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Abstract: Guided wave ultrasound (GWU) systems have been widely used for monitoring structures
such as rails, pipelines, and plates. In railway tracks, the monitoring process involves the complicated
propagation of waves over several hundred meters. The propagating waves are multi-modal and
interact with discontinuities differently, increasing complexity and leading to different response
signals. When the researcher wants to gain insight into the behavior of guided waves, predicting
response signals for different combinations of modes becomes necessary. However, the task can
become computationally costly when physics-based models are used. Digital twins can enable a
practitioner to deal systematically with the complexities of guided wave monitoring in practical or
user-specified settings. This paper investigates the use of a hybrid digital model of an operational
rail track to predict response signals for varying user-specified settings, specifically, the prediction
of response signals for various combinations of modes of propagation in the rail. The digital twin
hybrid model employs a physics-based model and a data-driven model. The physics-based model
simulates the wave propagation response using techniques developed from the traditional 3D finite
element method and the 2D semi-analytical finite element method (FEM). The physics-based model
is used to generate virtual experimental signals containing different combinations of modes of
propagation. These response signals are used to train the data-driven model based on a variational
auto-encoder (VAE). Given an input baseline signal containing only the most dominant mode excited
by a transducer, the VAE is trained to predict an inspection signal with increased complexity according
to the specified combination of modes. The results show that, once the VAE has been trained, it can
be used to predict inspection signals for different combinations of propagating modes, thus replacing
the physics-based model, which is computationally costly. In the future, the VAE architecture will be
adapted to predict response signals for varying environmental and operational conditions.

Keywords: ultrasonic guided waves; deep learning; inspection data; welded rail track

1. Introduction

Structural health monitoring of continuously welded heavy-haul railway lines con-
tinues to become increasingly important in the railway industry. These railway lines
experience very large stresses due to high axle loads and varying environmental condi-
tions, which may lead to train derailments. The major cause of derailments is usually
complete rail breaks resulting from damage evolution in the rail. Defects such as cracks
can initiate at any region within the rail cross-section and along its length. Over the years,
extensive research has demonstrated the potential of guided wave ultrasound (GWU)
to allow for full volumetric coverage when monitoring long structures such as rails and
pipelines [1–4]. Firstly, the propagating modes are multi-modal in nature and are highly
sensitive to different types of discontinuities, thereby causing reflections. Secondly, the
modes can be used to target different cross-sectional regions in the waveguide, allowing
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for damage detection in those regions. Thirdly, modes with low attenuation can propagate
over long-range distances.

In pipelines, a permanent GWU monitoring system uses a ring of transducers to excite
a torsional mode that reflects strongly from the growth of defects produced by corrosion
and erosion [3]. Such a system has been used to investigate guided wave behavior in simple
inspection set-ups for above-ground pipelines and in complex scenarios where sections
of a pipe are inaccessible due to being insulated, coated, or buried underground [4]. An
ultrasonic broken rail detection (UBRD) system developed for railway lines is permanently
installed on 840 km of rail between Sishen and Saldanha in South Africa [1,2,5]. The
system detects complete breaks by transmitting ultrasonic-guided waves in the head of the
rail between permanently installed alternating transmit and receive transducers, spaced
approximately 1 km apart. If the receive station does not detect the transmitted signals,
an alarm is triggered, indicating a broken rail and train operation is stopped. The UBRD
system has successfully reported several rail breaks, and in 2017, the contribution of the
system was measured to be up to 56% of all rail breaks reported [6]. This system was
designed to detect only complete breaks, not cracks that occur before breaks.

