
the “translation family” of self-similar IFS on the line:

F t := {λ1x + t1, . . . , λdx + td}, x ∈ R, t = (t1, . . . , td) ∈ Rd, with |λj| < 1 for j = 1, . . . , d. (8)

Note that the contraction ratios are fixed, so the similarity dimension is the same for all
translation parameters: s(F t) = s(λ) = s, where ∑m

j=1 λs
j = 1 and λ = (λ1, . . . , λd). The

following result is from the paper [13], but the proof is essentially from [12], extended to
the “natural” generality in terms of the range of parameters.

Theorem 3 ([12,13]). Let Λt be the attractor of the IFS (8). Then

dimH(Λt) = min{1, s(λ)} for Ld-a.e. t ∈ Rd.

In fact, there are two cases. If

max
i 6=j

(|λi|+ |λj|) ≥ 1,

then an elementary argument shows that the attractor Λt contains an interval, as long as
the corresponding fixed points ti(1− λi)

−1 and tj(1− λj)
−1 are distinct. Otherwise, one

can “lift” the family of the IFS F t to a single self-similar IFS F̃ in the space Rd+1 of the
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form x 7→ λjx + aj, with the same contraction ratios, so that it becomes non-overlapping, in
such a way that F t is obtained by an orthogonal projection to a line `(t) through the origin
in Rd+1, and sets of zero Lebesgue measure in Rd correspond to sets of zero measure in
the Grassmanian G(d + 1, 1). Then the dimension claim follows from Mattila’s projection
Theorem 2.

A similar idea of lifting a system into a higher-dimensional space was used by Fal-
coner [12] to obtain an “almost sure” result for the dimension of the attractor of a “slanting
baker’s transformation”. The map Tc1,c2 from R× [−1, 1] into itself is defined by

Tc1,c2(x, y) =
{

Tc1,c2
1 (x, y) = (λ1x + µ1y + c1, 2y− 1) if y ≥ 0;

Tc1,c2
2 (x, y) = (λ2x + µ2y + c2, 2y + 1) if y < 0.

Here 0 < |λj|, |µj| < 1, for j = 1, 2. For a sufficiently large compact interval K ⊂ R, the
transformation Tc1,c2 maps K× [−1, 1] into itself, and there is a well-defined attractor. In
Theorem 2 of [12] it is proved that the dimension of the attractor is equal to 1 + s, where
|λ1|s + |λ2|s = 1, for Lebesgue-a.e. (c1, c2). The proof proceeds by lifting the system into
R3, in order to remove the “overlapping”, and then use Marstrand’s projection theorem
combined with Marstrand’s slicing theorem; see [12] for details.

The next significant event in the “pre-history” of the transversality method was the paper
by Károly Simon on non-invertible (possibly non-linear) endomorphims of the unit square [14].
The key new insight was the realization that “overlaps do not matter” in certain regimes, when
the unstable manifolds intersect transversely (at non-zero angles). This allowed K. Simon
to prove, in particular, that the formula for the dimension of the attractor of Falconer’s
slanting baker’s transformations, holds for all, rather than almost all, (c1, c2), under the
assumption

0 < |λ1|, |λ2| < |µ1 − µ2|,

see Corollary 1 of [14]. Moreover, the dimension of the attractor was computed for a sufficiently
small non-linear perturbation of the slanting baker’s map, as another corollary of a general
result, see Theorem 1 of [14]. Of course, in the non-linear case one needs to replace the
number s with a solution of the appropriate Bowen’s equation. This general theorem
even allowed critical points, allowing K. Simon to compute the dimension of the so-called
“Yakobson twisted map” (a two-dimensional version of the logistic map, see [15], which
was the original motivation).

3.2. On Self-Affine IFSs

As mentioned in the introduction, we do not consider non-conformal (including “gen-
uinely self-affine”) systems in this article in detail, but a short discussion is called for.
Results of T. Bedford [16] and C. McMullen [17] (independently) on self-affine “carpets”,
and later, those of Przytycki and Urbański [18], showed that the situation is much more
complicated than for self-similar/conformal systems. In particular, even when the Strong
Separation Condition holds, it may happen that the Hausdorff dimension of the attractor
is strictly smaller than the box-counting dimension (for conformal uniformly contracting
IFS these dimensions are always equal [19]). On the other hand, K. Falconer [20] proved
that for a “typical” self-affine IFS {Ajx + tj}j≤m, these dimensions are both equal to the
“singularity” or “affinity” dimension (see [20] for definitions), assuming that the norms of
Aj are small enough. “Small enough” was less than 1

3 in [20] and improved to less than 1
2

in [21], which is sharp. “Typical”, similarly to Theorem 3, meant for a Lebesgue-a.e. family
of translation vectors tj. The paper [20] was very influential for the future development of
the transversality method. Very briefly, as in Kaufman’s proof of Marstrand’s projection
theorem above, the lower bound for the Hausdorff dimension for an a.e. parameter is ob-
tained in [20] by proving finiteness of the parameter-dependent energy integral, integrated
over an appropriate region of parameters. Significantly, the geometric orthogonal projection is
replaced here by the natural projection from the symbolic space. The measures, appearing
in the energy integral, are obtained as push-forwards of a fixed measure on the symbolic
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space, a kind of a “net measure” adapted to the self-affine IFS under consideration. Much
later, this was sharpened and extended to a more general class of self-affine systems by
T. Jordan, M. Pollicott, and K. Simon [22] in the framework of “self-affine transversality”.
Very recently, self-affine transversality was further extended to non-linear non-conformal
systems by De-Jun Feng and Károly Simon [23].

4. Transversality Method for Homogeneous Self-Similar IFS on the Line

Although many of the relevant ideas were around earlier, as discussed above, it seems
to the author that the real “birth” of this technique should be dated to the 1995 paper by
M. Pollicott and K. Simon “The Hausdorff dimension of λ-expansions with deleted digits” [24]
(a shorter preliminary version was circulated in 1994). It is interesting to review the history
of this paper.

4.1. The {1, 2, 3}-Problem and Expansions with Deleted Digits

This problem was first studied by M. Keane and M. Smorodinsky in the early 1990s.
They considered the homogeneous self-similar IFS on the line

Sλ :=
{

S0(x) = λx, S1(x) = λx + 1, S3(x) = λx + 3
}

,

with a real parameter λ ∈ (0, 1) being the contraction coefficient. Denote the attractor of
Sλ by Λλ. A direct verification shows that

Λλ =
{

x =
∞

∑
n=0

anλn : an ∈ {0, 1, 3}
}

. (9)

Thus Λλ is the set of base-λ expansions with digits {0, 1, 3}, with 2 being the “deleted digit”.
The motivation came from a problem of J. Palis (see [25]) who asked whether Cα − Cβ, the
arithmetic difference of middle-α and middle-β Cantor sets, contains an interval whenever
it has positive Lebesgue measure. (We will discuss the problem of differences/sums of
Cantor sets and a related problem of convolutions of Cantor measures below, in Section 7).
Note that if, for instance, γ = λ`, ` ∈ N, where λ = 1−α

2 and γ = 1−β
2 are the contraction

ratios of the Cantor sets, then the arithmetic difference Cα − Cβ may be expressed in terms
of base-λ expansions, with an “unusual” set of digits. The {0, 1, 3}-problem was chosen
as one of the “simplest non-trivial examples of this kind”, according to M. Smorodinsky
[personal comminication]. The next lemma is elementary. The symbol Hα denotes the
α-dimensional Hausdorff measure.

