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Abstract: Simulated annealing is a metaheuristic that balances exploration and exploitation to solve
global optimization problems. However, to deal with multi- and many-objective optimization prob-
lems, this balance needs to be improved due to diverse factors such as the number of objectives. To
deal with this issue, this work proposes MOSA/D, a hybrid framework for multi-objective simulated
annealing based on decomposition and evolutionary perturbation functions. According to the litera-
ture, the decomposition strategy allows diversity in a population while evolutionary perturbations
add convergence toward the Pareto front; however, a question should be asked: What is the effect of
such components when included as part of a multi-objective simulated annealing design? Hence,
this work studies the performance of the MOSA/D framework considering in its implementation
two widely used perturbation operators: classical genetic operators and differential evolution. The
proposed algorithms are MOSA/D-CGO, based on classical genetic operators, and MOSA/D-DE,
based on differential evolution operators. The main contribution of this work is the performance
analysis of MOSA/D using both perturbation operators and identifying the one most suitable for
the framework. The approaches were tested using DTLZ on two and three objectives and CEC2009
benchmarks on two, three, five, and ten objectives; the performance analysis considered diversity
and convergence measured through the hypervolume (HV) and inverted generational distance (IGD)
indicators. The results pointed out that there is a promising improvement in performance in favor
of MOSA/D-DE.

Keywords: multi-objective; simulated annealing; decomposition; differential evolution

1. Introduction

In the real world, optimization problems have multiple objectives that conflict. In
other words, when we attempt to optimize one of these objectives, the rest is affected
negatively. These problems are called Multi-Objective Optimization Problems (MOPs). A
MOP is defined as follows:

min F(x) = [ f1(x), f2(x), . . . , fm(x)],subject to x ∈ Ω, (1)

where Ω represents the decision space and x = x1, x2, . . . , xn represents the decision vector
(solution). fi(x) denotes the ith objective obtained from the decision vector x. Evolutionary
multi-objective optimization (EMO) is a research area concerned with ways to solve MOPs.
The EMO algorithms perform well when the MOPs have two or three objectives. In
EMO, the main algorithms proposed are based on Pareto dominance. In particular, these
algorithms have been successfully detecting well-converged and well-diversified non-
dominated solutions [1]. However, the number of real-world optimization problems is
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many times more than three. MOPs with four or more objectives are often referred to as
many-objective optimization problems (MaOPs) [1,2]. Pareto dominance has been the key
to the success of EMO algorithms in MOPs with two and three objectives, but the results
are different in the case of MaOPs. The reason is that the selective pressure toward the
Pareto front (PF) in MaOPs is insufficient using Pareto dominance. The use of EMOs based
on Pareto dominance for MaOPs makes some issues evident, such as (i) deterioration of the
searchability due to the increase in the number of objectives [3], (ii) exponential increase
in the number of solutions required for approximation of the entire PF, and (iii) difficulty
in visualizing the solutions. These issues are open areas of study and have led to new
proposals for algorithms to solve MaOPs. Several algorithms that deal with MOPs and
MaOPs in the literature use strategies such as the hybridization of heuristics and meta-
heuristics strategies. When one algorithm approach is proposed as a strategy that combines
a set of meta-heuristics, and these perform together, producing a profitable synergy, it is
called Hybrid Meta-heuristic HM [4], HM also known as hybrid algorithm [5]. The hybrid
algorithms have the advantage of dealing with complexity, noise, imprecision, uncertainty,
and vagueness present in real-world optimization problems [4].

Strategies such as decomposition, simulated annealing and evolutionary genetic op-
erators are approaches that together had produced profitable hybrid algorithms in recent
years. Decomposition is an approach that has been applied to MaOPs with success. It is a
strategy that divides a MOP into several single-objective sub-problems solved simultane-
ously. In addition, Bechikh et al. assert that decomposition is the most successful approach
to solving MaOPs [6]. One algorithm based on decomposition is MOEA/D [7]. It is easy
to apply the single-objective optimizer to the sub-problem associated with each solution
while maintaining the solution dispersed [8]. Three advantages are obtained with the
application of decomposition: it improves population diversity, allows for parallelism, and
speeds up the solution [8]. Regularly, MOEA/D is the base of numerous new algorithms,
though hybridized with other strategies. For example, Simulated Annealing (SA) obtained
promising results in a new MOEA/D hybrid algorithm [9]. In the hybrid algorithm, SA
worked as a Local Search (LS) strategy applied to the sub-problems. Simulated annealing
(SA) is a probabilistic LS method for global optimization problems that allows gradual
convergence to a near-optimal solution [10]. SA is a metaheuristic that adds exploration
and exploitation to solve global optimization problems. SA is a well-known single-objective
optimization algorithm that has been applied in hybrid algorithms such as LS strategy [9]
and a selection mechanism [11] in other works. Differential evolution (DE) is a state-of-
the-art global optimization technique [12]. This is an evolutionary algorithm (EA) with a
classical EA framework, but it differs from other EAs in its mutation operator. It mutates
the base vectors with scaled population-derived difference vectors and, as generations
pass, these differences tend to adapt to the natural scaling of the problem [12]. Mutation
in the DE context is interpreted as change or perturbation that involves random elements.
Mutation in combination with the crossover (binomial or exponential crossover) is a strat-
egy that improves the diversity and convergence of the population. As a mechanism of
recombination, DE has shown promising results in hybrid algorithms [13–15].