In order to prevent complete rail breaks by first detecting damage such as cracks, the
UBRD system will require the capability to track damage evolution from the initial stages
of development. Other important features of a successful monitoring system include its
defect detection techniques, the performance measure for different damage scenarios and
the transducers employed. The tracking of damage evolution can be achieved by obtaining
highly repeatable ultrasonic measurements of the same section of rail over a specified
period. Damage can then be detected using the baseline subtraction technique, where the
early measurement (the baseline) that was collected when the waveguide was in a known
structural condition is subtracted from the current measurement signal [7,8]. However, the
baseline subtraction technique is effective only if the changes in the collected measurements
and the baseline are due to a change in the condition of the waveguide. In industrial
applications, the waveguides are subjected to various environmental and operational
conditions (EOCs) that introduce additional changes in the measured reflections making it
difficult to distinguish them from those caused by damage evolution. The most common
EOC in GWU has been identified as temperature. Other damage detection schemes that
have been proven effective when applied to GWU are independent component analysis and
singular value decomposition [9–11]. However, the researcher will require compensation
strategies to deal with the complexities introduced by temperature and other EOCs [12–15].

In addition to complex variations caused by changing EOCs, guided wave measure-
ments are further complicated by their nature. When a wave propagates through a material,
its energy will attenuate with time due to damping, and the multiple propagating modes
will have different attenuation properties that change with frequency [4,16,17]. Further-
more, the modes exhibit a dispersive nature, where their speed of wave propagation differs
with frequency [18]. Dispersion causes the wave packets to spread out as they propagate,
adding more complexity to the response measurements. As the multiple modes attenuate
and disperse during propagation, their reflections from discontinuities may interact with
each other. For example, a single reflection could result from two coupled modes [19].
Moreover, the reflections may overlap and further contain components caused by the
excitation and reception of unwanted modes [20]. These unwanted components are often
known as coherent noise. Therefore, if we perform repeatable GWU measurements, we
obtain unique inspection signals due to aleatoric uncertainty caused by noise as well as
random EOC variations and their influence on the properties of the propagating modes.
When these measurements are collected during damage evolution, more complexity will
be introduced, making it difficult to detect the growing damage. As the defect evolves,
its geometry may change with time, causing additional modes to start propagating at
different stages of evolution and interact with other modes. Therefore, it is very important
to understand these complexities to develop successful monitoring systems.
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A technique to predict system performance when detecting small damage using
ultrasonic guided waves has been demonstrated by researchers in references [9,10,21] for
pipeline waveguides. This technique evaluates system performance in terms of probability
of detection vs. false alarm using receiver operator characteristic curves (ROCs). Despite
their robustness, the challenge with the discussed damage detection techniques and ROCs is
that, first, they require a lot of monitoring data collected under varying EOCs. Second, such
data should contain damage signatures for different damage evolution stages. Inspection
data containing damage evolution is unavailable for rail track applications since damaged
sections are immediately replaced with new ones.

The challenge posed by the lack of inspection data for unavailable damage scenarios
can be addressed through modeling and simulation capabilities that make it possible to
predict data that are almost impossible to obtain from a physical system. Modeling and
simulation further offer the ability to thoroughly interpret the inspection data to understand
better how different properties affect wave propagation. Ramatlo et al. [19,22] developed a
finite element modeling framework to simulate guided wave inspections in welded rails.
The waves are excited by a resonant transducer model validated in reference [23]. The
model for calculating the scattering caused by complex discontinuities such as welds is
based on a technique presented by Benmeddour et al. [24] and validated by Long et al. [25]
for aluminothermic welds in rails. The physics-based modeling framework presented
in [22] only accounts for direct reflections from welds. In reference [19], the method was
improved to account for multiple reflections, which are most common when working in the
web section of the rail. The physics-based model was validated using a field experiment
from an operational railway line. The reflections from welds were accurately predicted,
implying that it is possible to model and simulate realistic responses for unavailable
damage scenarios. However, the limitation of this physics-based numerical model is that
it cannot model and simulate unique repeatable ultrasonic measurements subjected to
aleatoric uncertainty. Physics-based numerical models can only be used to produce a
single solution approximating a measurement for a specified EOC and cannot deal with
complex data variations due to uncertainty. Furthermore, when the researcher wants to
gain insight into the behavior of guided waves for different propagation scenarios, the
prediction of response signals for different combinations of modes becomes necessary.
However, this will require the simulation process to be carried out multiple times, further
imposing the challenge of high computational demands. To address these challenges,
machine learning algorithms are of great use as they can recognize the pattern change due
to aleatoric uncertainty and user-specified settings. Moreover, running the model requires
fewer computational resources.