Lemma 1. (i) The smallest closed interval containing Λλ is Iλ := [0, 3
1−λ ].

(ii) For all λ ∈ (0, 1), dimH(Λλ) ≤ min{1, log 3
| log λ|}.

(iii) the IFS Sλ satisfies the Open Set Condition for all λ ∈ (0, 1
4 ], hence

dimH(Λλ) = sλ :=
log 3
| log λ| and 0 < Hsλ(Λλ) < ∞, λ ∈ (0, 1/4];

(iv) Λλ = Iλ (the line segment) for all λ ∈ [ 2
5 , 1].

The lemma implies that the non-trivial parameter range is λ ∈ ( 1
4 , 2

5 ), when two
first cylinder intervals of level one intersect, but there is a gap between the second and
the third interval, hence the attractor Λλ is disconnected. What can be said about the
measure-theoretic, fractal-dimensional, and topological properties of Λλ? It is natural to
distinguish between the subcritical case: λ ∈ ( 1

4 , 1
3 ), critical case: λ = 1

3 , and supercritical case:
λ ∈ ( 1

3 , 2
5 ), depending on whether the similarity dimension sλ is smaller, equal, or greater

than one. (The critical case is a classical example of an IFS satisfying the so-called Weak
Separation Condition.)
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For λ < 1
3 , we have by Lemma 1(i) that Λλ is a Cantor set of dimension less than one.

Indeed, Λλ has zero Lebesgue measure, hence is totally disconnected, and an attractor of a
non-degenerate IFS cannot have isolated points. M. Keane raised a question whether λ 7→
dimH(Λλ) is continuous. This was answered negatively by M. Pollicott and K. Simon [24].

Theorem 4 (Pollicott and Simon 1995 [24]). Let Λλ be the attractor of the IFS Sλ. Then
(i) dimH(Λλ) = sλ =

log 3
| log λ| for Lebesgue-a.e. λ ∈ ( 1

4 , 1
3 );

(ii) there is a dense subset E ⊂ ( 1
4 , 1

3 ) such that dimH(Λλ) < sλ for λ ∈ E .

In fact, [24] considered a more general case of finitely many integer digits. In the
supercritical case, after some partial results in [24,26], the following was shown in [27].

Theorem 5. For Lebesgue-a.e. λ ∈ ( 1
3 , 2

5 ) the attractor Λλ has positive Lebesgue measure.

Now much stronger results are known. In particular, it follows from the work of
Rapaport and Varjú [28] (Theorem A.1) that the only reason for the “dimension drop”
dimH(Λλ) < min{1, sλ} could be the presence of “exact overlaps”, hence the set of excep-
tions is countable. Surprisingly, we still do not know whether the sets Λλ have non-empty
interior, even for a single parameter λ ∈ ( 1

3 , 2
5 ).

What about the (fractal) measure of the attractor Λλ in its dimension in the parameter
range λ ∈ ( 1

4 , 1
3 )? It was shown by Y. Peres, K. Simon, and the author [29], using another

version of transversality, that for Lebesgue-a.e. λ in this range the Hausdorff measure is
zero, whereas the packing measure is positive and finite. See a brief discussion of this issue
in Section 5.

Remark 1. A lot of credit should be given to Michael Keane, who was lecturing widely on this
problem and circulating his preprint with Meir Smorodinsky, which later became part of [26]. For
K. Simon and for the author this gave a very important impetus to their future work.

4.2. Bernoulli Convolutions; Definition of Transversality

The classical Bernoulli convolution measure νλ with a parameter λ ∈ (0, 1) is de-
fined as the distribution of the random series ∑∞

n=0±λn, where the signs are i.i.d., with
probabilities ( 1

2 , 1
2 ). Equivalently, νλ is the invariant measure for the probabilistic IFS

{λx− 1, λx + 1} on R, with the probability vector p = ( 1
2 , 1

2 ). We do not repeat here the
long and fascinating (still unfinished) history of the problem “for which λ is νλ absolutely
continuous?”, which may be found in many papers and surveys, see e.g., [30–32]. It is
natural to consider them in the more general framework of homogeneous IFS on the line,
which includes expansions with deleted digits as well.

Let D = {d1, . . . , dm} ⊂ R be a finite set of “digits”, and let p = (p1, . . . , pm) be a
probability vector. We consider the IFS family

Fλ
D =

{
f j : x 7→ λx + dj

}
j≤m, x ∈ R, (10)

its attractor Λλ
D, and the invariant measure ν

D,p
λ . Here λ ∈ (0, 1) is a parameter. Note that

the similarity dimension is equal to sλ =
log m
− log λ . The natural projection from the symbolic

space Σm to the attractor is given by

Πλ(ω) =
∞

∑
n=0

ωnλn.

Note that the Strong Separation Condition holds on a parameter interval J if and only
if the graphs of the functions from λ 7→ Πλ(ω) and λ 7→ Πλ(τ), do not intersect over J
for distinct ω and τ in Σm. We say that the transversality condition holds over J if these
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graphs may intersect, but only transversally, that is, at a non-zero angle. There are several
definitions of transversality in the literature. We start with the one used most frequently.

Definition 1. We say that the transversality condition holds for the IFS family (10) on J ⊂ (0, 1)
if there exists a constant Ctr such that for any ω, τ ∈ Σm, with ω0 6= τ0 holds

L1
{

λ ∈ J : |Πλ(ω)−Πλ(τ)| ≤ r
}
≤ Ctr · r for all r > 0. (11)

Notice the resemblance of this condition to (3). The next theorem combines [24,27];
see also [31,33,34].

Theorem 6. Suppose that the IFS family (10) satisfies the transversality condition (11) on an
interval J ⊂ (0, 1). Then the following holds:

(i) dimH(Λλ) = min{1, sλ} for Lebesgue-a.e. λ ∈ J;
(ii) L1(Λλ) > 0 for Lebesgue-a.e. λ ∈ J ∩ ( 1

m , 1);
(iii) the measure ν

D,p
λ is absolutely continuous, with a density in L2 for Lebesgue-a.e. λ ∈ J ∩

(∑m
j=1 p2

j , 1).

The proof of Theorem 6 proceeds along the lines of the proofs of Theorems 1 and 2
above, with the double integration over Σm and the transversality condition (11) replacing
the geometric condition (3). In parts (i) and (ii) the “natural” self-similar measure is used,
that is, the push-forward of pN under the natural projection Πλ. Replacing the integration
of the energy over the Lebesgue measure on J by integration over the appropriate Frostman
measure, one can easily obtain an estimate on the dimension of exceptions in Theorem 6(i),
in the region of parameters where sλ < 1:

for every λ0 ∈ J, ε > 0, dimH

(
{λ ∈ Bε(λ0) : dimH(Λλ) < sλ}

)
≤ sup{sγ : γ ∈ Bε(λ0)}.

In the special case of expansions with deleted digits this was pointed out by Pollicott and
Simon [24].

