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Abstract: The distribution of the sum of negative binomial random variables has a special role in
insurance mathematics, actuarial sciences, and ecology. Two methods to estimate this distribution
have been published: a finite-sum exact expression and a series expression by convolution. We
compare both methods, as well as a new normalized saddlepoint approximation, and normal and
single distribution negative binomial approximations. We show that the exact series expression used
lots of memory when the number of random variables was high (>7). The normalized saddlepoint
approximation gives an output with a high relative error (around 3–5%), which can be a problem in
some situations. The convolution method is a good compromise for applied practitioners, considering
the amount of memory used, the computing time, and the precision of the estimates. However, a
simplistic implementation of the algorithm could produce incorrect results due to the non-monotony
of the convergence rate. The tolerance limit must be chosen depending on the expected magnitude
order of the estimate, for which we used the answer generated by the saddlepoint approximation.
Finally, the normal and negative binomial approximations should not be used, as they produced
outputs with a very low accuracy.

Keywords: negative binomial distribution; computation; R package; sum of negative binomial variables

1. Introduction

The negative binomial (NB) distribution is a discrete probability distribution that
models counts [1]. It widely used in statistics, from statistics of accidents [2] to animal
counts [3]. The NB distribution can be used to describe the distribution of the number
of successes or failures. Suppose that there is a sequence of independent Bernoulli trials,
each trial having two potential outcomes called “success” and “failure”. The probability of
success is p and of failure q = 1− p. We observe this sequence until a predefined number,
r, of successes has occurred. Then, the random number of failures has the NB distribution
X ∼ NB(r; p) with density P(X = x), x being a particular realization of X:

P(X = x) =
(x + r− 1)!
x!(r− 1)!

pr(1− p)x (1)

with 0 < p < 1, x and r being integer > 0. The mean is µ = r (1− p)/p.
The moment-generating function of the NB distribution is:

M(t) =
(

q
1− p et

)r
(2)
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An alternative parametrization X ∼ NB(µ, θ) can also be derived from assuming
that the mean parameter of a Poisson distribution has a gamma distribution:

P(X = x) =
Γ(x + θ)

x!Γ(θ)

(
θ

µ + θ

)θ( µ

µ + θ

)x
(3)

with µ > 0 and θ > 0. Note that θ is not necessarily an integer, contrary to r in (1); hence, the
gamma function is used in (3) instead of a factorial, with Γ(x) = (x− 1)!. The variance of
the NB distribution is µ (1 + µ/θ). As θ approaches infinity, the NB distribution tends to
follow the Poisson distribution, with the mean µ.

1.1. Sum of Negative Binomials

The sum of independent NB variables is of special interest in different contexts, such
as the study of animal distribution [4,5], fecal egg counts in infected goats [6], the number
of emergency medical calls [7], empirical distribution of the duration of wet periods in
days [8] or insurance risk [9]. When the sum of several independent NB counts is available,
determining the distribution of ∑ Xi with Xi ∼ NB(ri; pi) is a problem. When the pis
are all the same and equal to p, a classical result is ∑ Xi ∼ NB(∑ ri; p) [10], but more
general forms without this constraint are often needed. For example, if counts are available
for various spatial or temporal units of the form X ∼ NB(µi; ri), pi being ri/(µi + ri), it
implies that the pis are not all the same, because µi varies among the units [4].

With the mean and variance of the NB(r; p) distribution being r(1− p)/p and r(1− p)/p2,
respectively, it follows that the mean and variance of the sum of n-independent NB variables
are respective:

mean(Sn) = ∑n
i=1(ri(1− pi)/pi) and var(Sn) = ∑n

i=1

(
ri(1− pi)/pi

2
)

(4)

Our paper has developed some novel methods in relation to the practical computation
and use of the convolution approach [9]. However, the paper also collects five different
methods and presents them in one place, a useful resource for the working data scientist or
statistician. We describe and reference these methods and outline the computational diffi-
culties in getting them to work. We also point the reader to the freely available R software
that implements each of the methods (plus a sixth method based purely on simulation).