Recently, many demonstrations of machine learning techniques that address aleatoric
uncertainty in guided wave measurements have started to emerge in the research commu-
nity. These techniques show a great advantage as they can model complex behavior with
high efficiency though they require extensive training data. Most of these studies focus on
damage detection, severity, location, and characterization in the presence of uncertainty [26]
and achieve this using a convolutional layer that applies a filter to the training data to
extract the underlying features. In references [27,28], a deep convolutional neural network-
based framework for damage localization in the presence of uncertainty was proposed and
applied to a 1m square plate. Damage location was modeled as a multi-modal probability
distribution, which made it possible to identify multiple damage locations in the plate. The
neural network was trained solely with simulated data, and the analysis was extended to
experimental data with temperature variations [28]. This approach proved to be robust to
uncertainty and showed a competitive performance to traditional localization methods.
The authors of [27,28] introduced environmental uncertainty in the training data as ran-
domness in the wave velocity/wavenumber. The small changes in the wavenumber were
approximated by a time-domain stretch computed from the scale transform method [13].
In reference [29], an uncertainty quantification study was carried out to predict GWU
inspections in the context of crack sizing for pipelines. The training data used in this study
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contained aleatoric uncertainty due to noise inherent to the data generation process and
epistemic uncertainty caused by ignorance of how the data was generated.

From a review of past literature, it was found that the application of machine learning
techniques in GWU monitoring under uncertainty has only been carried out in a few areas.
While research has been mostly restricted to damage detection and localization in the pres-
ence of uncertainty, generating repeatable inspection data containing uncertainty remains
equally important. This is because to generate realistic inspection data for unavailable
damage evolution scenarios, such data should account for aleatoric uncertainty. This paper
seeks to make a contribution towards the modeling and simulation of inspection data for
varying EOCs and user-specified complexities in GWU. In this paper, we introduce this
topic through a proof of concept study by exploring the use of a data-driven technique
to predict GWU inspection signals subject to varying user-specified settings. The user-
specified setting that we focus on is that of different modes of propagation. Given an input
baseline signal containing only the most dominant mode excited by a transducer attached
to the head of the rail, we want to use the proposed data-driven physics-based digital
twin model to predict an inspection signal with a specified combination of modes. The
data-driven physics-based digital twin model is based on the physics-based digital model
in [19] that is used to generate the training and testing data, and a Variational Auto-Encoder
(VAE) model used to learn the mapping from the input signal with just one mode to an
output signal with a specified combination of modes. We consider an operational rail with
multiple aluminothermic welds as discontinuities. The waves are excited by a piezoelectric
transducer and propagated to distances up to 400 m in a pulse-echo set-up.

The prediction of response signals for different combinations of modes can be regarded
as a tool to gain insight into the behavior of guided waves in different scenarios. These
modes can interact with discontinuities in the rail in different ways, leading to different
response signals. The tool can help the researcher better understand and interpret how
each mode contributes to the total response. The researcher can then use this information,
for example, to design transducers targeting specific modes, though the task can become
computationally costly when physics-based models are used. The second objective of this
paper is to demonstrate that once a variational auto-encoder is trained, it makes it possible
to replace physics-based finite element models. The benefits of replacing a physics-based
model with a data-driven model include increased efficiency and reduced computational
costs. Physics-based finite element models are computationally expensive, especially in
problems concerned with guided wave propagation, where the model has to be solved at
discrete frequency points.