Now much stronger results are known, due to Hochman [35] and Shmerkin [36]. In
particular, in the claims of the theorem “for Lebesgue-a.e.” can be replaced by “for all λ
outside a set of zero Hausdorff dimension”. Even more importantly, the transversality
condition, which is often hard to check, can be replaced in the dimension claim by a mild
“exponential separation condition”, introduced by Hochman. However, if we do know that
transversality holds, Theorem 6 yields a much shorter proof of the “almost every parameter”
result.

In order to verify the transversality condition, the next lemma is useful.

Lemma 2. The following are equivalent on a compact interval J ⊂ (0, 1):

(i) the transversality condition (11) holds;

(ii)

∃ δ > 0, ∀ω, τ ∈ Σm, ω0 6= τ0, λ ∈ J,
∣∣∣Πλ(ω)−Πλ(τ)

∣∣∣ ≤ δ =⇒
∣∣∣ d

dλ (Π
λ(ω)−Πλ(τ))

∣∣∣ ≥ δ; (12)

(iii)
∀ω, τ ∈ Σm, ω 6= τ, Πλ(ω) = Πλ(τ) =⇒ d

dλ

(
Πλ(ω)−Πλ(τ)

)
6= 0. (13)

Transversality in the Pollicott–Simon paper appeared in the form (12) in [24] (Lemma 1),
and the derivation of (11) is contained in the proof of [24] (Lemma 2). The formulation (13)
appeared in the author’s paper [27].
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Proof sketch. The implication (12) =⇒ (13) is trivial. The implication (13) =⇒ (12) is
proved by compactness. If (12) does not hold, we can find, for any n ∈ N, two sequences
ω(n), τ(n) ∈ Σm, with ω

(n)
0 6= τ

(n)
0 , such that for some λn ∈ J,∣∣∣Πλn(ω)−Πλn(τ)
∣∣∣ ≤ εn and

∣∣∣ d
dλ (Π

λ(ω)−Πλ(τ))|λ=λn

∣∣∣ ≤ εn,

where εn → 0. Passing to a subsequence, using compactness of Σm and J, we obtain ω, τ,
with ω0 6= τ0, which violate (13). It is important for this argument that the set of possible
digits is discrete, so that ω0 6= τ0 is guaranteed for the limiting sequences.

Next we explain the derivation (12) =⇒ (11). Denote

fλ(ω, τ) := Πλ(ω)−Πλ(τ). (14)

Fix ω, τ ∈ Σm with ω0 6= τ0. It is enough to consider 0 < r < δ. Condition (12) implies
that the set {λ ∈ J : | fλ(ω, τ)| ≤ r}, whose L1-measure we need to estimate, is a union of
finitely many intervals on each of which the function λ 7→ fλ(ω, τ), λ ∈ J, is monotonic.
Each of these intervals has length at most 2r/δ by the lower bound | d

dλ fλ(ω, τ)| ≥ δ on
them. On the other hand, each of these intervals lies in a larger interval of monotonicity, a
component of the set {λ ∈ J : | fλ(ω, τ)| < δ}, and such intervals are disjoint. There is an
easy uniform upper bound | d

dλ fλ(ω, τ)| ≤ C, depending only on D and max J < 1. This
implies that every such larger interval has length at least 2δ/C, except possibly the first
and the last one. Combining everything together yields that

L1{λ ∈ J : | fλ(ω, τ)| ≤ r
}
≤ 2r|J|

δ
·
(

2 +
|J|C
2δ

)
,

concluding the proof of (11).
The implication (11) =⇒ (13) is very easy; we leave it to the reader.

4.3. Checking Transversality

For a bounded subset Γ ⊂ R consider the class of power series

BΓ =
{

g(x) =
∞

∑
n=0

anxn : an ∈ Γ, n ≥ 0, a0 6= 0
}

.

It follows from Lemma 2(iii) that transversality for the IFS (10) holds on any interval J on
which functions of the form λ 7→ fλ(ω, τ) := Πλ(ω)−Πλ(τ) do not have double zeros,
that is, if ω 6= τ, then

6 ∃ λ ∈ J : fλ(ω, τ) = d
dλ fλ(ω, τ) = 0.

By the definition of Πλ, this is equivalent to the absence of double zeros for functions from
BD−D. For instance, for Bernoulli convolutions, we get the class B0,±1 (strictly speaking,
B0,±2, but we have an obvious equality BcΓ = cBΓ for c 6= 0). For the {0, 1, 3} problem, we
get the class B0,±1,±2,±3.

In general, it is very difficult to find precisely the set of double zeros for a class of
power series, see [37]. However, for practical purposes it is enough to find “reasonable”
intervals where transversality holds. With this in mind, in [27], the method of so-called
(∗)-functions was developed. The main idea is that (a) it is easier to find the transversality
interval for a class of power series with a convex set of possible coefficients (except for a0
which we normalize to be 1); (b) for such classes there is an “optimal” power series having
the smallest double zero; moreover, such a power series will have exactly two sign changes
and at most one coefficient which is not “extremal”. This leads to the following.
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Definition 2. For γ > 0 let

Bγ =
{

g(x) = 1 +
∞

∑
n=1

anxn : |an| ≤ γ, n ≥ 1
}

.

An interval J is said to be a transversality interval for Bγ if g(x) = 0 implies that g′(x) 6= 0 for
g ∈ Bγ and x ∈ J. A power series h(x) is called a (∗)-function for Bγ if for some k ≥ 1 and
ak ∈ R,

h(x) = 1− γ
k−1

∑
i=1

xi + akxk + γ
∞

∑
i=k+1

xi.

Note that h ∈ Bγ only when ak ∈ [−γ, γ], but this is not required for the definition.

Lemma 3. Suppose that h(x) is a (∗)-function for Bγ and x0 ∈ (0, 1) is such that

h(x0) > δ and h′(x0) < −δ,

for some δ > 0. Then [0, x0] is a transversality interval for Bγ.

Observe that BD−D ⊂ Bγ(D), where

γ(D) = max
{ |di − dj|
|dk − d`|

: 1 ≤ i, j, k, ` ≤ m, k 6= `
}

,

so that any transversality interval for Bγ(D) is also a transversality interval for BD−D.
For the proof of Lemma 3, see [33] (Section 3) or [34] (Section 5) (which were based, in

turn, on [27] (Section 3)), or the upcoming book [1]. Obtained with the help of the lemma,
the next result can be used in specific cases; see the same references for details. Additional
results of this kind may be found in Simon–Tóth [38].

Corollary 1. (i) B1 satisfies the transversality condition on [0, 0.649];
(ii) B2 satisfies the transversality condition on [0, 0.5), and this is sharp (i.e., fails at 0.5);
(iii) B3 satisfies the transversality condition on [0, 0.415];
(iv) Bγ satisfies the transversality condition on [0, (1 +

√
γ)−1) for all γ ≥ 1, and this is sharp

for γ ≥ 3 +
√

8.

5. Families of Self-Similar IFS—Further Developments

It is impossible to describe here all the results obtained with the help of the transver-
sality method—there are too many. We mention only a few.

• The results of the last section extend in a rather straightforward way to families of
homogeneous self-similar IFS in the complex plane {λz+ dj}j≤m for a complex λ, with
0 < |λ| < 1, see [21]. However, even for the simplest case {λz, λz + 1} (the IFS of the
“complex Bernoulli convolution”) there is a new feature: a non-trivial “connectedness
locus” (the set of parameters for which the attractor is connected). This leads to a
whole separate direction of research, see [37,39–42] and references therein.