A selection of relevant works related with the present work is described in the
next lines. The adaptive evolutionary multi-objective approach based on decomposition
(EMOSA) was presented by Li and Landa-Silva [9]. It combines SA with the MOEA/D al-
gorithm [7]. EMOSA follows the concept of a population and external population (archive)
of non-dominated solutions. Li and Landa-Silva mention that competition between indi-
viduals is essential to balance diversity and convergence. For this reason, when the current
solution is updated, different criteria are used for population and external population.
Dominance, the Tchebycheff aggregation function, and ε-dominance are used to update the
neighborhood, the population, and the external population, respectively. MOEA/D-DE
was proposed by Li and Zhang [13]. The algorithm is a combination of the MOEA/D frame-
work and Differential Evolution operators. MOEA/D-DE and NSGA-II [16] were tested
with complicated Pareto sets shapes. MOEA/D-DE showed much better results improving
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NSGA-II. Chen et al. [17] extended MOEA/D-DE, replaced the (1) DE operator with a
guided mutation, and (2) implemented a new update mechanism. Various combinations
of the mechanisms were proved using the instances of the CEC2009 benchmark [18]. In
the work of Liu et al. [16], MOEA/D-DE was improved with two mechanisms: (1) using
neighborhood information in the update strategy, and (2) adopting a random scale factor to
improve the searchability of MOEA/D-DE. This approach was tested with instances from
the CEC2009 benchmark and the real-world problem sizing of folded cascode amplifier.
Mashwani et al. [14] suggested a strategy based on MOEA/D and using multiple crossover
operators called HAEA/D. This strategy uses an adaptive operator of selection to apply
different crossover operators (DE, CMX, PCX, TM, SPX, and SBX). HAEA/D was proved
using the CEC2009 benchmark. Results showed that HAEAD performs better in most
instances of CEC2009 regarding proximity and diversity. MODESA is a hybrid algorithm
presented by Chen et al. [19]. DE algorithm is improving by using SA as a local search
mechanism. The algorithm was proved using ZDT and DTLZ benchmarks. ESADE algo-
rithm is the approach of Guo et al. [11]. In this approach, SA is used to improve the DE
selection method. The primary strategy is replacing the DE greedy rule of selection with a
SA rule of selection. CEC2005 benchmark was used to observe the performance of ESADE.

Focusing on some strategies that had good results in the related works, a hybrid
framework called MOSA/D is proposed. According to the state-of-the-art research, the
decomposition strategy allows diversity in a population [8] while evolutionary perturba-
tions add convergence toward the Pareto front; however, a question should be considered:
What is the effect of such components when included as part of a multi-objective simulated
annealing design? Hence, this work studies the performance of MOSA/D considering two
widely used perturbation operators in its implementation: classical genetic operators and
differential evolution. The proposed algorithms are MOSA/D-CGO, based on classical
genetic operators, and MOSA/D-DE, based on differential evolution operators. The main
contribution of this work is the performance analysis of MOSA/D using both perturbations
functions and identifying the one most suitable to the framework.

This paper is organized as follows. In Section 2, the primary strategies within the MOSA-
D framework are provided. In addition, in this section, the proposed MOSA/D-CGO and
MOSA/D-DE are described. Section 3 describes the experimental setup. Section 4 reports the
experimental results. Finally, Section 5 concludes the paper with some future directions.

2. Materials and Methods

This section describes the main strategies used by the algorithms MOSA/D-CGO and
MOSA/D-DE. Both algorithms are inspired by the works of Li and Landa-Silva [9] and
Engrand [20]. Strategies such as decomposition, competition between individuals, and the
logarithmic composite objective function are part of MOSA/D-CGO and MOSA/D-DE.
However, the mentioned methods do not focus on the perturbation function as a strategy.
For this reason, both algorithms implement perturbation functions to add convergence
toward the PF. MOSA/D-CGO is based on classical genetic operators, while MOSA/D-DE
is based on differential evolution operators. Maintaining a simple algorithm structure such
as the classical SA is also considered (Algorithm 1).

The proposal to transform the classical SA framework into a multi-objective simulated
annealing based on the decomposition framework has three main components:

(1) decomposition strategy,
(2) perturbation function, and
(3) probability of acceptance.

2.1. Decomposition Strategy

A strategy based on MOEA/D [7] is proposed to divide a MOP into N scalar sub-
problems. To divide a MOP, a set of weight vectors λ1, . . . , λN (Figure 1) and an aggregation
function (Equation (2)) are used.
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There are a number of aggregation functions; one of the most popular is the Tcheby-
cheff function. Let λi =

(
λi

1, . . . , λi
m
)

be a weight vector, then the Tchebycheff approach is
defined as

minimize gte
(

x
∣∣∣λi, z∗

)
= max

1≤j≤m

{
λi

j

∣∣∣ f j(x)− z∗), subject to x ∈ Ω, (2)

where m is the number of objectives, z∗ is the reference point, Ω is the decision variable
space, and x is a solution for the ith sub-problem. To improve the solutions for ith sub-
problem, a search method such as local search (simulated annealing) must be used and the
candidate solutions compared in terms of the Tchebycheff function.

2.2. Perturbation Function

The perturbation function in simulated annealing explores the neighborhood of the
current solution to determine a new candidate solution. Classically, the perturbation
function uses a random exploration of the neighborhood [21–23]. Two approaches are
chosen to create the perturbation function: classical genetic operators and differential
evolution.

2.2.1. Classical Genetic Operators

Simulated binary crossover (SBX). SBX creates two-children solutions from two-parent
solutions. To create the solutions, it is necessary to follow the procedure described below:

Step 1. Choose a uniform random number u ∈ (0, 1).
Step 2. Calculate spread factor γ using the equation

γ =

 (2u)
1

(η+1) , i f u ≤ 0.5
1

[2(1−u)]
1

(η+1)
, otherwise , (3)

where η is the distribution index, which is a non-negative real number.
Step 3. The children’s solutions can be computed using the following equations:

c1,k =
1
2
[(1− γ) ∗ p1,k + (1 + γ) ∗ p2,k], (4)

c2,k =
1
2
[(1 + γ) ∗ p1,k + (1− γ) ∗ p2,k]. (5)

Polynomial mutation. The idea behind mutation operation is to restore unexpected
genetic individuals to avoid local optimal solutions and thus enhance the exploration ability
and population diversity. It operates as follows:

ck = pk +
(

pu
k − pl

k

)
∗ δk, (6)
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where ck is the child solution and pk is the parent solution, pu
k and pl

k are the upper and
lower bounds of the parent component. Finally, δk is a function of u (random number) and
ηm (mutation distribution index), as follows:

δk =

 (2u)
1

(ηm+1) , i f u ≤ 0.5

1− [2(1− u)]
1

(ηm+1) , otherwise
. (7)

2.2.2. Differential Evolution Operators

This pair of operators is used in a different order from the previous operators. First,
the mutation must be calculated; then, the crossover must be executed.