Traditionally, VAEs are used to reconstruct the input data through a lower-dimensional
latent representation. In this paper, we extend the novelty of reconstructing an output target
that is similar to the input data, but distinct in some respect, as proposed with denoising
VAEs [30]. Unlike the denoising VAEs that reduce the complexity of the input data by
removing information from the input signal, we increase the complexity of the input data by
adding information to the input signal in the form of the measured response in the presence
of additional modes of propagation. Given a baseline signal with reflections caused by the
most dominant mode, the reconstructed output will contain additional reflections from
other modes specified by the user. Therefore, we propose an enhancing VAE as it adds
more complexity and new features to the input signal. The performance of the trained
VAE model is validated in a supervised setting by using simulated experimental data that
enhances a baseline signal with additional modes. The proposed approach can be applied
to different rail set-ups in terms of the types of discontinuities considered, the position
of those discontinuities as well as different positions of the transducer. Every time the
researcher considers a different rail set-up, appropriate data for the problem at hand will
be required, and the VAE will have to be trained using that data. The training for each rail
set-up will result in a unique model for that scenario, though the same architecture can be
used. The presented approach is only applied to simulated data since modal decomposition
is impossible in experimental field data. In the future, the procedure will be adapted to
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predict inspection signals for damage evolution for varying EOCs and other complexities
encountered in operational data.

The physics-based model to simulate the virtual experimental data is described in
Section 2. Section 3 explains the data used to train the VAE architecture in Section 4, and
the results are presented in Section 5. The conclusions of the paper are drawn in Section 6.

2. Simulation of Guided Wave Inspection in the Head of a Rail

A field experiment was performed on a UIC60 rail in an operational heavy-haul
rail track with 240-m-long sections welded together by four aluminothermic welds. The
guided waves are excited using a piezoelectric transducer attached to the head of the rail
and located at a distance of approximately 78 m from the nearest weld. The pulse-echo
transducer was driven by a 17.5-cycle Hanning windowed tone burst voltage signal with a
center frequency of 35 kHz. The excited guided waves were transmitted in both directions
along the rail, and the transducer was used to measure the reflections from the welds. A
schematic representation of the field layout of the section of rail considered is illustrated in
Figure 1.

Figure 1. Schematic representation of a considered section of an operational rail containing four welds.

The experimental set-up in Figure 1 was approximated using a physics-based modeling
framework presented and validated in reference [19]. The digital model for the set-up
considered in this paper is illustrated in Figure 2. The model will be briefly explained for
completeness, but the reader is referred to [19,22] for additional details.

Figure 2. A digital model of the considered section of an operational rail.

The three elements that form the basis of the modeling framework are excitation using
a transducer, propagation of waves in regions of constant cross-section and scattering from
discontinuities. The excitation model employs a piezoelectric transducer modeled using
the traditional 3D FEM coupled to a 2D semi-analytical finite element (SAFE) cross-section
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of the waveguide through the computation of the frequency-dependant dynamic stiffness,
as explained in [23]. A 17.5-cycle Hanning windowed tone burst voltage signal with a
center frequency of 35 kHz was applied to the transducer, and equivalent mechanical forces
were applied to the 2D cross-section model using the dynamic stiffness matrix. The hybrid
model combining the 3D model of the transducer and the 2D model of the rail computed
the mode shapes and associated modal amplitudes resulting from the transducer excitation.
These wave modes are then propagated along the length of the waveguide by applying
analytical variations in the direction of propagation using the SAFE method [31]. The
scattering of guided waves from discontinuities such as welds is modeled using a second
hybrid model, which couples a 3D FEM model of the reflector with two SAFE models to
represent the semi-infinite incoming and outgoing rails on either side of the reflector. This
method is explained in detail in reference [24]. The propagation properties calculated from
the SAFE models account for dispersion and attenuation in the rail. The results of the
individual elements of the inspection set-up for the UIC60 rail considered were published
in reference [22].

In a waveguide with multiple discontinuities, wave propagation is characterized by
complex back-and-forth reverberations that occur between the discontinuities. This network
of reverberations is accounted for by introducing a global scattering matrix according to [32],
where several local discontinuities are modeled as one reflector. This procedure is first
applied to create a domain referred to as the right waveguide where welds A and C, located
to the right of the transducer, are coupled together. The second domain of reflectors, the
left waveguide, is created by coupling hybrid models of welds B and D together. The
general scattering matrix for each region is computed using the reflection and transmission
matrices for each weld and propagation terms from dispersion properties. The matrix
accounts for infinite reverberations that occur during propagation. An example of a simple
reverberation is a double reflection resulting when the waves reflect two times, first from
weld A, then from weld B, before the transducer measures the response. This reverberation
is called a double reflection in this paper. When a general scattering matrix is not employed,
only a finite number of reflections can be included in the simulation result, and those
reflections need to be included manually. The difference between the two approaches was
discussed in reference [22]. The general scattering matrix automatically accounts for infinite
reverberations, thereby improving the accuracy of the simulated response.

