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Abstract: This research compares the performance of space-time surrogate models (STSMs) and
network surrogate models (NSMs). Specifically, when the system response varies over time (or
pseudo-time), the surrogates must predict the system response. A surrogate model is used to
approximate the response of computationally expensive spatial and temporal fields resulting from
some computational mechanics simulations. Within a design context, a surrogate takes a vector
of design variables that describe a current design and returns an approximation of the design’s
response through a pseudo-time variable. To compare various radial basis function (RBF) surrogate
modeling approaches, the prediction of a load displacement path of a snap-through structure is used
as an example numerical problem. This work specifically considers the scenario where analytical
sensitivities are available directly from the computational mechanics’ solver and therefore gradient
enhanced surrogates are constructed. In addition, the gradients are used to perform a domain
transformation preprocessing step to construct surrogate models in a more isotropic domain, which is
conducive to RBFs. This work demonstrates that although the gradient-based domain transformation
scheme offers a significant improvement to the performance of the space-time surrogate models
(STSMs), the network surrogate model (NSM) is far more robust. This research offers explanations
for the improved performance of NSMs over STSMs and recommends future research to improve the
performance of STSMs.

Keywords: surrogate models; gradient enhanced; compliant mechanisms

1. Introduction

This paper investigates the use and suitability of radial basis function (RBF) surrogate
models to predict a system’s response through some pseudo-time variable. This type
of problem is often present in computationally expensive computation fluid dynamics
(CFD) simulations, crash-worthiness simulations, or pressure control simulations, where
a designer wishes to predict the change in a design’s behavior without recomputing a
computationally expensive simulation. Therefore, the surrogate model is intended to
replace the computationally expensive simulation by accepting a vector of variables that
describe a design and offer a computationally inexpensive approximation of the design’s
response through a pseudo-time variable. In this problem, the surrogate model needs
to return a continuous approximation as a function of the pseudo-time variable, and not
simply a single scalar value as is often the case with surrogate models. Hence, the surrogate
needs to return a response vector, which is often referred to as a vector-valued surrogate
model [1].

In this work, the scenario where the analytical gradients are available is considered.
Many papers [2–5] detail procedures to calculate the design sensitivities for functions that
are computed using the finite element method (FEM) or finite volume method (FVM)
for structural mechanics and computational fluid dynamics (CFD). Some finite element
packages even have adjoint sensitivities implemented, for example, Calculix [6]. This
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gradient information can be calculated with respect to many different design variables for
a wide range of problems [2,4,7–9].

As per usual practice, these analytical sensitivities are used directly in the RBF surface
approximation, i.e., to construct gradient enhanced RBF models (GE-RBF) [10,11]. In
addition, these sensitivities are used to perform a domain transformation preprocessing step
that aims to find a transformation that results in a near isotropic surface to be approximated.
This domain transformation step was previously developed by the authors to accommodate
the application of RBF kernels that are isotropic on the approximation of non-isotropic
surfaces often resulting in engineering problems [12–15]. This is discussed in more detail
later in the paper in Section 2.

There are two main options for constructing a surrogate model that can predict be-
havior through a pseudo-time variable. Firstly, the design variables and the pseudo-time
variable can be uncoupled, and a network of smaller surrogate models can be constructed
and trained at m predetermined locations in the pseudo-time variable. In order to sample
the approximated behavior, each RBF model is then sampled separately, and some interpo-
lation scheme is used to find the result at locations other than the m pseudo-time points. In
this work, simple linear interpolation is implemented. This surrogate model approach is
referred to as the network surrogate model (NSM) [16].

The second option is to couple the design and pseudo-time variables and construct
one surrogate model over the shape and pseudo-time variables. Such a surrogate model is
often referred to as a space-time or spatio-temporal surrogate model (STSM) [17–19]. RBF
is a popular choice for the construction of STSMs, and is used in this study. Hence, from
here onwards, STSM will imply an RBF-constructed STSM. This option has the benefit of
being easier to implement, as only one model needs to be trained, whereas, for the NSM, m
models need to be trained. However, as will be demonstrated in this paper, if the limitations
of the RBF model are not properly understood and addressed, the STSM may offer inferior
predictive performance when compared to the NSM.