Rand/1 mutation. Rand/1 is a basic mutation of the most popular mutation strategies
in differential evolution (DE) [24]. It operates as follows:

Vi,G = Xr1,G + F ∗ (Xr2,G − Xr1,G) (8)

In Equation (8), Xr1,G, Xr2,G, Xr2,G represent three random solutions of the population
at the generation G, and Vi,G represents a new mutant solution. F is a parameter called the
scale factor.

Binomial crossover. After mutation, a crossover operation is performed between the target
vector Xi,G and the mutant vector Vi,G to produce a trial vector Ui,G =

{
u1

i,G, u2
i,G, . . . , uD

i,G

}
.

The binomial crossover operator is mainly used, and it is defined as

uj
i,G =

{
vj

i,G i f randj(0, 1) ≤ Cr or j = jrand

xj
i,G otherwise

. (9)

In Equation (9), Cr ∈ [0, 1] represents the crossover rate, and jrand represents the
minimum difference between the target vector Xi,G and the trial vector Ui,G.

2.3. Probability of Acceptance

The Boltzmann probability in the classical SA is used to accept or refuse one solution.
When the solution is accepted, it has a good probability of guiding new solutions and
escaping from local optimal solutions. We propose the probability function in MOSA/D of
the work of Engrand [20] that uses a multi-objective version of the Boltzmann probability.
It uses a logarithm compositive function. According to Engrand, a new function G is
defined as

G(X) =
m

∑
1

ln f j(X). (10)

The probability of acceptance p is defined by

p = Exp
(
−∆G

Tk

)
. (11)

Then, Equation (10) is added into Equation (11):

p = Exp

(
− 1

Tk

m

∑
1

ln f j(Xn+1)−
m

∑
1

ln f j(Xn)

)
. (12)

Using factoring and logarithm identities, the probability of acceptance is expressed in
the following way:

p = Exp

(
− 1

Tk

m

∑
1

ln
f j(Xn+1)

f j(Xn)

)
, (13)



Math. Comput. Appl. 2023, 28, 38 6 of 21

where m is the number of objectives, Xn is the current solution, Xn+1 is the candidate
solution, and Tk is the current temperature of the algorithm.

2.4. Multi-Objective Simulated Annealing Based on Decomposition Framework

The multi-objective simulated annealing based on decomposition (MOSA/D) frame-
work is based on simulated annealing, decomposition strategy from MOEA/D [7], and per-
turbation functions based on genetic operators (classical and DE operators). The MOSA/D
framework (Figure 2) takes a multi-objective optimization problem (MOP) and decomposes
it into a set of N sub-problems represented by a set of N weight vectors. Then, ith sub-
problem is annealed by L executions at a temperature level of T, obtaining new solutions
by a function of perturbation using crossover and mutation operations. The algorithm
maintains a population of efficient solutions (P). When a new solution is obtained, it is eval-
uated to update the efficient solution (Pi) associated with the ith sub-problem. Additionally,
the framework maintains a solution to explore the feasible surface of ith sub-problem. To
update this solution, an evaluation is necessary with the new solution. Both evaluations of
the new solution against the efficient and the exploring solution are conducted using the
Tchebycheff approach. Tchebycheff approach avoids the use of Pareto dominance in the
MOSA/D framework. Furthermore, the framework has a mechanism to escape from local
optimums based on a logarithm compositive function. Finally, the perturbation functions
are a novel part of the framework. Two algorithms are derived due to the perturbation
functions: MOSA/D-CGO and MOSA/D-DE. We intend to observe the performance of
both approaches in continuous multiple- and many-objective problems.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 6 of 22 
 

 

Then, Equation (10) is added into Equation (11): 

𝑝 = 𝐸𝑥𝑝 ൭− 1𝑇௞ ෍ ln 𝑓௝(𝑋௡ାଵ) −௠
ଵ ෍ ln 𝑓௝(𝑋௡)௠

ଵ ൱. (12) 

Using factoring and logarithm identities, the probability of acceptance is expressed 
in the following way: 

𝑝 = 𝐸𝑥𝑝 ൭− 1𝑇௞ ෍ ln 𝑓௝(𝑋௡ାଵ)𝑓௝(𝑋௡)௠
ଵ ൱, (13) 

where m is the number of objectives, Xn is the current solution, Xn+1 is the candidate 
solution, and Tk is the current temperature of the algorithm. 

2.4. Multi-Objective Simulated Annealing Based on Decomposition Framework 
The multi-objective simulated annealing based on decomposition (MOSA/D) 

framework is based on simulated annealing, decomposition strategy from MOEA/D [7], 
and perturbation functions based on genetic operators (classical and DE operators). The 
MOSA/D framework (Figure 2) takes a multi-objective optimization problem (MOP) and 
decomposes it into a set of N sub-problems represented by a set of N weight vectors. Then, 
ith sub-problem is annealed by L executions at a temperature level of T, obtaining new 
solutions by a function of perturbation using crossover and mutation operations. The 
algorithm maintains a population of efficient solutions (P). When a new solution is 
obtained, it is evaluated to update the efficient solution (Pi) associated with the ith sub-
problem. Additionally, the framework maintains a solution to explore the feasible surface 
of ith sub-problem. To update this solution, an evaluation is necessary with the new 
solution. Both evaluations of the new solution against the efficient and the exploring 
solution are conducted using the Tchebycheff approach. Tchebycheff approach avoids the 
use of Pareto dominance in the MOSA/D framework. Furthermore, the framework has a 
mechanism to escape from local optimums based on a logarithm compositive function. 
Finally, the perturbation functions are a novel part of the framework. Two algorithms are 
derived due to the perturbation functions: MOSA/D-CGO and MOSA/D-DE. We intend 
to observe the performance of both approaches in continuous multiple- and many-
objective problems. 

 
Figure 2. MOSA/D framework flowchart. Figure 2. MOSA/D framework flowchart.

2.4.1. MOSA/D-CGO Algorithm

The MOSA/D-CGO pseudocode is described by Algorithm 1. The algorithm re-
ceives as input the multi-objective problem to be solved, the initial temperature Ti, the
final temperature Tf, the time factor α, the size of the population N, and the maximum
number of MFE evaluations that it will carry out. The last generation of the population
(P) represents the output. The algorithm initializes the random population P of size N,
the sub-problems represented by weight vectors v of size N, the temperature T = Ti, the
Scurrent solution serving as a guide in the search process, and the Scand solution, which
is generated from disturbances on Scurrent, the calculation of z (reference point). FE = N
is updated because it is the size of the initial population (Lines 1 and 2). From Line 3,
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Algorithm 1 has three loops: the first, second, and third (Lines 3, 4, and 6, respectively).