The method of Baronian et al. [32] is further employed according to Ramatlo et al. [19]
to create a model for the entire section of rail considered. To account for the computation of
reverberating reflections, a scattering model of the transducer is included. The model was
implemented by using a hybrid model combining the 3D FEM of the rail and the transducer
with two SAFE models of the rail to represent the incoming and outgoing waveguides.
The hybrid model was then used to predict the wave modes reflecting and transmitting
through the transducer when an incident wave interacted with the transducer attached to
the rail. The models of excitation and scattering from the transducer are thus coupled with
models of the left and right waveguides, and the wave modes are propagated between
these domains. Response signals are calculated at the transducer location in the frequency
domain based on the specified number of modes:

U(ω) =
N

∑
r=1

αrψr (1)

where ψr is the mode shape, and the term αr is the modal amplitude of the reflected mode at
the transducer location. The response is then converted to the distance domain by applying
an inverse Fourier Transform followed by a dispersion compensation procedure [18].
Details of the coupling procedure and computation of response signals can be found in
references [19,32].
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3. Simulated Virtual Experimental Baseline and Response Signals with Different
Mode Combinations

In GWU, the waveguide structure supports an infinite number of propagating modes.
These modes propagate as a function of frequency. The frequency at which a mode starts
to propagate is known as the cut-off frequency. Figure 3 shows the dispersion curves
of propagative modes supported by the UIC60 rail considered. Several mode shapes
associated with some of these modes are also plotted. The mode numbering scheme used
in this paper is similar to that in reference [22]. When we excite the rail track in the head
section as explained in Section 2, the mode that will be strongly excited is the mode with
energy concentrated in the head of the rail. Such a mode will be referred to as mode
number 7. Other modes of propagation will also be excited by the transducer, though their
contribution to the total response will not be as large as that of mode 7. Examples of such
modes are mode numbers 8, 15 and 21. An example of a mode that will not be excited by
the transducer is mode number 1. The displacement of this mode is mainly in the web
section along the longitudinal axis of the rail.

1 7 8 2115

Figure 3. Dispersion curves of propagative modes supported by the UIC60 rail considered, with
selected mode shapes shown.

Figure 4 shows a spectrogram of the simulated virtual experimental response for the
baseline signal and the equivalent distance domain signal in the log scale. The baseline
signal contains only mode number 7. This mode is almost non-dispersive. The response
signals show the reflections from the four welds, as well as a double reflection, caused
when the waves reverberate between welds A and B. This double reflection occurs at
approximately 0.15 s in the spectrogram.

In Figure 5, the examples of target response signals (which are the desired outputs
that the VAE network should produce) for different combinations of modes as well as
mode number 7 are plotted. The modes that were included in the total response are also
specified. The energy of the reflections decays exponentially with time due to attenuation
in the rail. Mode number 7 was strongly excited. This mode is identified by a vertical
trace in the spectrogram and the highest amplitude in each weld reflection in the distance
domain signals. Other modes reflecting from welds are also evident. These modes are
very dispersive as their propagation velocity differs as a function of frequency. Some of
these modes are coupled in pairs implying that a particular incident mode is reflected as a
different mode from the weld. The example target signals also show the double reflection
between welds A and B. The VAE model will be trained and tested using the distance
domain response signals with the amplitude on a log scale, as shown in Figures 4 and 5.
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Figure 4. (a) Spectrogram of the simulated baseline signal (mode 7 only) and (b) the equivalent
distance domain signal.
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Figure 5. Spectrograms and the equivalent distance domain signals, for example, target signals with
different mode combinations. (a,d) Modes {7, 8, 15, 16, 21, 22}, (b,e) Modes {7, 15, 16} and (c,f) Modes
{7, 8, 9, 23, 24}.