Two methods have been published to estimate the distribution of the sum of NB inde-
pendent variables using a finite-sum exact expression [11] or the convolution method [9].
However, the computer implementation of both methods was not available, and we have
detected potential problems when a practitioner implements them. The finite-sum exact
expression computer implementation is relatively straightforward, but memory overflow
can occur, and the time of computing will increase as a function of the factorial of the
number of observations, x. This precision was not given in the original publication [11].
The convolution method is very complex to implement and has been described as being
“cumbersome” [12]; indeed, we found that its implementation was not straightforward and
was even counterintuitive. The method uses a sum to infinity, and the condition to stop the
recursion was not defined in the original publication.

Our solution for computation of the convolution method, presented here, is novel
and has proven to be robust for extensive testing. A naïve tolerance condition has been
used by one of the authors of this note (MG) (recursion stops when the change is lower
than the tolerance limit) as in [4,5], but the other author (JB) found that outputs can be
strongly biased in some conditions. It has been the beginning of a collaboration between
the two authors to understand and solve the origin of this bias. We detected two problems:
(1) the tolerance check must be applied only when the first-order change of the estimate
is negative (convergence criteria being adaptive), and (2) the value of the tolerance must
be proportional to the expected estimate. Then, it was necessary to have an estimate of
the density to set the tolerance, to better estimate the correct density. To solve this, we
used the saddlepoint approximation of the density. We show that the absolute error of this
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approximation can be on the order of 5%, being too high to be used in many applications,
but it is sufficiently low to define a correct tolerance to be used with the convolution method.

1.2. Normal and Negative Binomial Approximations

When working on the sum of variables, the first thought is to use the central limit the-
orem [13] that establishes that, in many situations, the distribution of the sum-independent
random variables tends to go toward a normal distribution. An alternative is to model the
distribution of the sum of NB variables, as an NB distribution is based on the observation
that the distribution of the sum of NB variables is a mixture NB distribution [9], according
to Theorem 2, proposed by Makun, Abdulganiyu, Shaibu, Otaru, Okubanjo, Kudi, and
Notter [6].

1.3. Finite-Sum Exact Expression

An exact form for the distribution of the sum of NB is:

P(Sn = x) = ∑µ1+···+µn=x ∏n
j=1

Γ
(
µj + θ

)
µ!Γ
(
rθj
) pj

θj qj
µj (5)

The expression (5) is compact and the exact value can be computed [11].

1.4. Approximation by Convolution

When Xi ∼ NB(ri; pi), with i from 1 to n, the distribution of Sn = ∑ Xi is a mixture
NB [9], with the probability mass function being approximated by:

P(Sn = x) = R ∑∞
k=0 δk

Γ(r + x + k)
Γ(r + k)x!

M1
r+k(1−M1)

x, x = 0, 1, 2, · · · (6)

where r = ∑n
i=1 ri , and M1 = maxj

(
pj
)
.

R = ∏n
j=1

( qj M1
(1−M1)pj

)−rj

and δk+1 = 1
k+1 ∑k+1

i=1 i ξi δk+1−i, k = 0, 1, . . . with δ0 = 1 and

ξi =
n
∑

j=1

rj(1−(1−M1)pj/qj M1)
i

i

Expression (6) is used iteratively, with k being the counter of the rank of iterations, but
a condition to stop the iterations when a certain level of approximation is reached was not
defined in the original publication [9].

1.5. Saddlepoint Approximation

The saddlepoint approximation method provides a highly accurate approximation
formula for any probability density function (continuous distribution) or probability mass
function (discrete distribution) of a distribution, based on the moment-generating func-
tion [14].

Taking the log of the moment-generating function of the NB distribution (2) and
summing over n-independent NB variables, the cumulant of sum of NBs is:

K(t) = ∑n
i=1 ri

(
log(qi)− log

(
1− pi et))

Or K(t) = ∑n
i=1 θi

(
log(θi)− log

(
θi + µi

(
1− et))) (7)

The first and second order of the derivatives of K(t) are:

K′(t) = ∑n
i=1

θi µi et

θi + µi(1− et)
(8)
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K′′ (t) = ∑n
i=1

θi µi (θi + µi) et

(θi + µi(1− et))2 (9)

The saddlepoint, sx, is found by solving K′(sx) = x. Once sx is found, P(Sn = x) can
be approximated by:

P(Sn = x) ≈ 1√
2π K′′ (sx)

e(K(sx)−x sx) (10)

The value P(Sn = x) is normalized to ensure that ∑ P(Sn) = 1.
In the remainder of this note, we describe the computational problems that applied

statisticians or practitioners face in implementing the distribution of the sum of NB-
independent variables using finite-sum exact expression [11], the convolution method [9],
saddlepoint approximation, or the approximation by normal and NB distributions. We
describe how these have been overcome in the publicly available R package (HelpersMG
package version 5.9 and higher (https://CRAN.R-project.org/package=HelpersMG, ac-
cessed on 6 February 2023). The code can be checked after loading this package with the
command ?dSnbinom.

2. Computations

Figure 1 gives two examples of the sum S of independent NB random variables, and
how these distributions are approximated using the four methods (convolution, saddle-
point, single normal, single NB) outlined in this note. In (A), we use n = 10, j = 1 . . . n,
pj = 0.4 + j

10 and rj = j× 10, and in (B) n = 2, pj =
j

10 , and rj = j.

2.1. Normal and Negative Binomial Approximations

When n is large and standard deviation is small as compared to the mean, the normal
approximation with P(Sn = x) =

∫ x+0.5
x−0.5 N (µ, σ ), where N (µ, σ ) is the normal probabil-

ity density function with µ = mean(Sn) and σ =
√

var(Sn) can be used as an approximation
for the distribution of the sum of independent NB random variables (Figure 1A). However,
for a small n or large standard deviation, as compared to the mean (corresponding to a
highly skewed distribution), the approximation can be very poor (Figure 1B). The NB distri-
bution modeled with the probability density function, NB(µ, θ), such that µ = mean(Sn)

and θ = mean(Sn)
2/(var(Sn)−mean(Sn)) , better fits the exact distribution of the sum of

NB variables, but still with a bias (Figure 1B). This confirms that the distribution of the
sum of independent NB variables is not an NB, as wrongly stated in [6]. It is, rather, a
mixture NB (see below) [9]. In summary, the normal and NB approximations generate the
highest errors (>30% in some cases) and they should not be used, especially as there are
better alternatives.

2.2. Finite-Sum Exact Expression

This method permits the calculation of the exact value for P(Sn = x). It will therefore
be used as a reference here.

For the finite form exact expression method [11], a table of n columns with all the
combinations of integers, from 0 to x, that produce a sum of x (m1 + · · ·+ mn = x), must
be first established. The number of different ways to distribute x-indistinguishable objects
into n-distinguishable categories is C(x + n − 1, n − 1). This is the memory-consuming
part of the Vellaisamy and Upadhye [11] method. The density P(X = x) in Equation (1)
is calculated n times for each of these combinations in the final table (the ∏n

j=1 part of
Equation (5)). This is the computationally time-consuming part of the method.

https://CRAN.R-project.org/package=HelpersMG
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Figure 1. Sum of independent NB distributions approximated with convolution, saddlepoint approx-
imation, normal, and single NB distribution. (A) n = 10, j = 1 . . . n, pj = 0.4 +

j
10 and rj = j× 10;

mean(Sn) = 183.92, var(Sn) = 270.75. (B) n = 2, pj =
j

10 and rj = j; mean(Sn) = 17, var(Sn) = 130.
The bar plots show the exact distribution, and the top graphs show the absolute % of error of
the approximation.

When n and/or x are large, this method requires lot of iterations. For example, there
are 1,081,575 different combinations of 17 objects in nine categories. Then, Equation (1)
must be applied 9,734,175 times to estimate P(Sn = x) when using Equation (5).

2.3. Approximation by Convolution

The coefficients of Equation (6) are iteratively defined, and we rewrite the published
formula to make the computation more efficient using the recursion:

W(Sn = x)0 =
Γ(r + x)
Γ(r)x!

M1
r(1−M1)

x

W(Sn = x)k+1 = W(Sn = x)k + δk+1
Γ(r + x + k + 1)
Γ(r + k + 1)x!