To assess the surrogate models in this work, the models are used to predict the load-
displacement paths of snap-through structures as a function of various shape parameters.
As the load paths of the structures are highly non-linear, the finite element method (FEM)
simulation needs to be completed with the arc length control (ALC) method [20]. The ALC
method introduces a pseudo-time variable, commonly referred to as the arc length, to allow
the calculation of force–displacement curves.

The analytical sensitivity procedure used in this research to compute sensitivities has
been completed previously by the authors [21]. Specifically, the assumed stress element in
conjunction with the ALC method is used to simulate the behavior of snap-through structures.

The layout of this paper is then as follows. Firstly, a brief mathematical description of
RBF surrogate models is offered in Section 2, where the use of gradient information, both
directly in the model itself and as a preprocessing step, is also detailed. This section also
describes the NSM and STSMs in more detail. In Section 3, a more detailed description
of snap-through structures’ behavior as well as the required ALC solution strategy is
described. From the description in Section 3, the numerical problem of predicting the
load path of these structures is presented in Section 4. The numerical results are detailed
in Section 5, where the models are used to predict the load–displacement curves of the
selected snap-through mechanism. This is followed by observations and conclusions in
Section 6.

2. RBF Surrogate Models

Surrogate model construction can broadly be separated into the following steps:

1. Domain sampling;
2. Preprocessing;
3. Model selection or construction;
4. Model prediction.
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Each of these steps is a research topic by itself, where various methods or algorithms
have been developed to produce optimal results. In this research, each of the steps is
completed with the most standard or common method, as the goal of the paper is to isolate
the effects of the preprocessing step.

Radial basis function surrogate models refer to a group of models that use a linear
summation of basis functions that usually depend on some non-linear distance measure
between two points. Popular options as basis functions include the following:

• Inverse quadratic: φ(x, c, ε) = 1
1+ε||x−c||2 ,

• Multi-quadratic: φ(x, c, ε) =
√
||x− c||2 + ε2,

• Gaussian: φ(x, c, ε) = e−ε||x−c||2 ,

where the variables x, ε, c are the sampled point in design space, the center of the basis
function, and the shape parameter, respectively. A widely used basis function is the
Gaussian function [11,22,23], which is the basis function used in this research. The RBF
surrogate is expressed as a linear combination of K basis functions

fRBF =
K

∑
i=1

wiφ(x, ci, ε). (1)

This can be expressed as a system of equations

f = M(x, c, ε)w, (2)

where the goal of fitting the surrogate model refers to finding the optimal values of the
weight vector w. The matrix M is expressed as

M =


φ(x1, c1, ε) φ(x1, c2, ε) . . . φ(x1, cK, ε)
φ(x2, c1, ε) φ(x2, c2, ε) . . . φ(x2, cK, ε)

...
...

...
...

φ(xp, c1, ε) φ(xp, c2, ε) . . . φ(xp, cK, ε)

. (3)

The size of matrix M is, therefore, p× K, where p is the number of samples in the
design space, and K is the number of centers or basis functions used in the model. The
methods for determining the locations of the samples in the construction space are discussed
in Section 2.3.

The remaining parameters of the surrogate include the number and locations of the
centers c and the value of the shape parameter ε. A popular choice for the centers is to
select p = K, meaning that the number of centers is equal to the number of sampled points
and to position the centers at the location of the sampled points [11]. For this choice, the
matrix M becomes square, and the weight vector can be solved directly from Equation (2).
This is the option that is implemented in this research.

The shape parameter can either be determined with some heuristic [24], or with a
k-fold cross-validation or leave-one-out cross-validation (LOOCV) approach [11,23]. In this
research, various shape parameters between 10−2 and 101 are evaluated using k-fold cross
validation as a metric, and the shape parameter associated with the lowest error is selected.

