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Abstract: A three-strain SEIR epidemic model with a vaccination strategy is suggested and studied
in this work. This model is represented by a system of nine nonlinear ordinary differential equations
that describe the interaction between susceptible individuals, strain-1-vaccinated individuals, strain-
1-exposed individuals, strain-2-exposed individuals, strain-3-exposed individuals, strain-1-infected
individuals, strain-2-infected individuals, strain-3-infected individuals, and recovered individuals.
We start our analysis of this model by establishing the existence, positivity, and boundedness of all
the solutions. In order to show global stability, the model has five equilibrium points: The first one
stands for the disease-free equilibrium, the second stands for the strain-1 endemic equilibrium, the
third one describes the strain-2 equilibrium, the fourth one represents the strain-3 equilibrium point,
and the last one is called the total endemic equilibrium. We establish the global stability of each
equilibrium point using some suitable Lyapunov function. This stability depends on the strain-1
reproduction number R1

0, the strain-2 basic reproduction number R2
0, and the strain-3 reproduction

number R3
0. Numerical simulations are given to confirm our theoretical results. It is shown that

in order to eradicate the infection, the basic reproduction numbers of all the strains must be less
than unity.

Keywords: three-strain; global stability; numerical simulation; vaccination

1. Introduction

Multi-strain models present a very important part in mathematical modeling in order
to well understand infectious disease spread. Indeed, many infectious diseases such as
human immunodeficiency virus (VIH), tuberculosis, and coronavirus disease (COVID-19)
can be analyzed by using different multi-strain epidemic models because these diseases
contain usually two or more strains [1–5].

To describe the infection, many works use the classical SIR epidemic model, with S
representing the susceptible individuals, I the infected individuals, and R the removed
individuals. The first SIR epidemic model was proposed by Kermack and Mc Kendrick
in [6]. When infection takes a specific time to appear in infected individuals, another
class describing the exposed individuals is added to the SIR epidemic model for a good
description of the infection dynamics. These new categories of epidemic models are
abbreviated as SEIR. Many works have used this model to describe the infection dynamic
of infectious diseases [7–13]. The infection rate of a disease can be defined as the number of
newly infected individuals in a specific time [14]. The famous one is a bilinear incidence
under the form ζSI or ζSI/N, with zeta as the infection rate and N as the population
size. Some mathematical models have used these incidence functions [15–19]. Since
mutation is among the characteristics of viruses, a virus can experience several strains.
In the case of two strains, the exposed class of the individual for SEIR is divided into
two sub-classes, E1 and E2; the first one stands for strain-1-exposed individuals, and
E2 stands for strain-2-exposed individuals. The same process applies to the infected
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population I1 and I2, and they are divided into two sub-populations; the first refers to
strain-1-infected individuals, and I2 stands for strain-2-infected individuals. Some multi-
strain SEIR epidemic models have used bilinear or non-monotonic incidence rates [20–23].
Likewise and recently, Bentaleb and Amine [24] suggested a two-strain epidemic model
with bilinear and non-monotonic incidence rates. The authors began the analysis of the
model by giving the different theorems of existence, positivity, and boundedness of the
model solutions, which they demonstrated after the global stability of the equilibrium
points, and they gave some numerical simulations in the last part of their work. This
last proposed model was improved by Meskaf et al. in [25] by proposing a two-strain
epidemic model with non-monotonic incidence rates. More recently, in [26], Yaagoub et al.
suggested a two-strain epidemic model with treatment. The authors started their work by
proving the existence, positivity, and boundedness of the suggested model solution, and
they gave different theorems of the global stability of the equilibria in order to perform
numerical simulations for confirming the theoretical results and showing the effect of
treatment on infection.

Vaccination is a very effective way to fight most infectious diseases such as COVID-
19 [27]. Therefore, developing safe and effective vaccines significantly reduces morbidity
and mortality rates. Some mathematical models considered this vaccination strategy in
their proposed model [28–36]. The SVEIR model is inspired by SEIR models, which
take into consideration the vaccination strategy. In the literature, some authors use these
SVEIR models to describe the infection transmission of some diseases [37–42]. Recently,
in [43], Baba et al. suggested a two-strain SVEIR model with a bilinear incidence rate
and vaccination strategy. They gave the different theorems of existence, positivity, and
boundedness of solutions and also showed the global stability of the equilibria; they
finished their work with some numerical simulations and discussions. In this context, and
motivated by the previous works, we suggest an SVEIR three-strain epidemic model with
a vaccination strategy. More precisely, in our model, we investigate the vaccine effect only
on the first strain because several studies have shown that vaccination of only one strain
reduces the total infection.

dS
dt

= Λ− α1SI1 − α2SI2 − α3SI3 − (σ + λ)S,

dV
dt

= σS− η2VI2 − η3VI3 − λV,

dE1

dt
= α1SI1 − (γ1 + λ)E1,

dE2

dt
= η2VI2 + α2SI2 − (γ2 + λ)E2,

dE3

dt
= η3VI3 + α3SI3 − (γ3 + λ)E3,

dI1

dt
= γ1E1 − (µ1 + δ)I1,

dI2

dt
= γ2E2 − (µ2 + λ)I2,

dI3

dt
= γ3E3 − (µ3 + λ)I3,

dR
dt

= µ1 I1 + µ2 I2 + µ3 I3 − λR.