4. VAE Predicting Virtual Experimental Data for a Specified Combination of Modes

Dispersion behavior, modal interaction, and overlapping reflections from different
sources add complexity to the response signals. Furthermore, in addition to direct reflec-
tions, multiple discontinuities introduce double reflections that occur when the waves
reverberate between discontinuities. This increases the complexity of the response. In this
section, a VAE has been developed, trained, and tested using virtual experimental signals
from a physics-based model to add complexity in the form of more modes to a baseline
signal with only one mode.

The proposed framework for generating synthetic data with damage signatures is
based on the principle of dimensionality reduction. The VAE consists of two separate
networks, an encoder, and a decoder, connected through a lower-dimensional latent space
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z. The encoder compresses the input data to a lower-dimensional space that maps the data
to a continuous latent vector z. The decoder then takes the latent variable and maps it to a
higher dimensional space to reconstruct an output approximating the target. Traditionally,
VAEs are used to reconstruct an output target that approximates the input data. In this
paper, we introduce the novelty of reconstructing an output target that is an enhanced input
signal. Given a baseline signal with reflections of mode number 7 from welds as an input,
the reconstructed output will contain a response in the presence of additional modes of
propagation, which result in an increased number of reflections from welds. Therefore, the
procedure we propose is an enhancing VAE as it adds more complexity and new features
to the input signal.

4.1. Training and Testing Data

As explained in Section 2, the simulation results will be used for training and testing
the VAE for predicting the target signals. The VAE requires two sets of virtual experimental
data to solve this task. The first set of input data is the baseline signal. This signal contains
reflections from four identical weld geometries and contains the contribution of only mode
number 7, as plotted in Figure 4. The second set of data is response signals containing
reflections caused by additional combinations of modes. The VAE model will then learn
the mapping from the baseline signal with only mode number 7 to the target signal with
additional mode combinations.

A total of 10 modes that contributed the most to the response signal when all modes
were included in the simulation were selected. These are mode numbers {8, 9, 11, 13, 15, 16,
21, 22, 23, 24}. The 11th mode was mode 7, which was used to generate the baseline signal.
For training and testing the VAE, the baseline signal and a dataset of n = 1024 samples
of target signals with different mode combinations were simulated. These desired output
or target signals were generated by, in addition to mode 7, including combinations of the
said 10 mode numbers, taken 10 or fewer at a time. The VAE was trained using 80% of this
data (820 randomly selected signals), and the remaining 20% (remaining 204 signals) were
used for testing the model. The distance domain response signals obtained from applying
dispersion compensation to the time domain responses were first normalized according to
the amplitude of the reflection from weld A. The logarithm of the amplitude of the signals
was then computed.

4.2. The VAE Architecture

Given a set of 820 baseline signals containing the contribution of mode 7 only, each
denoted by vectors xi ∈ Rm where m = 2400 is the length of the signal and a specified
combination of modes; we want to train the VAE to fuse additional modes to each baseline
signal. The distance domain baseline signals in Figure 4 form the main inputs for our VAE.
The second meaningful inputs are the mode numbers corresponding to the modes that
should be included in the response. The VAE should be trained to approximate the target
signals yi with complexity introduced according to the combinations of modes given by
vectors mi. A batch size of k = 32 randomly selected samples was used for each training
step. The VAE is trained by minimizing the reconstruction loss, which is the mean absolute
error (MAE) between the original target yi and the approximation ỹi,

Reconstruction Loss =
∑k

i=1|ỹi − yi|
k

. (2)

The VAE architecture used in this paper is illustrated in Figure 6 and detailed in Table 1.
The design of this VAE architecture was guided by the nature of the input data, the task
each layer could perform and reference [33]. The architecture used in reference [33] was for
only one input variable and consisted of only three different types of layers: the Conv1D
layers for extracting the underlying structure in the input signals, the Dense layers to
decrease and increase dimensionality and to connect the encoder and the decoder through
the latent space, and the Conv1DTranspose layers to apply a transposed 1D convolution
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operation. In this paper, we also include Embedding layers to capture the meaning and
learn the interpretation of different mode combinations. This is achieved by placing similar
inputs close together in the embedding space. We further included Concatenate and
TimeDistributed Dense layers for dealing with the two input variables—the baseline signal
and specified modes.