Algorithm 1 MOSA/D-CGO

Input: MOP, Initial temperature Ti, Factor α, Markov chain L, Final temperatura Tf, Size of
population N, Maximal function evaluations MFE
Output: Last generation of P

1
To initialize: population P(N), weighted vectors v, solution Scurrent, solution Scand,
reference point z, temperature T = Ti

2 FE = N
3 while (T ≥ Tf) y (FE ≤MFE)
4 for i = 1 to N
5 Scurrent = Pi
6 for j = 1 to L
7 Scand = PerturbationCGO(Scurrent, P)
8 p = BoltzmannProbability(Scand, Scurrent, T)
9 if g(Scand, vi, z) < g(Pi, vi, z)
10 Pi = Scand
11 if g(Scand, vi, z) < g(Scurrent, vi, z) or U(0,1) < p
12 Scurrent = Scand
13 z = ObtainReferencePoint (Scand)
14 j = j +1
15 i = i +1
16 FE = N × L
17 T = T × α

18 return P

The first loop (main loop) starts (Line 3). Then, while the temperature T is greater than
Tf or the maximum number of evaluations is not reached, the main loop will perform the
following:

1. Start a second loop that proceeds through all the sub-problems (Line 4),
2. Update FE = N × L as the multiplication of the number of sub-problems by the

annealing cycles (Line 16),
3. The temperature T is updated. It is multiplied by the temperature drop factor α (Line

17).
4. The second loop (from 1 to N sub-problems) has the following tasks (Line 4):
5. The Scurrent solution takes as its value the solution stored in Pi (Line 5),
6. The ith sub-problem is annealed for L cycles (Lines 6–14) in the third loop,
7. The sub-problem counter i is updated.
8. The third loop (annealing process) works as follows (Lines 6–14):
9. Scand is obtained by perturbation of Scurrent (Line 7),
10. The Boltzmann probability p of Scand is computed based on Equation (6) (Line 8),
11. The Tchebycheff function g is calculated for Scand and Pi. If g (Scand) is less than g (Pi),

then Scand is a better solution than Pi. Then Pi takes the value of Scand (Lines 9–10).
12. The Tchebycheff function g is calculated for Scand and Scurrent. If g (Scand) is less than g

(Scurrent), then Scurrent takes the value of Scand (Lines 11–12).
13. The reference point z is updated (Line 13).
14. The Markov chain counter j is updated (Line 14)
15. At the end of the main loop, the last generation of P is returned, and the algorithm

ends (Line 18).

The MOSA/D-CGO implements a perturbation function based on simulated binary
crossover (SBX) and polynomial mutation. The pseudocode of PerturbationCGO(Scurrent,
P) is shown in Algorithm 2. The algorithm’s input is the current solution Scurrent and
the population P. At Line 1, all solutions are initialized. Next, parent1 takes the value
of Scurrent (Line 2). Next, a random solution is selected from P as parent2 (Line 3). Then
the SBX is applied to parent1 and parent2, producing the new solution child (Line 4).
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Next, the mutation operator is applied to the solution child (Line 5), producing the
candidate solution. Finally, the candidate solution is returned to the main algorithm.

Algorithm 2 PerturbationCGO

Input: Current solution Scurrent, population P
Output: Candidate Solution Scand
1 Initialize solutions: parent1, parent2, child
2 parent1 = Scurrent
3 parent2 = RandomSelection(P)
4 child = SBX(parent1, parent2)
5 Scand = PolynomialMutation(child)
6 return Scand

2.4.2. MOSAD-DE Algorithm

Algorithm 3 is the main function of MOSA/D–DE. It is the same as the MOSA/D-CGO.
The difference between MOSA/D-CGO and MOSA/D–DE is the perturbation function.

Algorithm 3 MOSA/D-DE

Input: MOP, Initial temperature Ti, Factor α, Markov chain L, Final temperatura Tf, Size of
population N, Maximal function evaluations MFE
Output: Last generation of P

1
To initialize: population P(N), weighted vectors v, solution Scurrent, solution Scand,
reference point z, temperature T = Ti

2 FE = N
3 while (T ≥ Tf) y (FE ≤MFE)
4 for i = 1 to N
5 Scurrent = Pi
6 for j = 1 to L
7 Scand = PerturbationDE(Scurrent, P)
8 p = BoltzmannProbability(Scand, Scurrent, T)
9 if g(Scand, vi, z) < g(Pi, vi, z)
10 Pi = Scand
11 if g(Scand, vi, z) < g(Scurrent, vi, z) or U(0,1) < p
12 Scurrent = Scand
13 z = ObtainReferencePoint (Scand)
14 j = j +1
15 i = i +1
16 FE = N × L
17 T = T × α

18 return P

In Algorithm 3, Line 7 references the function PerturbationDE(Scurrent, P). Its pseu-
docode is shown in Algorithm 4. The algorithm begins with the initialization of all
solutions used in the algorithm (Line 1). Next, the solution target takes the values of
Scurrent (Line 2). The next step is to select three random solutions from the population
P (Lines 3, 4, and 5). In Line 6, RandOneMutation() (based on Equation (12)) produces
the mutant solution. However, the mutant solution may exceed the limit values of its
decision variables. For this reason, a repair operation is necessary over the mutant so-
lution (Line 7). Then, the binomial crossover is executed to generate the candidate so-
lution (Scand) (Line 8). Finally, the candidate solution (Scand) is returned to Algorithm 3.
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Algorithm 4 PerturbationDE

Input: Current solution Scurrent, population P
Output: Candidate Solution Scand
1 Initialize solutions: target, mutant, sol1, sol2, sol3
2 target = Scurrent
3 sol1 = RandomSelection(P)
4 sol2 = RandomSelection(P)
5 sol3 = RandomSelection(P)
6 mutant = RandOneMutation(ind1, ind2, ind3)
7 mutant = Repair(mutant)
8 Scand = BinomialCrossover (target, mutant)
9 return Scand

3. Experimental Setup

This section presents the experimental setup to assess our proposed approaches:
MOSA/D-CGO and MOSA/D-DE. Then, both algorithms are described to analyze their
performance.