• In [29], Peres, Simon, and the author studied families of homogeneous self-similar
IFSs with overlaps on the line. It was shown that under the transversality condition
in the “subcritical” parameter region, the packing measure of the attractor in its
dimension is positive and finite for almost every parameter, whereas the Hausdorff
measure is typically zero, for those parameters where the cylinders do overlap. Here
transversality was used as well, but in a different way. Zero Hausdorff measure (in
the similarity dimension) was deduced with the help of a Bandt–Graf criterion [43]
saying that it is equivalent (for a self-similar IFS) to the existence of two ε-relatively
close cylinders for any ε > 0. The idea is, roughly speaking, as follows: Transversality
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implies that if two particular cylinders of size ∼ rn intersect for a parameter t0, then
there is an exact overlap of these cylinders for some parameter t1 ∈ B(t0, C1rn) and
then these cylinders are ε-relatively close for all parameters t ∈ B(t1, c2rn), with
positive constants C1, c2, independent of n.

• Michał Rams [44,45] developed what became known as the intersection numbers method,
based on a careful counting of the number of intersecting cylinders. This method
also used transversality, but in a more combinatorial way. This led to new proofs
of “almost every parameter” theorems on the dimension and packing measure of
the attractors, as well as several sharper results. For instance, ref. [45] gave a packing
dimension estimate for the set of exceptional parameters for which there is a certain
dimension drop. Rams’ setting is, actually, more general: he considered conformal IFS
in Rd.

• Peres and Schlag [46] developed a powerful “generalized projection theorem”, based
on harmonic analysis (Paley–Wiener decomposition, fractional Sobolev spaces), using
a version of transversality. They obtained results on the “Sobolev dimension” of pro-
jected measures for typical parameters and estimates on the dimension of exceptions
for absolute continuity.

• Neunhäuserer [47] and Ngai–Wang [48] obtained results on absolute continuity for
a.e. parameters in a certain subset of the super-critical region for specific examples
of non-homogeneous self-similar IFS, such as {λ1x, λ2x + 1}, essentially using the
transversality methods of [27,33,34].

• Most of the results mentioned in this section have by now been superseded by those
of Hochman [35,49], Shmerkin [36,50], Shmerkin–Solomyak [51], Saglietti–Shmerkin–
Solomyak [52], Varjú [53,54], and others, with the help of new, additive combinatorics
and harmonic analysis methods. These methods are much more difficult and technical,
and we do not discuss them here. Moreover, so far these methods have not been
extended to nonlinear IFS of any generality, whereas transversality has been widely
used for them, as we describe in the next section.

6. Transversality Method for Conformal IFS on R and for Some Classes of
Dynamical Systems

The transversality method was extended to families of C1+θ-smooth uniformly hyper-
bolic IFSs with overlaps on the line, by K. Simon and the author in 1996; this manuscript
remained unpublished. Instead, it was incorporated into a paper [55], on the dimension of
non-conformal horseshoes in R3, and into the papers [56,57], which extended the method
to infinite hyperbolic IFS and (finite) parabolic IFS on the line. Here we present only the
most basic “sample” result for illustration.

Let θ > 0. An IFSF = { f1, . . . , fm} on a compact interval I ⊂ R is called a C1+θ-smooth
hyperbolic IFS if f j ∈ C1+θ(I → I) and there exist 0 < γ1 ≤ γ2 < 1 such that

0 < γ1 ≤ | f ′j (x)| ≤ γ2 < 1, for all j ≤ m, x ∈ I.

Denote by ΛF the attractor of F and by ΠF : Σm → ΛF the corresponding natural
projection map. If the OSC holds, the formula for the Hausdorff dimension dimH(ΛF ) is
well known. It is given by the Bowen’s equation [16,58,59]:

dimH(ΛF ) = s(F ) where PF (s(F )) = 0. (15)

Here PF (t) is the pressure function, defined by

PF (t) = lim
n→∞

1
n ∑
|u|=n

‖ f ′u‖t,
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where ‖ · ‖ is the sup norm on I. It is easy to see that for a self-similar IFS, the value of s(F )
agrees with the similarity dimension, defined in (5). In general (when the OSC fails or is
not known to hold), we have the inequality

dimH(ΛF ) ≤ min{1, s(F )}.

Given an ergodic shift-invariant measure µ on Σm, consider the push-forward mea-
sure ν(F , µ) = ΠFµ, which we call the invariant measure for the IFS. For the Hausdorff
dimension of ν(F , µ) we have an inequality, which extends (6):

dimH(ν(F , µ)) ≤ min{1, s(F , µ)}, where s(F , µ) :=
hµ

χµ(F )
.

Here hµ is the Kolmogorov–Sinai entropy of µ and χµ(F ) is the Lyapunov exponent,
defined by

χµ(F ) = −
∫

Σm
log | f ′ω1

(ΠF (σω))| dµ(ω).

Again, assuming the OSC, we get the equality: dimH(ν(F , µ)) = s(F , µ).

Now suppose that we have a family of C1+θ-smooth hyperbolic IFS F t = { f t
1, . . . , f t

m}
on the interval I depending on a parameter t ∈ U, for some open set U ⊂ Rd, with d ≥ 1.
Assume that the functions t 7→ f t

j are continuous in the C1+θ norm, defined by

‖ f ‖C1+θ := ‖ f ‖∞ + ‖ f ′‖∞ + sup
x 6=y∈I

| f ′(x)− f ′(y)|
|x− y|θ

.

The transversality condition is analogous to the one from (1), but we allow a higher-dimensional
parameter space here. The transversality condition for the family F t is said to hold on
U ⊂ Rd if there exists Ctr > 0 such that for any ω, τ ∈ Σm, with ω0 6= τ0,

Ld({t ∈ U : |Πt(ω)−Πt(τ)| ≤ r
})
≤ Ctr · r, for all r > 0, (16)

where Πt = ΠF
t
. The following theorem combines results from [56,57] in a special case.

Theorem 7. Let F t be a family of C1+θ-smooth hyperbolic IFS on I ⊂ R, satisfying the conditions
above, including the transversality condition on U. Let Λt = ΛF t be the attractor. Further, let µ
be an ergodic σ-invariant measure on Σm and νt the corresponding invariant measure for the IFS:
νt = Πtµ. Then the following holds for Ld-a.e. t ∈ U:

(i) dimH(Λt) = min{1, s(F t)} and L1(Λt) > 0 if s(F t) > 1, where s(F t) is the solution of
the Bowen equation;

(ii) dimH(ν
t) = min{1, s(F t, µ)} and νt � L1 if s(F t, µ) > 1, where s(F t, µ) =

hµ

χµ(F t)
.

There are situations when it is natural to assume that the ergodic measure depends
on the parameter as well, so that νt = Πtµt, for instance, when considering probabilistic
IFS with place-dependent probabilities. Recently, results analogous to Theorem 7 were
obtained by Bárány, Simon, Śpiewak, and the author [60], under appropriate (stronger)
smoothness conditions and assumptions on the parameter dependence for the IFS and for
the measure. This required developing novel techniques (a delicate extension of [46]) for
the absolute continuity result.