2.1. Direct Gradient Enhancement

The so-called gradient enhanced RBF (GE-RBF) surrogate model is implemented in
this research [10]. The usual function-value-only RBF model can be expanded to include
gradient information in its construction [11]. This can be done by first taking the gradient
of the chosen basis function

dφ(x, c, ε)

dx

T
= −2εφ(x, c, ε)(x− c), (4)
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where Equation (4) returns a column vector of the gradients of the RBF basis functions [11].
A new system of equations can then be created from the gradient information at each

sampled point for the p samples of the RBF surrogate model [11]:
d f1
dx
d f2
dx
...

d fp
dx

 =


dφ(x1,c1,ε)

dx
dφ(x1,c2,ε)

dx . . . dφ(x1,cK ,ε)
dx

dφ(x2,c1,ε)
dx

dφ(x2,c2,ε)
dx . . . dφ(x2,cK ,ε)

dx
...

...
...

dφ(xp ,c1,ε)
dx

dφ(xp ,c2,ε)
dx . . . dφ(xp ,cK ,ε)

dx




w1
w2
...

wK

. (5)

This system can then be written as

f f o = M f ow f o. (6)

The subscript f o denotes that the first-order information is used in the system. The
gradient information can then be combined with the original function-value-only system,
Equation (2), to create a new system of equations:[

f
f f o

]
=

[
M

M f o

]
wGE. (7)

The weight vector now contains the subscript GE to show that the weights solved from
this system are for the gradient-enhanced versions of the surrogate models. Equation (7)
can then be expressed as

f GE = MGEwGE. (8)

An important characteristic to note of the GE models is the size of the system that
needs to be solved. In the function-value-based models, p scalar samples are taken of the
underlying function, creating a system of size p× K, while in the GE models, p scalars
and p gradient vectors of size n× 1 are sampled, as each sampled point contains gradient
information, creating a (p + p× n)× K system [11]. As the weight vector, W GE, is the same
size, specifically K× 1, in both the function and GE models, and the system is, therefore,
over-determined [11]. The difference between the function and GE models is therefore that
the GE models regress through both the zero-order and gradient information [11], often
conducted using some least squares formulation:

MT
GE f GE = MT

GE MGEwGE. (9)

2.2. Gradient Based Domain Transformation

Typically, the domain over which the RBF surrogate model is constructed is the result
of a simple min-max scaling of the design domain as a preprocessing step [23]. This is
done by

xs =
x− xmin

xmax − xmin
, (10)

for each design variable. Here, xs is the scaled construction domain of the surrogate model,
xmin is the minimum value of the design variable, and xmax is the maximum value of the
design variable.

On the other hand, previous work by the authors demonstrated that making use of the
gradient information to approximate the underlying curvature of the function can greatly
improve the predictive performance of the RBF model [25]. This is due to the fact that
RBF models often make the implicit assumption that the underlying function is isotropic
which is often not a suitable assumption in many practical engineering problems. Work to
address the isotropic problem includes using neural networks, Gaussian mixture models, or
sub-space methods [26,27]. In this work, the authors select to handle the isotropic problem
using their developed preprocessing procedure.
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The proposed method developed by the authors makes use of the gradient information
to approximate the underlying curvature and recast the problem into a domain, where
the isotropic assumption is more appropriate by completing a full transformation, i.e., a
rotation and scaling, of the domain as a preprocessing step.

The method can be broken into the following steps:

1. For each center point c:

(a) Find the n + 1 closest points to the center in the sampled points;
(b) Complete a Symmetric Rank 1 approximation of the local curvature or Hessian [11];
(c) Find the eigenvalues and eigenvectors of the local Hessian;
(d) Recalculate the local Hessian with the absolute value of the eigenvalues.

2. Find the average local Hessian from the collection of absolute Hessians.
3. Calculate the eigenvalues and eigenvectors of the average Hessian.
4. Rotate the domain using the eigenvectors and scale with the eigenvalues of the

average Hessian.

This method was shown to recover the ideal reference frame and scaling, for a bench-
mark problem that is decomposable in a rotated frame [25].

2.3. Sampling Methods

Typically the locations of the samples for the construction of the RBF surrogate model
are determined with some Latin hyper-cube sampling (LHS) method [11,22]. The standard
LHS method is shown in Figure 1 for an increasing number of samples in two dimensions.