Benchmark problems. The experimental design used the DTLZ [25] and CEC2009 [18].
From DTLZ benchmark, DTLZ1 to DTLZ7 were selected with 3, 5, and 10 objectives for
both algorithms MOSA/D-CGO and MOSA/D-DE. The number of variables of decision n
was calculated by n = m+ k, where m is the number of objectives and k is set to 5, 10, and 20
for DTLZ1, DTLZ2-6, and DTLZ7, respectively. The total number of experimental instances
is 42 (7 problems × 3 objective configurations × 2 algorithms). From CEC2009 benchmark,
UF1 to UF7 were selected with 2 objectives and UF8 to UF10 with 3 objectives. For all
problems, the number of decision variables was 30. The total number of experimental
instances was 20 (7 problems × 1 objective configurations × 2 algorithms + 3 problems × 1
objective configurations × 2 algorithms).

Parameter settings. In general, for both algorithms, the setting of the parameter is
defined in Table 1. The parameter setting for the CGO perturbation function is defined in
Table 2. Finally, the parameter setting for the DE perturbation function is defined in Table 3.

Table 1. General parameter setting.

Parameter Setting

Maximal function evaluations (MFE) 100,000
Size of the population (N) 100

Chain of Markov (L) 20 (DTLZ), 2 (CEC2009)
Initial temperature (Ti) 1
Final temperature (Tf) 0.0000001
Temperature factor (α) 0.98

Table 2. Parameter setting for MOSA/D.

Parameter Setting

Crossover probability 1
SBX distribution index 15
Mutation probability 1/number of objectives

Mutation distribution index 20

Table 3. Parameter setting for MOSA/D-DE.

Parameter Setting

Scale Factor (F) 0.5
Crossover rate (Cr) 0.8



Math. Comput. Appl. 2023, 28, 38 10 of 21

Performance indicator. The indicators used to measure the performance of both
algorithms were hypervolume (HV) and Inverted Generational Distance (IGD). HV allows
measurement of convergence and diversity with a single value. Therefore, to calculate HV
as a reference point is necessary. The reference points were obtained from determining both
algorithms’ maximum objective value for DTLZ1 to DTLZ7 with 3, 5, and 10 objectives
(Table 4). The reference points from UF1 to UF7 (2 objectives) and UF8 to UF10 (3 objectives)
are shown in Table 5. IGD allows measurement of convergence and diversity with a single
value. To calculated IGD is necessary set of points of the real Pareto front.

Table 4. Reference points for DTLZ problems used by HV calculations.

Test
Problem 3 Objectives 5 Objectives 10 Objectives

DTLZ1
216.790132039933,
245.572126619941,
265.114937485812

80.8714391297344,
227.104643547038,
235.570177240396,
201.976698417331,
344.81892944792

4.06142015762104, 2.25156894368627,
28.0355439457454, 18.0131641679773,
48.6777918069853, 55.3772497318585,
133.939834807773, 139.713524060566,
222.454058357031, 321.944734395031

DTLZ2
2.38622940286774,
2.47201723363377,
2.6806935648516

2.05896735099775,
2.07725455911758,
2.30808795675219,
2.57449333535658,
2.9380095369211

0.6594305076443, 0.648350703222635,
0.840342066735919,

1.24805308667332, 1.54612890881046,
1.70777551383235, 1.8764060443055,
1.97914511371776, 2.29490194623458,

2.65985264422613

DTLZ3
822.509995384644,
799.103543751443,
1242.39097615921

689.016436482976,
547.613912205914,
500.989149866526,
827.81074606278,
1089.39809110161

49.243814823296, 78.5147608980575,
133.64045805898, 150.770000538526,
217.750852407648, 340.827375270017,
565.932643419409, 495.059846407958,
829.140836249926, 1271.6885408782,

DTLZ4
2.58950883612183,
1.65645180809823,
2.02042410538188

2.66379101299125,
2.13852567972279,
2.04131611330391,
1.99090557186032,
1.98125761314518,

2.64822143939513, 2.20030288801471,
2.2491760776445, 2.083066369613,

2.1065144928458, 2.09386422171755,
1.99635654481651, 2.24556199410806,
2.01705020385728, 2.14178980883573

DTLZ5
2.06970298570428,
2.11909090597952,
2.74503917772623

1.31770044511346,
1.68921445015483,
3.31646087578869,
3.41224588178889,
3.49994217680484

0.291869064968389,
0.49338116154924,

0.525290602300518,
0.611762301869089,
0.751594578115702,

1.10935039999348, 2.68788397225164,
3.29311486089528, 3.41214316344024,

3.49975337563819

DTLZ6
9.71802048756533,
9.50035002572186,
10.5676062054648

9.56330574133902,
9.59158225806973,
10.477256602242,

10.9414071660156,
10.923652672406,

3.6503932212918, 3.29696637156103,
5.62792594695437, 7.16542587886431,
7.97964101213103, 9.77412868397095,
9.89622372940959, 10.6364664206205,
10.9073924572044, 10.9367989501483

DTLZ7
1.0,

0.999999999998507,
24.2793251715135

1.0,
0.999999994782373,
0.999999999986268,
0.999999999997808,
42.0189690066051,

1.0, 0.999999999990235,
0.999999991586879, 1.0,
0.999999998676653, 1.0,
0.99999999981814, 1.0,

0.999999997160675, 21.0
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Table 5. Reference points for CEC2009 problems used by HV calculations.

Test Problem 2 Objectives 3 Objectives

UF1 4.056791172
3.587159682 -

UF2 2.700068047
2.02284611 -

UF3 3.643565528
4.753315586 -

UF4 1.205666356
1.221462823 -

UF5 9.178972446
10.07250673 -

UF6 12.40456172
13.75189469 -

UF7 4.169101474
3.206875182 -

UF8 -
9.214592744
10.62998938
11.46084736

UF9 -
9.853718763
12.22418277
8.259884555

UF10 -
9.853718763
12.22418277
8.259884555

4. Results

The experimental results are reported in Tables 6–9, and expressed as the mean and
standard deviation of the HV (Tables 6 and 7) and IGD (Tables 8 and 9). The best value
of each configuration is highlighted in gray. To observe whether there is a significant
difference between the MOSA/D-CGO and MOSA/D-DE results, we employ the Wilcoxon
signed-rank test with α = 0.05 (two tails). The symbols ↑, ↓, and — represent a significant
difference in favor of MOSA/D-DE, a significant difference in favor of MOSA/D-CGO,
and no significant difference between MOSA/D-CGO and MOSA/D-DE, respectively.