Checking transversality for non-linear systems is difficult, in general. We present here
a “sample” result, which concerns the “translation family” of IFS. In some special cases, it
can be strengthened; see [56,57,60] for details. In this form the result appears in the recent
work of B. Bárány, I. Kolossváry, M. Rams, and K. Simon.
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Proposition 1 ([61], Lemma 2.14). LetF = { f1, . . . , fm} be a C1+θ-smooth uniformly hyperbolic
IFS on a compact interval I ⊂ R, such that f j(I) ⊂ int(I) for j ≤ m. Let U = {t = (t1, . . . , tm) :
f j(I) + tj ⊂ I for all j ≤ m}, and consider the family of IFS F t = { f t

1, . . . , f t
m}t∈U , where

f t
j (x) = f j(x) + tj. If

max
i 6=j

(
‖ f ′i ‖∞ + ‖ f ′j ‖∞

)
< 1,

then the transversality condition holds on U. In particular, this holds when maxi≤m ‖ f ′i ‖∞ < 1
2 .

From the very beginning, the transversality method was not restricted to IFS, but
applied to various classes of dynamical systems. In fact, transversality was used already in
the work of Simon [14] on the Hausdorff dimension for noninvertible maps, as mentioned
above. Here we only list a few papers to indicate the wide variety of settings where it was
applied, without giving any details.

• Transversality was used in [55] to obtain dimension and measure results on “nonlinear
fat baker’s maps” and certain horseshoes in R3.

• Ledrappier [62] showed how the knowledge of the dimension of distributions of
certain random sums yields dimension formulas for fractal graphs. Combined with
transversality methods, this allowed us to obtain almost sure results for certain families
in [21]. A further development of this method yielded such formulas for the graph
of the celebrated Weierstrass function a.e. in some parameter interval, in the work of
Barański, Bárány, and Romanowska [63].

• Schmeling and Troubetzkoy [64] considered a class of hyperbolic endomorphisms
with singularities and gave a criterion when the map is invertible on a set of full
measure with respect to the SBR measure. Schmeling [65] applied this general theory
to a specific example: the so-called Belykh family, and obtained results on almost sure
invertibility and the dimension of the SBR measure, a.e. in a transversality interval for
one of the parameters.

• Mihailescu and Urbański have been using transversality methods in several papers, in
particular, in their study of hyperbolic skew-products [66]. Sumi and Urbański [67]
obtained dimension and measure results for transversal families of expanding rational
semigroups on the Riemann sphere.

• The transversality techniques of [56,57,66] are being applied in the currently active
study of “blenders”, see, e.g., Biebler [68].

• Bárány, Pollicott, and Simon [69] established absolute continuity of the Furstenberg
measure a.e. in some parameter region, using the methods of [57]. Bárany and
Rams [70] studied dimension-maximizing measures for planar self-affine systems
under the strong separation and the so-called dominated splitting conditions. They
introduced the notion of strong-stable transversality and obtained Ledrappier–Young
formulas for certain Gibbs measures, assuming that it holds.

7. Arithmetic Sums and Differences of Cantor Sets; Convolution of Measures

In the early days of hyperbolic dynamics it was believed that uniform hyperbolicity is
a generic property in the space of diffeomorphisms of a manifold. This was disproved by
Sheldon Newhouse [71], who discovered what is now known as the Newhouse phenomenon:
existence of residual sets of C2-diffeomorphisms of a compact surface with infinitely many
attractors. Newhouse’s construction is based an a creation of robust homoclinic tangencies.
This motivated Jacob Palis to initiate a broad program of studying the phenomena of
unfolding homoclinic tangencies. In the study of bifurcations of a generic one-parameter
family of surface diffeomorphisms having generic homoclinic tangency at a parameter
value, the arithmetic difference of two regular Cantor sets appears in a natural way, see [25].
They arise from the stable and unstable foliations of the basic set. Palis and Takens [72]
showed that if the sum of the Hausdorff dimensions of these foliations is less than one,
then there is hyperbolicity on a set of parameters of full measure. This corresponds to the
simple fact that the arithmetic difference of two Cantor sets, whose Hausdorff dimensions
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add up to less than one, is of zero Lebesgue measure. In the opposite case, when the
sum of the dimensions is greater than one, Palis conjectured that the arithmetic difference
has nonempty interior, at least, generically. In dynamics this corresponds to an entire
interval of non-hyperbolicity. An important result in this direction was first obtained by
Palis and Yoccoz [73]. They proved that, if the sum of the dimensions of the stable and
unstable foliations of the basic set is greater than one, then non-hyperbolicity holds on a set of
positive measure of parameters. In fact, this paper was an important source of ideas and
methods in the development of the transversality method by the author. Palis and Yoccoz
write that they were motivated by Kaufman’s proof of Marstrand’s Theorem (the positive
measure part). They explicitly use a transversality hypothesis, and their proof proceeds,
in part, by showing that the push-forward of a certain measure µ by a map Ts depending
on a parameter s satisfies

∫
J |T̂sµ|2 ds < ∞, which guarantees absolute continuity a.e. This

method was used for Bernoulli convolutions in [27].
In a seminal work, Moreira and Yoccoz [74] settled Palis’s conjecture, showing that

if the sum of the Hausdorff dimensions of two generic Cantor sets is greater than one,
then their arithmetic difference has nonempty interior. However, often one is interested in
specific families of Cantor sets, with a finite-dimensional set of parameters. In this context
the problem of interior is wide open. In particular, Palis and Takens asked what happens
for a pair of classical Cantor sets Cα and Cβ. The Gap Lemma of Newhouse [71] gives a
sufficient condition for non-empty interior of Cα − Cβ in terms of their thickness, but it is
far from sharp from the point of view dimension. As an intermediate step, we address the
easier question of when the arithmetic difference (or, equivalently, sum) of the Cantor sets
has positive Lebesgue measure.

In this direction it was first proved in [75] that, given α > 0, the set Cα + Cβ has
positive Lebesgue measure for Lebesgue-a.e. β, such dimH(Cα) + dimH(Cβ) > 1. The proof
proceeded by showing absolute continuity of the convolution measure for a.e. parameter
and used the transversality method. (Since we can always replace the set Cβ by −Cβ, it is
equivalent to study arithmetic sums, which is more convenient from the point of view of
convolution measures supported on the set.) A stronger result was obtained by Peres and
Solomyak in [34], which we state below.

Consider a family of homogeneous self-similar IFSs Fλ = {x 7→ λx + dj(λ)}j≤m,
parametrized by λ ∈ J ⊂ (0, 1), with J a compact interval. Denote its attractor by Λλ.
Assume that dj ∈ C1(J) and the Strong Separation Condition (SSC) holds:

(λΛλ + di(λ)) ∩ (λΛλ + dj(λ)) = ∅, for all i 6= j, λ ∈ J.

The SSC implies that sλ := dimH(Λλ) =
log m

log(1/λ)
and hence necessarily J ⊂ (0, m−1).

Theorem 8 ([34], Theorem 1.1). Let K ⊂ R be any compact set. Then L1(K + Λλ) > 0 for
Lebesgue-a.e. λ ∈ J, such that sλ + dimH(K) > 1.