𝒎1

𝒎2

𝒎3

⋮
𝒎𝑘

𝑧

Baseline signals

Reconstructed 

target signals

Mode number 

combinations

Encoder Decoder

𝒙1 = 𝒙2 = 𝒙3⋯ = 𝒙𝑘

𝒚1

𝒚2

𝒚3

𝒚𝑘

⋮

𝒙𝑖

𝒚𝑖

Training the VAE

Training data

(𝒙1, 𝒚1) 𝒙2, 𝒚2 ⋯ (𝒙820, 𝒚820)

𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 =
σ𝑖−1
𝑘 𝒚𝑖 − 𝒚𝑖

𝑘

⋯

Testing / validation data

𝒙821, 𝒚821 ⋯(𝒙1024, 𝒚1024)

dataset

a batch of 𝑘 = 32 random samples

Figure 6. VAE architecture illustrating the training process with a batch size of k random samples
from the training dataset.

For each training step, the encoder receives as input sequences resulting from the
concatenation of a batch of i = 1, 2, . . . , k < n randomly sampled baseline signals xi and the
mode combination embeddings mi. A TimeDistributed layer is then used to apply the same
instances of a Dense layer to every temporal slice of the sequences. The encoder consists of
a stack of three sequential Conv1D layers connected to a fully connected Dense layer with
150 nodes, which is then connected to two dense layers to approximate the mean µ and the
variance σ of the 2D latent space as a normal distribution. The decoder samples from the
2D latent distribution

z ∼ N(µ, σ), (3)

and increases the dimensionality of the data using two stacks of fully connected Dense
layers, with 150 nodes and 150 × 2 nodes, respectively. A stack of three Conv1DTranspose
layers is used to increase the dimensionality further. The generated sequences are then
concatenated with the embedding layer and passed through a TimeDistributed Dense layer
to approximate the target signals yi containing the additional specified modes.
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Table 1. VAE architecture.

Layer Layer Description Activation

Encoder

Embedding Embeddings for the mode combinations -

Concatenate To concatenate the baseline signals (input layer) and the embedding -

TimeDistributed Dense Fully connected; nodes = 1 for each time step Sigmoid

Conv1D Filters = 8; kernel size = 3; stride length = 2 eLu

Conv1D Filters = 16; kernel size = 3; stride length = 2 eLu

Conv1D Filters = 32; kernel size = 3; stride length = 2 eLu

Dense Fully connected; nodes = 150 Sigmoid

Dense × 2 Latent dimension = 2 -

Decoder

Dense Fully connected; nodes = 150 Sigmoid

Dense Fully connected; nodes = 150 × 2 × 32 Sigmoid

Conv1DTranspose Filters = 16; kernel size = 3; stride length = 2 eLu

Conv1DTranspose Filters = 8; kernel size = 3; stride length = 2 eLu

Conv1DTranspose Filters = 1; kernel size = 3; stride length = 2 eLu

Concatenate To concatenate the output from the previous layer and the embedding

TimeDistributed Dense Fully connected; nodes = 1 for each time step Sigmoid

5. Results

The results of the predicted inspection signals for different combinations of modes
in the testing data are presented here. In Figure 7, response signals reconstructed using
a VAE model are compared to the original target responses for several cases of different
mode combinations. The combination of modes that contributed to each response signal is
highlighted in the figures.