Figure 1. An example of the LHS method in a two-dimensional problem with 7 and 12 samples, re-
spectively.

The standard LHS method can be improved upon by adding additional constraints
to the method such as maximizing the minimum distances between nearest neighbors or
incorporating Halton sequences [23]. In this research, the sampling strategy is limited to
the simplest version of LHS, as the goal of the paper is to isolate the effects that appropriate
domain transformation have on NSM and STSM.

In addition to the LHS method, in this work, the sampling of the pseudo-time variable
is completed during some numerical simulation using an iterative solver. This means that
the designer has little or no control over the locations, or the number, in the case of an
adaptive solver, of samples in this domain. This creates a non-uniform sampling scheme as
demonstrated in Figure 2, where design problems with a pseudo-time variable are sampled.
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Figure 2. Locations of samples in a one and two design variable problem, respectively, with a
pseudo-time variable t.

2.4. Network (NSMs) and Space-Time Surrogate Models (STSMs)

The surrogate models in this work need to return a continuous approximation of
a result through a pseudo-time variable. The first method is to uncouple the design
and pseudo-time variables and construct multiple smaller RBF models at predetermined
locations in the pseudo-time variable. This is represented visually in Figure 3.

Figure 3. An example of the NSM approximating an underlying function in blue. The solid black
lines through the design variable domain indicate the constructed RBF models, while the dashed
black lines through the pseudo-time domain indicate the interpolated final approximated curve.

The designer needs to determine the number of smaller RBF models as well as their
locations in the pseudo-time domain. These decisions are problem specific. As more
locations in the pseudo-time variable are selected to have an RBF model, the more flexible
the final approximations of the behavior will be but the more computationally expensive
the training of the surrogate model becomes.

On the other hand, STSM couples the design and pseudo-time variables into one large
surrogate model. This method is represented visually in Figure 4 on the same underlying
function as for the NSM in Figure 3.

Another key difference that is highlighted in this research between the two models
is how they make use of gradient information during their construction. The NSM is
only constructed in the design variable domain and therefore cannot make use of the
gradient information with respect to the pseudo-time variable. Once all the network RBFs
are evaluated at a specific point in pseudo-time, it would be possible to construct some
interpolation scheme that uses the gradient information with respect to the pseudo-time
variable. In this paper, the linear interpolation in the pseudo-time variable does not use the
available gradient information in this direction. On the other hand, the STSM is constructed



Math. Comput. Appl. 2023, 28, 57 7 of 15

in both domains, and can therefore make use of all the gradient information present in
the problem.

Figure 4. Example of an STSM overlaid with the underlying function. The STSM model is shown in
red while the underlying function is in blue.

3. Simulating Snap-Through Behavior

Snap-through structures are compliant mechanisms that exhibit highly non-linear
load-deflection paths. This means that typical linear finite element solutions strategies
are not equipped to fully simulate the structures’ behavior. Instead, a combination of a
non-linear solver with the ALC method needs to be implemented in order to accurately
predict the structures’ load-displacement path. In typical non-linear FEM analysis, the
governing residual equation is expressed as

R = K(u)u− λF, (11)

where K, u, λ, and F denote the stiffness matrix, the nodal displacement vector, the load
parameter, and the load vector, respectively. In the load control scheme, the goal of some
iterative non-linear solver is to find the nodal displacement vector at some load parameter
that reduces the governing residual, Equation (11), to 0 within some desired tolerance.

This iterative solver typically takes the form of Newton’s method, where the gradient
of Equation (11) with respect to the nodal displacement vector is computed. A problem
with this solution strategy arises when the load path exhibits a limit point, which is present
in snap-through problems, as Newton’s method cannot fully trace the curve past this point.

The ALC algorithm proposes a solution to this problem by adding an additional
constraint equation:

L2 = NuTNu + ψ2Nλ2FTF. (12)

Here, L denotes the prescribed arc length, Nu is the total displacement vector update
for the current load step, Nλ is the total load parameter increment for the current load step,
and ψ is some non-dimensional scale factor. For a more in-depth description of the ALC
algorithm, the reader is referred to literature [20].