Peres and Schlag [46] obtained an estimate on the dimension of exceptions; in partic-
ular, they showed in [46] (Theorem 5.12) that if dj ∈ C2(J), with J = [λ0, λ1] ⊂ (0, m−1),
then

dimH
{

λ ∈ J : L1(K + Λλ) = 0
}
≤ 2− (dimH(K) + dimH(Λλ)).

What is nice about Theorem 8 is that no transversality condition appears explicitly! It
is, in fact, “hidden” in the SSC of the IFS, as we show later. Theorem 8 follows from a result
on convolution of measures. Let Πλ : Σm → Λλ be the natural projection corresponding to
the IFS Fλ. Let µ be a probability Borel measure on Σm, such that for some γµ ∈ (0, 1),

(µ× µ)
{
(ω, τ) : |ω ∧ τ| ≥ k

}
≤ Cm−kγµ , for all k ∈ N. (17)
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(Instead, we can assume that the lower correlation dimension of µ with respect to the metric
$(ω, τ) = m−|ω∧τ| is greater or equal than γµ log m). Consider the family of push-forward
measures on Λλ:

νλ = Πλµ.

Further, let η be a compactly supported Borel probability measure on R satisfying the
Frostman condition:

η(Br(x)) ≤ Crγη for all x ∈ R, r > 0. (18)

Theorem 9 ([34], Theorem 2.1). Let Fλ be the family of IFS satisfying the SSC, as in Theorem 8
and νλ the corresponding family of push-forward measures. Assuming (17) and (18), we have that
the measure η ∗ νλ is absolutely continuous, with a density in L2(R), for Lebesgue-a.e. λ ∈ J,
such that

γη +
γµ log m
log(1/λ)

> 1.

Theorem 8 follows, taking η to be the “almost optimal” Frostman measure on K and
µ = (m−1, . . . , m−1)N, so that γµ = 1 and νλ is the natural self-similar measure on Λλ.

The next result deals with a complex-valued generalization. Although formally it
may be new, the proof is very similar; we will give a sketch below, as a consequence of a
“generalized projection scheme for convolutions”.

Let U be an open set in C, such that U ⊂ D∗ := {z ∈ C : 0 < |z| < 1} (the open unit
disk with the point at the origin removed). Suppose that bj are analytic functions on U (i.e.,
on some neighborhood of U) for j = 1, . . . , m, and consider the IFS in the complex plane:

Gλ = {z 7→ λz + bj(λ)}j≤m. (19)

Assume that G satisfies the SSC for all λ ∈ U. Denote by Λλ the attractor of the IFS and by
Πλ : Σm → Λλ the natural projection. Let η be a compactly supported Borel probability
measure on C satisfying the Frostman condition:

η(Br(z)) ≤ Crγη for all z ∈ C, r > 0. (20)

Theorem 10. Let Gλ be the family of IFS (19), satisfying the SSC, and let νλ be a family of push-
forward measures on Λλ, with µ satisfying (17). Given a measure η satisfying (20), we have that
the convolution η ∗ νλ is absolutely continuous with respect to L2, with a density in L2(R2), for
L2-a.e. λ ∈ U, such that

γη +
γµ log m
log(1/λ)

> 2.

Again, the SSC implies that dimH(Λλ) = sλ =
log m

log(1/λ)
.

Corollary 2. Let Gλ be the family of IFS (19), satisfying the SSC, with attractor Λλ, and let
K ⊂ C ∼= R2 be any compact set. Then L2(K + Λλ) > 0 for L2-a.e. λ ∈ U, such that

dimH(K) + dimH(Λλ) > 2.

Pursuing this direction further may be of interest in connection with the investigation
of higher-dimensional Newhouse phenomenon, which has been very active recently; see espe-
cially the work of Berger [76], but also Dujardin [77], Biebler [78], and others. Some of this
research uses the framework of iterated function systems and transversality techniques.

Generalized Projection Scheme for Convolutions

This scheme is “modelled” after [79] (Proposition 2.1), extending it from the case of R
to Rd and allowing X to be a general compact metric spaces, rather than the symbolic space.
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In turn, [79] (Proposition 2.1) was “distilled” and “abstracted” from [34] (Theorem 2.1),
which dealt with the case of natural measures νλ on homogeneous Cantor sets on R.
(A “generalized projection scheme” of a similar flavor, which covered parametrized self-
similar self-conformal fractals, as well as geometric projections, was introduced in [21].
The latter should not be confused with the scheme used by Peres and Schlag [46], which
was developed with a more specific goal.)

Let (X , ρ) be a compact metric space (the one we will project) and U be a set of
parameters, a priori also a complete separable metric space, although in all applications
it is an open subset of the Euclidean space or a smooth manifold of some dimension. We
assume that U is equipped with a Borel probability measure ϑ. Further, suppose that we
are given a family of maps

Φλ : X → Rd,

parametrized by λ ∈ U , having the following properties. For ω, τ ∈ X we will write

φω,τ(λ) := Φλ(ω)−Φλ(τ), λ ∈ U .

Hölder continuity: there exist α > 0 and C1 > 0 such that

|φω,τ(λ)| ≤ C1ρ(ω, τ)α, for all ω, τ ∈ X , λ ∈ U , (21)

where we write | · | for the Euclidean norm in Rd.
Transversality: there exist δ > 0, β ≥ αd, and C2 > 0, such that for all r > 0,

sup
v∈Rd

ϑ
(
{λ ∈ U : |v + φω,τ(λ)| ≤ r}

)
≤ C2ρ(ω, τ)−βrd, ∀ω, τ ∈ X : ω 6= τ, ρ(ω, τ) ≤ δ. (22)

As we will see, the possibility of choosing δ > 0 to be small is crucial. Next, suppose that µ
is a Borel probability measure on X satisfying the

Measure correlation decay condition on X : there exist γµ < β and C3 ≥ 0 such that

(µ× µ)
{
(ω, τ) ∈ X 2 : ρ(ω, τ) ≤ r

}
≤ C3rγµ for all ω ∈ X , r > 0. (23)

Observe that the latter follows from the Frostman condition on X :

µ(Br(ω)) ≤ C3 rγµ , for all ω ∈ X , r > 0. (24)

We will consider the family of push-forward measures on Rd:

νλ = Φλµ, λ ∈ U .

Note that γµ ≥ β would be unreasonable, since if, for instance, (24) holds, then νλ, which
is a measure on the attractor, satisfies the Frostman condition with exponent γµ/α ≥ d,
which is impossible under the SSC.

Finally, let η be a compactly supported Borel probability measure on Rd satisfying the
Frostman condition on Rd: there exist γη > 0 and C4 ≥ 0 such that

η(Br(x)) ≤ C4 rγη , for all x ∈ Rd, r > 0. (25)

Theorem 11. Under all the above assumptions, if

γη >
β− γµ

α
, (26)

then η ∗ νλ � Ld with a density in L2 for ϑ-a.e. λ ∈ U .