The results of Table 6 show that MOSA/D-DE outperforms MOSA/D-CGO in six out
of seven instances with three objectives. For five objectives, MOSA/D-DE outperforms
MOSA/D-CGO in three out of seven instances (two instances without a significant differ-
ence). Finally, for 10 objectives, MOSA/D-DE outperforms MOSA/D-CGO in four out of
seven instances.

The results of Table 7 show that MOSA/D-DE outperforms MOSA/D-CGO in all
instances with two objectives. For three objectives, MOSA/D-DE outperforms MOSA/D-
CGO in all instances.

The results of Table 8 show that MOSA/D-DE outperforms MOSA/D-CGO in six out
of seven instances with three objectives. For five objectives, MOSA/D-DE outperforms
MOSA/D-CGO in four out of seven instances. Finally, for 10 objectives, MOSA/D-DE
and MOSA/D-CGO provide similar results in three out of seven (one instance without a
significant difference).

The results of Table 9 show that MOSA/D-DE outperforms MOSA/D-CGO in six
out seven instances with two objectives. For three objectives, MOSA/D-DE outperforms
MOSA/D-CGO in all instances.
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Table 6. Means and standard deviation of HV results of 42 instances.

PROBLEM M MOSA/D-CGO MOSA/D-DE

DTLZ1
3 1.411396 × 107 (7.856170 × 101) ↑1.411407 × 107 (2.077398 × 101)
5 3.013240 × 1011 (7.546308 × 104) ↑3.013241 × 1011 (1.109078 × 104)
10 1.667917 × 1016 (2.419205 × 1013) ↑1.668377 × 1016 (3.215349 × 108)

DTLZ2
3 1.508330 × 101 (2.781792 × 10−2) ↑1.517692 × 101 (7.637901 × 10−3)
5 7.361979 × 101 (7.759884 × 10−1) ↑7.387519 × 101 (3.847436 × 10−2)
10 ↓2.600539 × 101 (4.958777 × 10−1) 2.569999 × 101 (1.980545 × 10−1)

DTLZ3
3 8.163884 × 108 (6.516296 × 104) ↑8.165865 × 108 (4.513141 × 102)
5 1.689445 × 1014 (8.081423 × 1012) ↑1.704707 × 1014 (9.718498 × 107)
10 1.699675 × 1024 (4.226203 × 1022) ↑1.707961 × 1024 (8.685232 × 1018)

DTLZ4
3 7.958441 × 100 (1.283030 × 10−2) ↑8.002655 × 100 (1.583281 × 10−2)
5 ↓4.522733 × 101 (3.629265 × 10−2) 4.509505 × 101 (8.641444 × 10−2)
10 ↓2.327196 × 103 (3.100255 × 100) 2.298456 × 103 (1.139568 × 101)

DTLZ5
3 9.944000 × 100 (1.078512 × 10−2) ↑9.990017 × 100 (2.501031 × 10−2)
5 - - -7.652259 × 101 (3.121247 × 10−1) - - -7.657619 × 101 (1.983684 × 10−1)
10 3.412050 × 100 (2.043577 × 10−2) ↑3.428953 × 100 (8.094812 × 10−3)

DTLZ6
3 ↓9.009791 × 102 (1.712226 × 101) 7.219506 × 102 (8.185913 × 100)
5 ↓1.053329 × 105 (4.977173 × 103) 7.647568 × 104 (1.856713 × 103)
10 ↓4.179011 × 108 (6.692261 × 106) 2.876860 × 108 (9.403331 × 106)

DTLZ7
3 1.536594 × 101 (6.362204 × 10−1) ↑1.699378 × 101 (2.933636 × 10−1)
5 - - -2.219751 × 101 (1.606481 × 100) - - -2.263389 × 101 (9.949435 × 10−1)
10 0.000000 × 100 (0.000000 × 100) ↑5.649215 × 10−6 (1.130646 × 10−5)

The symbols ↑, ↓, and - - - represent a significant difference in favor of MOSA/D-DE, a significant difference in
favor of MOSA/D-CGO, and no significant difference between MOSA/D-CGO and MOSA/D-DE, respectively.

Table 7. Means and standard deviation of HV results of 20 instances.
Problem M MOSA/D_CGO MOSA/D-DE

UF1 2 1.207938 × 101 (3.053312 × 10−1) ↑1.359271 × 101 (8.924848 × 10−2)
UF2 2 4.420144 × 100 (1.124631 × 10−1) ↑4.898329 × 100 (4.114705 × 10−2)
UF3 2 1.272886 × 101 (2.770899 × 10−1) ↑1.446032 × 101 (1.560741 × 10−1)
UF4 2 6.199354 × 10−1 (7.645704 × 10−3) ↑6.226053 × 10−1 (4.375474 × 10−3)
UF5 2 5.794553 × 101 (2.163053 × 100) ↑7.537953 × 101 (9.461970 × 10−1)
UF6 2 1.449117 × 102 (2.789804 × 100) ↑1.558762 × 102 (9.956338 × 10−1)
UF7 2 1.023408 × 101 (3.651312 × 10−1) ↑1.159760 × 101 (2.062088 × 10−1)
UF8 3 1.021735 × 103 (2.236911 × 101) ↑1.112894 × 103 (4.871298 × 10−1)
UF9 3 8.871173 × 102 (1.462057 × 101) ↑9.214801 × 102 (8.179234 × 100)

UF10 3 2.676289 × 102 (5.962540 × 101) ↑8.332120 × 102 (1.796126 × 101)
The symbols ↑ represent a significant difference in favor of MOSA/D-DE, a significant difference in favor of
MOSA/D-CGO, and no significant difference between MOSA/D-CGO and MOSA/D-DE, respectively.