First, we notice that the VAE was able to capture the complex features in the reflected
signals. For the rail set-up considered in this paper, the most dominant mode excited
by the piezoelectric transducer is the least dispersive mode with energy concentrated in
the head of the rail (mode 7), shown in Figure 3. This mode was used to compensate for
dispersion according to the procedure in [18]. Hence, the mode is identified as a sharp
peak in each reflection group. Other modes with energy in the head of the rail contribute
to the response signals, as explained in detail in reference [22]. Some of these modes
exist individually, while others exist as coupled modes. These modes were not perfectly
compensated for dispersion. Hence, their energies are spread out. In Figure 7a–d, it is
evident that the reflections from welds in the VAE reconstructed responses are comparable
to the finite-element-simulated virtual experiment target. Furthermore, the VAE was able
to reconstruct the double reflection located at ∼240 m, resulting from the reverberation
of mode 7 between welds A and B, as shown in Figure 7. In Figure 7a, the original target
and reconstructed result show that the specified modes, modes 9 and 11, did not have a
significant contribution to the overall response. In Figure 7b, the contribution of modes 15
and 23 to the overall response was also insignificant. These modes resulted in noise between
the reflections from welds A and B. Figure 7c,d illustrate a case where the reflections caused
by additional modes are significant and overlap with other reflections.

Secondly, we notice that the VAE model successfully predicted inspection data by fus-
ing more modes to the baseline signal. In all four cases of results considered, the reflection
patterns associated with mode 7 and other contributing modes were well approximated.
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Figure 7. Response signals reconstructed using a VAE compared to the original target response for
different mode combinations. (a) Modes {7, 9, 11}, (b) Modes {7, 15, 23}, (c) Modes {7, 8, 15, 21, 22, 23}
and (d) Modes {7, 16, 24}.

The (mean absolute errors ) MAE for the VAE results compared to simulated targets
in Figure 7 are presented in Table 2. For all the cases considered, the errors are very low,
indicating that the VAE has a good reconstruction ability.

Table 2. The mean absolute errors (MAE) and VAE performance compared to superposition.

Mode Combinations MAE

{7, 9, 11} 0.0192

{7, 15, 23} 0.0172

{7, 8, 15, 21, 22, 23} 0.0194

{7, 16, 24} 0.0137

6. Conclusions

This paper attempts to develop a hybrid digital twin model that can predict inspection
data for guided wave ultrasound in welded railway lines. The VAE model for predicting the
inspection data containing different combinations of modes was presented. This task can be
regarded as a tool to gain insight into the behavior of guided waves in different scenarios.
The modes can interact with discontinuities in the rail in different ways, leading to different
response signals. The tool can help the researcher understand better and interpret how
each mode contributes to the total response. The researcher can then use this information,
for example, to design transducers targeting specific modes, though the task can become
computationally costly when physics-based models are used. The second objective of this
paper is to demonstrate that once a variational auto-encoder is trained, it makes it possible
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to replace physics-based finite element models. The benefits of replacing a physics-based
model with a data-driven model include increased efficiency and reduced computational
costs. Physics-based finite element models are computationally expensive, especially in
problems concerned with guided wave propagation, where the model has to be solved at
discrete frequency points. The VAE model was given a baseline signal containing only one
mode and trained to reconstruct an inspection signal with increased complexity by adding
more modes. The training data were produced from a physics-based model that computes
virtual experimental response signals using the SAFE and finite element procedures.

The VAE reconstructed response signals containing additional modes were nearly
identical to the original target signals simulated using the physics-based model. The VAE
was able to capture the complex features in the signals resulting from the interaction of
multiple propagating modes in a multi-discontinuous waveguide. These complex features
included reverberating reflections that resulted from the back-and-forth propagation of
modes between welds A and B, though these reverberations are more significant when
the inspection is in the web section of the rail. Overall, the VAE model successfully
predicted inspection data by fusing reflections of mode 7 from welds with the reflection of
other modes.

In conclusion, this study highlighted the benefit of a VAE in predicting inspection data
with additional complexity. The proposed approach can be applied to different rail set-ups
in terms of the types of discontinuities considered, the position of those discontinuities as
well as different positions of the transducer. Whenever the researcher considers a different
rail set-up, appropriate data for the problem at hand will be required, and the VAE will have
to be trained using that data. The training for each rail set-up will result in a unique model
for that scenario, though the same architecture can be used. The presented approach is only
applied to simulated data since modal decomposition is impossible in experimental field
data. In the future, the procedure will be adapted to predict inspection signals for damage
evolution for varying EOCs and other complexities encountered in operational data.
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