The important characteristic of the ALC algorithm that influences this research is that
the load and displacement results are now functions of the introduced arc length variable
as can be seen in Equation (12). This means that in this research the arc length domain can
be treated as a pseudo-time variable when the surrogate models are constructed.

Design Sensitivities

The FEM simulations in this research are completed using the assumed stress element [28]
in combination with the ALC method. The assumed stress element is implemented as
often snap-through behavior occurs in bending-dominated problems and the assumed
stress element returns accurate results in bending problems. Therefore, as the analytical
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sensitivities are required for this research, the authors implement a procedure developed
in previous research, where the same solution strategy was selected [21]. This sensitivity
procedure returns the sensitivity information with respect to both the shape variables as
well as the arc length variable.

4. Numerical Example

The example problem for this research is to predict the non-linear load path of the so-
called deep semi-circular arch [29]. The load-displacement path as well as the deformation
overlay is depicted in Figure 5.

Figure 5. The deformation of the deep semi-circular arch that is pinned at the left and clamped on
right edge under a single point load. The point load in indicated with a red arrow, while the initial
and final shape of the structure is denoted in blue and red respectively.

This structure is parameterized such that a vector of the design variables describes the
radii of the structure at equidistant points along the circumference. A cubic spline is then
fitted through these radii and the overall shape of a trial design is found. This is shown in
Figure 6.

Figure 6. The design variables of the deep semi-circular arch depicted in red with the design problem
increasing in dimensionality.
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This parametrization scheme is selected, as the number of design variables can be sys-
tematically increased to investigate the performance of the surrogate models as a function
of the dimensionality of the problem. The radii are sampled between 90 mm and 110 mm,
and the accumulated arc length is limited to 2000 with the default arc length increment set
to 100.

5. Results

The results of six different gradient-enhanced surrogate models are found. These
include the domain-transformed versions for both the NSMs and STSMs, as well as their
standard min-max implementations. NSMs include versions where the shape parameter
of the surrogate models in the network is allowed to vary and where the parameter is
kept constant for all the models in the network. By keeping the shape parameter constant,
the NSM model has the same number of tunable parameters as the STSM. The number of
tunable parameters for NSM and STSM is shown in Table 1. The models are constructed
on an equal number of sampled points and are evaluated by comparing the predicted
load-displacement paths to the actual results.

Table 1. The number of parameters that must be tuned in the NSM, where the shape parameter is
kept constant, the shape parameter is allowed to vary, and the STSM. The number of parameters is
expressed as a function of the number of centers K and the number of RBF models L in the NSM.

Parameters NSM Constant Shape Parameter NSM Varying Shape Parameter STSM

Weights K K K

Shape Parameters 1 L 1

Initially, a simple univariate shape variable problem is completed using 7 designs
sampled using LHS. Figure 7 compares the predicted load-displacement curves with the
actual response for four random test designs.

The models are then assessed further by calculating the root mean square error (RMSE)
for 75 load displacement paths for randomly sampled designs. The RMSE is calculated
by comparing the approximated load (λ) and displacement (u) results of the model to
the new 75 sampled load displacement paths. The models are evaluated at the arc length
positions found by the solver for each of the new load displacement paths. This implies
that the models must predict at new design variable locations as well as new arc length or
pseudo-time locations. This RMSE for a single load-displacement curve is expressed as

RMSE =

√
1
n

n

∑
i
(λ

approx
i − λ

target
i )2 +

1
n

n

∑
i
(uapprox

i − utarget
i )2, (13)

where n is the number of arc length steps and the values of λ, and u are normalized using
the maximum values from the training samples.

The average RMSE results are shown in Figure 8 in the form of a box and whisker plot.
Clearly, the NSM outperforms the STSM, but performing the gradient-based domain

transformation offers a significant improvement to the predictive performance of the STSM.
There is also very little improvement (if any) in the NSM when the shape parameter is
allowed to vary compared to when the shape parameter is kept constant. Hence, the
improved NSM fits are not the result of additional shape parameter flexibility but rather
due to the ability of the NSM to complete different domain transformations as a function of
the pseudo-time.
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Figure 7. One shape variable problem results for four randomly generated designs. The simulated
structures are shown of the left, followed by the STSM results, and then the NSM results with the
labels MM and DT indicating min-maxed and full domain transformation, respectively.