M1
r+k+1(1−M1)

x

P(Sn = x)k = R W(Sn = x)k (11)

Intermediate estimates in (11) used log of expressions to prevent a computing overflow.
The conditions to stop the iterations were not defined in Furman’s original publication.
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A typical method in such situations is to stop the recursion when the change in the fi-
nal output is below a defined tolerance. However, it cannot be used in the context of
Equations (6) or (11), because, at the beginning of iterations, the change in P(Sn = x) is
sometimes so small that recursions will be stopped immediately and the resulting proba-
bility P(Sn = x) will be biased. An example of this is shown in Figure 2A, which shows
the value of P(S7 = 6)k (n = 7, j = 1 . . . n, pj = j/10, and rj = j) as a function of the recursive
iterations k from Equation (6). For the first eight iterations, the change in P(S7 = 6)k is very
small. To alleviate this problem, many iterations can be used, but without being sure that
they are sufficient, and it is done at the expense of running time. This solution was chosen
with at least 1000 iterations in [5], but this number of iterations is not always large enough
to ensure a correct estimate when n or x are large.
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Figure 2. (A) Dynamics of the convergence of P(S7 = 6)k with n = 7, j = 1 . . . n, pj = j/10, and
rj = j using Equation (6), with k being the rank of iterations. (B) Trend of the changes in Pk with
tolerance = 10−12.

A better approach came from the study on the trend of the rate of change of P(Sn = x)
according to the rank of iteration k: Pk − Pk−1 vs. Pk+1 − Pk, where Pk denotes the
value of P(Sn = x) at iteration k. In its initial phase, the rate of change of P is posi-
tive, with Pk − Pk−1 > Pk+1 − Pk, then it shows a peak and becomes negative, with
Pk − Pk−1 < Pk+1 − Pk (Figure 2B). The tolerance threshold must be used only after
the occurrence of the peak to ensure that the phase of rapid change of P is reached. The
number of iterations before the peak is dependent on the values of n, x, ri and pi, and
cannot be easily anticipated at the beginning of the iterations. We have therefore developed
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an adaptative strategy to stop the recursion when two conditions are met: the rate of
change of P(Sn = x) is negative, and the change of P(Sn = x) is less than the user-defined
tolerance. The tolerance value must be lower than P(Sn = x) or the output will be biased.
As an example, if µ = (0.01, 0.02, 0.03) and θ = (2, 2, 2), then P(S3 = 20) = 7.73139× 10−35

using the exact method. If the Furman method is used with the tolerance set to 10−12,
P(S3 = 20) = 3.879379× 10−35, which is two times lower than the exact answer. The
solution is to define a tolerance much lower than the anticipated results, for example,
here, with the tolerance being 10−45, P(S3 = 20) = 7.73139× 10−35, which is the correct
probability. This can be done using the saddlepoint estimate (see below).

The comparison of the results obtained by Equation (6), with an adaptative stopping
of the recursion and tolerance setup, using saddlepoint approximation (see below) and
Equation (5), are shown in Table 1 with the corresponding computing time. This table is
similar to those used in Tables 1 and 2 in Vellaisamy and Upadhye [11].

Table 1. Comparison of accuracy and computing time of the sum of n numbers x = 3, 5, 8, 10, and
15 obtained from NB distributions with j = 1 . . . n, pj = j/10, rj = j, and n from 2 to 7 based on
Equations (5), (11), and (10). For each (n, x) combination in (A), the top number is the probability
P(Sn = x) and the bottom number is the number of iterations. In (B), the number of recursions
required to stabilize P(Sn = x) is shown. The P(Sn = x) values are exactly the same as those in
(A) and are not shown. In (C), the P(Sn = x) values for saddlepoint approximation are shown.
Computing times for the different methods are shown at the right of each table. The code for
Equation (5) was parallelized on an 8-core computer in R 4.2.3 and HelpersMG package version 5.9
(https://CRAN.R-project.org/package=HelpersMG, accessed on 6 February 2023).