Table 8. Means and standard deviation of IGD results of 42 instances.
Problem M MOSA/D_CGO MOSA/D-DE

DTLZ1
3 1.698462 × 100 (5.231658 × 10−1) ↑2.567411 × 10−2 (3.988398 × 10−4)
5 1.848446 × 100 (7.371114 × 10−1) ↑1.362515 × 10−1 (8.662087 × 10−3)
10 2.605653 × 100 (8.858904 × 10−1) ↑2.746888 × 10−1 (2.055289 × 10−2)

DTLZ2
3 1.338869 × 10−1 (1.050833 × 10−2) ↑6.539183 × 10−2 (8.887102 × 10−4)
5 ↓3.879495 × 10−1 (2.383225 × 10−2) 4.315983 × 10−1 (1.731880 × 10−2)
10 ↓8.086104 × 10−1 (3.491915 × 10−2) 8.740702 × 10−1 (3.886488 × 10−2)

DTLZ3
3 3.943222 × 101 (1.066523 × 101) ↑8.927530 × 10−2 (8.582940 × 10−3)
5 3.527925 × 101 (1.256126 × 101) ↑2.402407 × 100 (1.052387 × 100)
10 3.857988 × 101 (8.728455 × 100) ↑1.452693 × 101 (3.864857 × 100)

DTLZ4
3 2.193973 × 10−1 (2.708875 × 10−2) ↑7.370770 × 10−2 (2.095534E × 10−3)
5 4.264948 × 10−1 (2.618424 × 10−2) ↑3.453491 × 10−1 (1.259533 × 10−2)
10 - - -7.485737 × 10−1 (2.873640 × 10−2) - - -7.565568 × 10−1 (2.740685 × 10−2)

DTLZ5
3 3.692489 × 10−2 (4.482185 × 10−3) ↑8.796775 × 10−3 (4.662547 × 10−4)
5 ↓2.173594 × 10−1 (2.151767 × 10−2) 3.198228 × 10−1 (3.323426 × 10−3)
10 ↓8.274774 × 10−1 (3.498018 × 10−2) 9.278413 × 10−1 (8.544034 × 10−3)
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Table 8. Cont.
Problem M MOSA/D_CGO MOSA/D-DE

DTLZ6
3 ↓2.360560 × 100 (4.875849 × 10−1) 5.755759 × 100 (1.295398 × 10−1)
5 ↓3.233184 × 100 (5.565340 × 10−1) 7.249152 × 100 (1.815938 × 10−1)

10 ↓4.311238 × 100 (3.579400 × 10−1) 7.249090 × 100 (1.507697 × 10−1)

DTLZ7
3 2.640245 × 100 (5.499560 × 10−1) ↑6.763103 × 10−1 (4.596304 × 10−2)
5 5.536790 × 100 (6.953019 × 10−1) ↑1.562072 × 100 (2.362084 × 10−1)

10 5.536790 × 100 (6.953019 × 10−1) ↑1.562072 × 100 (2.362084 × 10−1)
The symbols ↑, ↓, and - - - represent a significant difference in favor of MOSA/D-DE, a significant difference in
favor of MOSA/D-CGO, and no significant difference between MOSA/D-CGO and MOSA/D-DE, respectively.

Table 9. Means and standard deviation of IGD results of 20 instances.
Problem M MOSA/D_CGO MOSA/D-DE

UF1 2 3.118639 × 10−1 (3.337199 × 10−2) ↑1.245048 × 10−1 (6.952854 × 10−3)
UF2 2 1.632088 × 10−1 (1.376776 × 10−2) ↑4.207095 × 10−2 (4.246406 × 10−3)
UF3 2 5.070647 × 10−1 (3.574368 × 10−2) ↑3.410425 × 10−1 (1.406431 × 10−2)
UF4 2 ↓8.882224 × 10−2 (3.714504 × 10−3) 9.322984 × 10−2 (2.313839 × 10−3)
UF5 2 2.573650 × 100 (3.112357 × 10−1) ↑1.614455 × 100 (1.012664 × 10−1)
UF6 2 1.323509 × 100 (1.554659 × 10−1) ↑7.905724 × 10−1 (4.148593 × 10−2)
UF7 2 4.111049 × 10−1 (4.643987 × 10−2) ↑1.801766 × 10−1 (2.685634 × 10−2)
UF8 3 8.631345 × 10−1 (1.315110 × 10−1) ↑2.057906 × 10−1 (1.069731 × 10−2)
UF9 3 8.061542 × 10−1 (1.206518 × 10−1) ↑2.987048 × 10−1 (1.581723 × 10−2)

UF10 3 6.233193 × 100 (9.715169 × 10−1) ↑1.485037 × 100 (1.454003 × 10−1)
The symbols ↑ and ↓ represent a significant difference in favor of MOSA/D-DE, a significant difference in favor of
MOSA/D-CGO, and no significant difference between MOSA/D-CGO and MOSA/D-DE, respectively.

4.1. DTLZ Benchmark Analysis

DTLZ1 and DTLZ3 are test problems with the difficulty of possessing local Pareto-
optimal fronts. This allows us to observe the algorithms’ ability to escape local Pareto-
optimal fronts. In this case, for both problems, MOSA/D-DE has promising HV (Table 6)
and IGD (Table 8) results that outperform the MOSA/D-CGO results for three, five, and
ten objectives. In Figure 3, it is possible to observe the Pareto front of DTLZ1 and DTLZ3
obtained by MOSA/D-CGO (left side) and MOSA/D-DE (right side) for three objectives.
The contribution of DE allows the algorithm to escape from local Pareto-fronts better than
the contribution of CGO.

DTLZ2 is a test problem that allows us to observe the ability to converge to concave
Pareto fronts. MOSA/D-DE outperforms MOSA/D-CGO in three and five objectives, but
with ten objectives, the results favor MOSA/D-CGO in terms of HV results. The perfor-
mance of differential evolution is promising for three and five objectives. The contribution
of classical genetic operators improves the performance with 10 objectives. It is in concor-
dance with IGD results where CGO outperforms DE in five and ten objectives. Figure 4
shows the convergence ability of MOSA/D-DE with three objectives.

DTLZ4 is a test problem derived from DTLZ2 that allows observation of the algorithms
capable of maintaining a good distribution of solutions. Based on the HV results of Table 6,
MOSA/D-DE has a better distribution for three objectives (Figure 5). Moreover, for five
and ten dimensions, the MOSA/D-CGO approach has a better distribution of solutions.
In contrast, IGD (Table 8) shows results in favor of MOSA/D-DE with three and five
objectives. It may be because MOSA/D-DE has more solutions near of the real Pareto front
than MOSA/D-CGO.