Figure 8. Average RMSE results for the one shape variable problem. (A) min-max STSM,
(B) transformed STSM, (C) min-max NSM with a constant shape factor, (D) min-max NSM with
a varying shape factor, (E) transformed NSM with a constant shape factor, and (F) transformed NSM
with a varying shape factor.
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The dimensionality of the problem is now increased to two shape variables and the
number of LHS samples is increased to 12. The results of the model are again overlaid with
the simulated results in Figure 9, and the average RMSE results are displayed in Figure 10.

The results of the two-variable shape variable problem are similar to the univariate
shape variable problem, with the NSMs outperforming the STSMs. In addition, the domain
transformation improves both the NSMs and STSMs. The benefit of an appropriately
transformed domain is evident for the two-variable problem. The difference in performance
between the min-maxed models and the transformed models clearly increased, while there
is a negligible difference between the varying shape parameters models compared to the
constant shape parameter models.

Lastly, the problem dimension and the LHS sample number are increased to 4 shape
variables and 25 samples respectively. The results are presented in Figures 11 and 12.
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Figure 9. Two shape variables problem results for four randomly generated designs. The simulated
structures are shown of the left, followed by the STSM results, and then the NSM results with the
labels MM and DT indicating min-maxed and full domain transformation respectively.
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Figure 10. Average RMSE results for the two shape variable problem. (A) min-max STSM,
(B) transformed STSM, (C) min-max NSM with a constant shape factor, (D) min-max NSM with
a varying shape factor, (E) transformed NSM with a constant shape factor, and (F) transformed NSM
with a varying shape factor.
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Figure 11. Four shape variable problem results for four randomly generated designs. The simulated
structures are shown of the left, followed by the STSM results, and then the NSM results with the
labels MM and DT indicated min-maxed and full domain transformation, respectively.
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Figure 12. Average RMSE results for the four shape variable problem. (A) min-max STSM,
(B) transformed STSM, (C) min-max NSM with a constant shape factor, (D) min-max NSM with
a varying shape factor, (E) transformed NSM with a constant shape factor, and (F) transformed NSM
with a varying shape factor.

This problem demonstrates that the benefit of appropriately transforming the construc-
tion domain increases with the problem dimension. The min-max STSMs offer extremely
poor predictions of the underlying function, while the transformed model remained robust.

The NSMs still outperform the STSMs, but there is a clear improvement with higher
problem dimensions when the transformed domain is employed as compared to the min-
max scaling. On the other hand, the varying shape parameter offers very little improvement
to the model over the constant shape parameter models, despite this increase in flexibility.

6. Discussion and Conclusions

Constructing surrogate models to predict the spatio-temporal behavior of a system
requires careful consideration as a naive implementation may be unable to capture the
inherent complexities present in the spatio-temporal response. This study compares two
strategies to construct spatio-temporal surrogates, namely, space-time surrogate models
(STSMs) and network surrogate models (NSMs). From this, two main findings regarding
the construction of surrogate models are observed.

Firstly, merely including gradient information in the construction of the surrogate
models is not sufficient to construct high-quality models. Instead, the gradients should
be employed to transform the domain to a more isotropic domain (the inherent assump-
tion of RBFs). This enables the construction of accurate surrogate models for higher-
dimensional problems.

Secondly, NSMs significantly outperform the STSMs. The results from the constant
and varying shape parameter models demonstrate that this increase in performance is not
due to the ability of the NSM to fit different shape parameters, but rather it is due to two
underlying characteristics of the problem:

1. The locations of the centers of the space-time RBF model have a non-uniform structure
to them, i.e., the pseudo-time variable is sampled more densely than the shape variables.

2. A single linear transformation might not be sufficient to transform the domain to be
isotropic. The shape variables may impact the results differently at different stages in
the pseudo-time variable domain and therefore a nonlinear transformation scheme
that is a function of the pseudo-time variable is required.
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