A: Vellaisamy and Upadhye [11]: Exact Probabilities No Parallel Parallel
8-Core

x = 3 x = 5 x = 8 x = 10 x = 15 Time (s) Time (s)

n = 2 0.02320400 0.03403236 0.04283461 0.04425234 0.03856123 0.001 0.011
16 36 81 121 256

n = 3 0.00273650 0.00730772 0.01724312 0.02421915 0.03607386 0.003 0.011
40 126 405 726 2176

n = 4 0.00020980 0.00094784 0.00408465 0.00785680 0.02099302 0.014 0.012
80 336 1485 3146 13,056

n = 5 0.00001503 0.00010490 0.00076597 0.00196540 0.00920145 0.062 0.015
140 756 4455 11,011 62,016

n = 6 0.00000131 0.00001291 0.00014555 0.00047692 0.00365038 0.249 0.023
224 1512 11,583 33,033 248,064

n = 7 0.00000017 0.00000218 0.00003427 0.00013604 0.00154413 0.906 0.049
336 2772 27,027 88,088 868,224

B: Furman [9]: Convolution Tol = Psaddlepoint(Sn = x)× 10−10

x = 3 x = 5 x = 8 x = 10 x = 15 Time (s)

n = 2 13 14 15 16 18 0.007
n = 3 19 20 23 24 27 0.008
n = 4 27 29 32 34 38 0.009
n = 5 39 42 45 48 54 0.009
n = 6 58 62 67 70 79 0.009
n = 7 92 97 104 109 122 0.011

C: Normalized Saddlepoint Approximation
x = 3 x = 5 x = 8 x = 10 x = 15 Time (s)

n = 2 0.02372254 0.03448835 0.04314218 0.04442429 0.03841261 0.007
n = 3 0.00283042 0.00748306 0.01754862 0.02458058 0.03637448 0.007
n = 4 0.00021836 0.00097613 0.00418037 0.00802118 0.02132508 0.008
n = 5 0.00001571 0.00010840 0.00078653 0.00201341 0.00938611 0.008
n = 6 0.00000137 0.00001337 0.00014977 0.00048960 0.00373283 0.008
n = 7 0.00000018 0.00000226 0.00003531 0.00013984 0.00158133 0.018

https://CRAN.R-project.org/package=HelpersMG
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2.4. Saddlepoint Approximation

The saddlepoint approximation (we used the Brent’ algorithm [15] for the mini-
mization needed to find the saddlepoint) is computationally fast. However, the esti-
mate must be normalized so that the density function sums to 1 [16]. The normalization
used the sum of P(Sn = x), with x from 0 to mean(Sn) + Max

√
var(Sn), with mean(Sn)

and var(Sn) from Equation (4) and Max = 20. A test was performed to ensure that
P
(

Sn = mean(Sn) + Max
√

var(Sn)
)

was 0 or that the Max was increased until this con-
dition was reached. The relative difference between the exact value of P(Sn = x) and the
saddlepoint approximation can be sometimes of the order of 5% (Figure 1). On the other
hand, this approximation is good enough to set the tolerance of the approximation by
convolution, using a tolerance equal to Psaddlepoint(Sn = x)× 10−10.

The tolerance value to cut the iterations for an approximate Furman [9] method must
be of the same order as the value of P(Sn = x), multiplied by the tolerance and set at
the value of 10−10, to have an estimate precise up to the 10th digit. The difficulty is that
P(Sn = x) needs to be estimated here. The chosen solution was to use a rough estimate
of P(Sn = x) from the very fast saddlepoint approximation method first. This approach
proved to be very efficient, because the estimates of the approximate Furman [9] method
are exactly the same as for the exact method (Table 1A).

Equation (5) has the advantage that it is parallelizable, but for a large n and x (see
Table 1A), doing so requires a large number of both iterations and memory. Equations (6)
and (11), however, are not disadvantaged by these problems. Vellaisamy and Upadhye [11]
indicated that Equation (5) required less computing time than Equation (6), even for n = 7 and
n = 15. This would be true only if the authors used a very large number of iterations to stop
the iterations in Equation (6), or if their conditions to stop the iterations were sub-optimal.

As a general conclusion, we consider that the approximate form of distribution for
the sum of independent NB proposed by Furman [9] should be used in all the contexts,
whatever the parameters n, x, pi or ri. The tolerance can be approximated by using the
value of P(Sn = x), estimated using the saddlepoint approximation method. This solution
is used by default in the R package HelpersMG (version > 5.9), available in CRAN: The
Comprehensive R Archive Network [17].
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