Discussion. The transversality condition (22) is the most difficult one to check. For
applications, we assume that U ⊂ Rd and ϑ = Ld. Further, suppose that X = Σm =
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{0, . . . , m− 1}N, with the metric ρ(ω, τ) = m−|ω∧τ|. Let { f λ
1 , . . . , f λ

m} be a family of smooth
uniformly contracting conformal IFSs on Rd, depending on the parameter λ ∈ U ⊂ Rd,
and let Φλ = Πλ be the natural projection. Let µ be an ergodic shift-invariant measure on
Σm, and let χλ = χλ

µ be the Lyapunov exponent of the IFS with the measure µ. Theorem 11
should be applied locally, in a small neighborhood of λ0 ∈ U . Then, assuming that the
dependence of the IFS on λ is continuous, and λ 7→ χλ is continuous, we can take

α =
χλ0

log m
− ε and β =

(
χλ0

log m
+ ε

)
d,

for ε sufficiently small. Thus β > αd, but they can be made arbitrarily close by shrinking
the neighborhood of λ0. It follows that (26) becomes

γη +
γµ log m

χλ0
> d.

Comparing with Theorems 9 and 10, we obtain exactly the conditions imposed there,
keeping in mind that χλ = log(1/λ). Thus, in order to deduce these theorems from
Theorem 11, we only need to verify the transversality condition (22), with ϑ the Lebesgue
measure.

Proof of Theorem 10, assuming Theorem 11. Recall that we have a family (19) of homo-
geneous self-similar IFSs on C ∼= R2, analytically depending on a parameter λ ∈ U ⊂ D∗,
which is the complex contraction factor of all the maps of the IFSs. Pick λ0 ∈ U satisfying
γη +

γµ log m
log(1/λ0)

> 2, and let ε > 0 be such that Bε(λ0) ⊂ U and γη +
γµ log m
log(1/λ)

> 2 for all

λ ∈ Bε(λ0). We will apply Theorem 11 with the set of parameters U = Bε(λ0), and let

α := min
{

log(1/λ)

log m
: λ ∈ Bε(λ0)

}
, β := 2 max

{
log(1/λ)

log m
: λ ∈ Bε(λ0)

}
.

Then (21) clearly holds, and we only need to verify (22).
The natural projection is given by

Πλ(ω) =
∞

∑
n=0

bωn(λ)λ
n, ω ∈ Σm,

and hence

φω,τ(λ) = Πλ(ω)−Πλ(τ) =
∞

∑
n=0

(
bωn(λ)− bτn(λ)

)
λn, ω, τ ∈ Σm.

Recall that ρ(ω, τ) = m−|ω∧τ|, so that ρ(ω, τ) ≤ δ for δ > 0 sufficiently small is equivalent
to |ω ∧ τ| ≥ N for N sufficiently large. Let |ω ∧ τ| = N. Then

φω,τ(λ) = λN(Πλ(σNω)−Πλ(σNτ)
)
,

hence

φ′ω,τ(λ) = λN
[

Nλ−1(Πλ(σNω)−Πλ(σNτ)
)
+ d

dλ

(
Πλ(σNω)−Πλ(σNτ)

)]
. (27)

Now we use the SSC, which means that the minimal distance between two distinct first
order cylinders of Λλ is positive, and it has a uniform lower bound for λ ∈ U, say, c0 > 0.
Since N = |ω ∧ τ|, holds ∣∣Πλ(σNω)−Πλ(σNτ)

∣∣ ≥ c0.
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Next, note that λ 7→ Πλ(u) is an analytic function on D, given by a power series with
analytic coefficients from the list {bj(λ)}j≤m, for any u ∈ Σm, which implies that

Mk := sup
u∈Σm

∣∣∣ dkΠλ(u)
dλk

∣∣∣ < ∞, k ≥ 0.

Thus, assuming N ≥ 4M1/c0, we have from (27):

|φ′ω,τ(λ)| ≥ |λ|N(N · c0 − 2M1)

≥ |λ|N · Nc0/2

= ρ(ω, τ)log(1/λ)/ log m · Nc0/2

≥ ρ(ω, τ)β/2 · Nc0/2.

It remains to use the following standard result for the function g(z) = v + φω,τ(z), see,
e.g., [21] (Lemma 5.2) for a proof.

Lemma 4. Let g be an analytic function on a closed disk F = BR(z0) ⊂ C, such that

|g′(z)| ≥ δ0, for all z ∈ F.

Then
L2({z ∈ F : |g(z)| ≤ r}

)
≤ const · r2/δ2

0 , for all r > 0.

where the constant depends only on sup{|g′′(z)| : z ∈ F}.

This concludes the derivation of Theorem 10 from Theorem 11.

Before we turn to the (complete) proof of Theorem 11, we state another, far-reaching
generalization of Theorem 9, which is a consequence of [79] (Theorem 3.7), see also [80].

Theorem 12. Let {Fλ}λ∈J be a C2-smooth family (in x and in λ) of hyperbolic IFS on R, satisfying
the SSC for all λ ∈ J, where J ⊂ R is a compact interval. Let µ be an ergodic shift-invariant
probability measure on Σm and νλ = Πλµ, where Πλ is the natural projection corresponding to
Fλ. Let χλ = χλ

µ be the Lyapunov exponent of the probabilistic IFS, and assume that d
dλ (χ

λ) has
finitely many zeros. Then for any compactly supported measure η on R, such that

dimH(η) + dimH(νλ) > 1, for all λ ∈ J,

the measure η ∗ νλ is absolutely continuous with respect to L1.

Proof of Theorem 11. Since X is compact, we can represent it as a finite disjoint union of
sets of diameter ≤ δ:

X =
⊔
k≥1

Xk, diam(Xk) ≤ δ.

We have
νλ = ∑

k≥1
ν
(k)
λ , where ν

(k)
λ := νλ|Xk

,

thus it is enough to prove that for every k holds η ∗ ν
(k)
λ � Ld with a density in L2 for ϑ-a.e.

λ ∈ U . Thus we can assume without loss of generality that

diam(X ) ≤ δ ≤ 1.

Consider the lower density of η ∗ νλ with respect to the Lebesgue measure in Rd:

D(η ∗ νλ, x) = lim inf
r↓0

(2r)−d(η ∗ νλ)[Br(x)].
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As in [7] (Theorem 9.7), if

Jλ :=
∫
Rd

D(η ∗ νλ, x) d(η ∗ νλ)(x) < ∞,

then D(η ∗ νλ, x) is finite for (η ∗ νλ)-a.e. x, and η ∗ νλ is absolutely continuous, with a
Radon–Nikodym derivative in L2. Thus, it is enough to show that

S :=
∫
U

Jλ dϑ(λ) < ∞.

By Fatou’s Lemma,

S ≤ S1 := lim inf
r↓0

(2r)−d
∫
U

∫
Rd
(η ∗ νλ)[Br(x)] d(η ∗ νλ)(x) dλ.

Using the definition of convolution and making a change of variable, we obtain

S1 = lim inf
r↓0

(2r)−d
∫
U

∫
Rd

∫
X
(η ∗ νλ)[Br(y + Φλ(ω))] dµ(ω) dη(y) dϑ(λ). (28)

Next we have

(η ∗ νλ)[Br(y + Φλ(ω))]

=
∫
Rd

11Br(y+Φλ(ω))(w) dη ∗ νλ(w)

=
∫
Rd

11{(z,τ): z+Φλ(τ)∈Br(y+Φλ(ω))}(z, τ) dµ(τ) dη(z).