DTLZ5 is a test problem derived from DTLZ2 that allows us to observe whether the al-
gorithms can converge to a curve. From the HV results (Table 6), MOSA/D-DE outperforms
MOSA/D-CGO with three and ten objectives. For five objectives, the Wilcoxon signed-rank
test indicates no significant difference between the MOSA/D-CGO and MOSA/D-DE
results. In contrast, IGD results show that MOSA/D-CGO has a more solutions near of
the real PF. Figure 6 shows the convergence toward the PF (curve) using MOSA/D-DE
(right side).
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DTLZ6 is a more complex test problem derived from DTLZ5. It allows us to ob-
serve whether the algorithms are capable of converging to a curve. From the HV results,
MOSA/D-CGO outperforms MOSA/D-DE for three, five and ten objectives. However, in
this problem, the convergence of both algorithms deteriorates. For example, in Figure 7,
both approaches fail to achieve convergence toward the PF. In results of HV and IGD, better
performance of MOSA/D-DE over MOSA/D-CGO is displayed.
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DTLZ7 is a test problem with disconnected Pareto-optimal regions in the search
space. The purpose of this problem is to observe the algorithms’ ability to maintain sub-
populations in different Pareto-optimal regions [25]. MOSA/D-DE outperforms MOSA/D-
CGO for three and ten objectives based on the HV results (Table 6). For five objectives,
the Wilcoxon signed-rank test indicates no significant difference between the MOSA/D-
CGO and MOSA/D-DE results for DTLZ7. In addition, IGD (Table 8) results show that
MOSA/D-DE outperform MOSA/D-CGO for three, five and ten objectives. However, in
this problem, the convergence of the algorithms deteriorates although Figure 8 and shows
that the four sub-populations of both approaches are necessary for more convergence
toward the PF.
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4.2. CEC2009 Benchmark Analysis

CEC2009 benchmark is a set of problems with complicated Pareto set shapes [18]
to observe the searchability of multi-objective optimization algorithms. The HV results
(Table 7) show that MOSA/D-DE outperforms MOSA/D-CGO in all instances. According
to the IGD results (Table 9), MOSA/D-DE outperforms MOSA/D-CGO in experimental
instances from UF1 to UF3 and UF5 to UF7 for 2 objectives, while MOSA/D-CGO out-
performs MOSA/D-DE in UF4. The plots of approximate PFs for 2 objectives can be seen
in Figures 9–15. On the other hand, according to the IGD results (Table 9), MOSA/D-DE
outperforms MOSA/D-CGD in all instances of 3 objectives (UF8 to UF10). The plots of
approximate PFs for 3 objectives can be seen in Figures 16–18. Therefore, using the DE
perturbation function has a better search ability contribution than the CGO perturbation
function. MOSA/D-DE has promising results in the UF2 (Figure 10), UF4 (Figure 12), and
UF8 (Figure 16) problems. However, the performance of both algorithms needs more search
ability in seven out of ten problems of the benchmark. It shows a clear opportunity to
improve the mechanism in future works.
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5. Conclusions

The MOSA/D-CGO and MOSA/D-DE approaches to deal with continuous multiple-
and many-objective problems were introduced in this paper. Both algorithms harness
the ability of convergence and diversity from simulated annealing and decomposition,
respectively. MOSA/D-CGO adopts a perturbation function based on classical genetic
operators. MOSA/D-DE adopts a perturbation function based on differential evolution. It
is essential to point out that MOSA/D-DE shows some promising abilities: (i) its ability
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to escape from local Pareto-optimal sets in linear and concave problems, (ii) its ability
to converge to concave and curved Pareto fronts. Furthermore, MOSA/D-CGO also
shows promising abilities: (i) it obtains reasonably distributed solutions with five and ten
objectives. MOSA/D-CGO and MOSA/D-DE show convergence to concave Pareto fronts.
Both algorithms show the promising ability to converge to Pareto-optimal regions.

The MOSA/D-CGO and MOSA/D-DE algorithms show deterioration of convergence
with complex problems with curved Pareto fronts. Both algorithms also show deterioration
of convergence with solutions in separate Pareto regions. In conclusion, based on the
experiments, the MOSA/D-DE algorithm has promising results. The results in almost all the
experiments conducted for three, five, and ten objectives favor MOSA/D-DE. In addition,
MOSAD-DE outperforms MOSA/D-CGO in two abilities: (i) the capacity to escape from
local Pareto-optimal fronts and (ii) convergence to curved Pareto fronts. The other abilities
as measured by the DTLZ benchmark show that both MOSA/D algorithms have mixed
results. In addition, both algorithms were proved using problems with complicated Pareto
set shapes. Both algorithms were proved using problems with complicated Pareto set
shapes. The HV and IGD results show that MOSA/D-DE outperforms MOSA/D-CGO
in almost all experimental instances. Furthermore, MOSA/D-DE has promising results
in three out of ten problems. However, the mechanism needs more searchability with the
complicated Pareto set shapes. Finally, using perturbation functions in multi-objective
simulated annealing significantly impacts the convergence toward the PF. This impact can
be improved in future work.

In future work, the aim is to determine another strategy to add convergence into
complex problems with curved PF and separate Pareto regions. For example, to converge
in a curved PF (DTLZ6), both MOSA fail, but, based on the HV results, MOSA/D-CGO
has a slight advantage over MOSA/D-DE. Both algorithms indeed achieve solutions in
separate Pareto regions (Figure 8), but there needs to be more convergence. It will be
interesting to observe the performance of both algorithms with additional convergence.
The search ability with the CEC2009 benchmark show deterioration; for this reason, an
update of the mechanism is necessary. MOSA/D algorithms are the hybridized result
of simulated annealing, decomposition, and special perturbation functions. This design
allows a simple structure (Algorithm 1) that can be easily updated. For example, the
algorithms can both use the concept of the neighborhood as in MOEA/D [7] and use a
strategy based on preferences to deal with MaOPs. In addition, future work will aim to
observe the performance of both MOSA/D with real world problems such as the portfolio
selection problem (PSP), knapsack problem, and traveling salesman problem.
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