Substituting this into (28) and reversing the order of integration yields

S1 = lim inf
r↓0

(2r)−d
∫
Rd

∫
X

∫
Rd

∫
X

ϑ(Λr(y, z, ω, τ)) dµ(τ) dη(z) dµ(ω) dη(y), (29)

where

Λr(y, z, ω, τ) := {λ ∈ U : |(y + Φλ(ω))− (z + Φλ(τ))| ≤ r}
:= {λ ∈ U : |y− z + φω,τ(λ)| ≤ r}.

(30)

Recall that diam(X ) ≤ δ by our assumption, hence

ϑ
(
Λr(y, z, ω, τ)

)
≤ C2 min{1, ρ(ω, τ)−βrd}. (31)

by (22). Next we consider the integral in (29), use Fubini’s Theorem, and then split it
according to the distance between y and z:∫

Rd

∫
X

∫
Rd

∫
X

=
∫ ∫

{|y−z|<2r}

∫ ∫
X ×X

+
∫ ∫

{|y−z|≥2r}

∫ ∫
X ×X

=: I1 +I2. (32)

To complete the proof, it suffices to show that I1 . rd and I2 . rd. (The symbol . means
inequality up to a multiplicative constant independent of r.) In view of (31),

I1 .
∫ ∫

X ×X

∫ ∫
{|y−z|<2r}

min{1, ρ(ω, τ)−βrd} dη(y) dη(z) dµ(ω) dµ(τ).

The integrand does not depend on y, z, and we can estimate, using (25):

(η × η){(y, z) ∈ R2d : |y− z| < 2r} ≤
∫

η(B2r(y)) dη(y) . rγη .
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Thus,

I1 . rγη

∫ ∫
X 2

min{1, ρ(ω, τ)−βrd} dµ(ω) dµ(τ)

. rγη

[
(µ× µ)

{
(ω, τ) : ρ(ω, τ) ≤ rd/β

}
+ rd

∫ ∫
ρ(ω,τ)>rd/β

ρ(ω, τ)−β dµ(ω) dµ(τ)
]

. rγη

[
rγµd/β + rd

∫ r−d

1
(µ× µ)

{
(ω, τ) : ρ(ω, τ) ≤ t−1/β

}
dt
]

. rγη

[
rγµd/β + rd

∫ r−d

1
t−γµ/β dt

]
. rγη+γµ

d
β ≤ rd,

as desired, in view of (23), (25), and (26).

It remains to estimate I2, see (32). If C1ρ(ω, τ)α < 1
2 |y− z|, then |φω,τ(λ)| < |y−z|

2 by

(21), and |y− z + φω,τ(λ)| > |y−z|
2 ≥ r in I2, whence Λr(y, z, ω, τ) = ∅, see (30). Thus,

I2 ≤ rd
∫ ∫
R2d

∫ ∫
{(ω,τ): ρ(ω,τ)≥(|y−z|/2C1)1/α}

ρ(ω, τ)−β dµ(ω) dµ(τ) dη(y) dη(z). (33)

Denote c̃1 = (2C1)
−β/α. Then

∫ ∫
{(ω,τ): ρ(ω,τ)≥(|y−z|/2C1)1/α}

ρ(ω, τ)−β dµ(ω) dµ(τ) =
∫ c̃1|y−z|−β/α

1
(µ× µ)

{
(ω, τ) : ρ(ω, τ) ≤ t−1/β

}
dt

≤
∫ c̃1|y−z|−β/α

1
t−γµ/β dt

. |y− z|−
β−γµ

α (recall that γµ < β),

where we used (23). Finally,∫ ∫
R2d
|y− z|−

β−γµ
α dη(y) dη(z) < ∞,

in view of (26), and so I2 . rd by (33), as desired.

Funding: Supported in part by the Israel Science Foundation grant 911/19.

Acknowledgments: I would like to thank the organizers of the conference “Geometry of Deterministic
and Random Fractals” for their hospitality, and for making it a memorable event in honour of Károly
Simon. Of course, I am deeply grateful to Károly for many years of fruitful collaboration. Thanks
also to the anonymous referees for their helpful comments.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bárány, B.; Simon, K.; Solomyak, B. Self-Similar and Self-Affine Sets and Measures; AMS Mathematical Surveys and Monographs:

Providence, RI, USA, 2023.
2. Marstrand, J.M. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 1954,

3, 257–302. [CrossRef]
3. Kaufman, R. On Hausdorff dimension of projections. Mathematika 1968, 15, 153–155. [CrossRef]

http://doi.org/10.1112/plms/s3-4.1.257
http://dx.doi.org/10.1112/S0025579300002503


Math. Comput. Appl. 2023, 28, 65 21 of 23

4. Mattila, P. Hausdorff dimension, orthogonal projections and intersections with planes. Ann. Acad. Sci. Fenn. Ser. AI Math 1975,
1, 227–244. [CrossRef]

5. Frostman, O. Potential D’équilibre et Capacité des Ensembles avec Quelques Applications à la Théorie des Fonctions. Ph.D. Thesis,
Lund University, Lund, Sweden, 1935.

6. Falconer, K. The Geometry of Fractal Sets; Cambridge University Press: Cambridge, UK, 1985.
7. Mattila, P. Geometry of Sets and Measures in Euclidean Spaces; Cambridge University Press: Cambridge, UK, 1995.
8. Falconer, K. Hausdorff dimension and the exceptional set of projections. Mathematika 1982, 29, 109–115. [CrossRef]
9. Falconer, K.; Fraser, J.; Jin, X. Sixty years of fractal projections. In Fractal Geometry and Stochastics V; Birkhäuser/Springer: Cham,

Switzerland, 2015; Volume 70, pp. 3–25. [CrossRef]
10. Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [CrossRef]
11. Moran, P.A.P. Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc. 1946, 42, 15–23. [CrossRef]
12. Falconer, K. The Hausdorff dimension of some fractals and attractors of overlapping construction. J. Statist. Phys. 1987,

47, 123–132. [CrossRef]
13. Simon, K.; Solomyak, B. On the dimension of self-similar sets. Fractals 2002, 10, 59–65. [CrossRef]
14. Simon, K. Hausdorff dimension for noninvertible maps. Ergod. Theory Dyn. Syst. 1993, 13, 199–212. [CrossRef]
15. Jacobson, M.V. Invariant measures for some one-dimensional attractors. Ergod. Theory Dyn. Syst. 1982, 2, 317–337. [CrossRef]
16. Bedford, T. Crinkly Curves, Markov Partitions and Dimension. Ph.D. Thesis, University of Warwick, Coventry, UK, 1984.
17. McMullen, C. The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 1984, 96, 1–9. [CrossRef]
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60. Bárány, B.; Simon, K.; Solomyak, B.; Śpiewak, A. Typical absolute continuity for classes of dynamically defined measures. Adv.

Math. 2022, 399, 108258. [CrossRef]
61. Bárány, B.; Kolossváry, I.; Rams, M.; Simon, K. Hausdorff measure and Assouad dimension of generic self-conformal IFS on the

line. Proc. R. Soc. Edinb. Sect. A 2021, 151, 2051–2081. [CrossRef]
62. Ledrappier, F. On the dimension of some graphs. In Symbolic Dynamics and Its Applications (New Haven, CT, 1991); American

Mathematical Society: Providence, RI, USA, 1992; Volume 135, pp. 285–293. [CrossRef]
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