(1)

In the above, S, V, E1, E2, E3, I1, I2, I3, and R represent, respectively, the compart-
ment of susceptible individuals, vaccinated individuals, strain-1-exposed individuals, stain-
2-exposed individuals, stain-3-exposed individuals, strain-1-infected individuals, stain-2-
infected individuals, stain-3-infected individuals, and recovered individuals. The parame-
ters of this model (1) are given in Table 1, and the description of all model (1) elements is
represented in Figure 1. We assume that there is no reinfection of recovered individuals.
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Figure 1. The diagram of SVEIR three-strain model.

Table 1. Description of the parameters in the model.

Parameters Description

Λ The recruitment rate of the population
λ The natural mortality rate
α1 The infection rate of strain-1
α2 The infection rate of strain-2
α3 The infection rate of strain-3
σ The vaccination rate of the strain-1 individuals
η2 The transmission rate of vaccinated individuals to strain-2
η3 The transmission rate of vaccinated individuals to strain-3

1/γ1 The average latency period of the strain-1
1/γ2 The average latency period of the strain-2
1/γ3 The average latency period of the strain-3
1/µ1 The average infection period of the strain-1
1/µ2 The average infection period of the strain-2
1/µ3 The average infection period of the strain-3

This work is divided as follows: In Section 2, we give some results of the existence,
positivity, and boundedness of model (1) solutions. In Section 3, we prove the global
stability of equilibrium points. Numerical simulations are presented in Section 4 to validate
the different results found in the theoretical part. The last section concludes this work.

2. Existence, Positivity, and Boundedness of Solutions

In this section, we prove that model (1) has a unique, non-negative, and bounded
solution for all t ≥ 0.
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Proposition 1. For any non-negative initial condition, model (1) has a unique solution. In addition,
this solution remains non-negative and bounded for all t ≥ 0.

Proof. First, we prove that system (1) has a unique solution. We can reformulate the
model (1) as follows:

U̇ = f (U), (2)

with
U = (S, V, E1, E2, E3, I1, I2, I3, R)T (3)

and

F(U) =



Λ− α1SI1 − α2SI2 − α3SI3 + (σ + λ)S
σS− η2VI2 − η3VI3 + λV

α1SI1 − (γ1 + λ)E1
η2VI2 + α2SI2 − (γ2 + λ)E2
η3VI3 + α3SI3 − (γ3 + λ)E3

γ1E1 − (µ1 + δ)I1
γ2E2 − (µ2 + λ)I2
γ3E3 − (µ3 + λ)I3

µ1 I1 + µ2 I2 + µ3 I3 − λR


. (4)

We remark that F is a Lipschitz function; moreover, we have

‖ F(U1)− F(U2) ‖≤ k‖ U1 −U2 ‖1, ∀U1, U2 ∈ R9
+ (5)

with
k = max{A, B, C, D, E, G, H, L, M} (6)

and A = α1 I1 + α2 I2 + α3 I3 + (σ + λ), B = σ + λ, C = γ1 + λ, D = γ2 + λ, E = γ3 +
λ, G = µ1 + λ, H = µ2 + λ, L = µ3 + λ, M = λ.

Thus, model (1) has a unique solution in R9
+.

Now, we prove that this solution remains non-negative.

Ṡ |S=0 = λ > 0,

V̇ |V=0 = σS ≥ 0,

Ė1 |E1=0 = α1SI1 ≥ 0,

Ė2 |E2=0 = η2VI2 + α2SI2 ≥ 0,

Ė3 |E3=0 = η3VI3 + α32SI3 ≥ 0,

İ1 |I1=0 = γ1E1 ≥ 0,

İ2 |I2=0 = γ2E2 ≥ 0,

İ3 |I3=0 = γ3E3 ≥ 0,

Ṙ |R=0 = µ1 I1 + µ2 I2 + µ3 I3 ≥ 0.

(7)

Thus, this solution remains non-negative for all t ≥ 0.
Finally, for the boundedness of this solution, we verify that the biologically feasible region

P = {(S, V, E1, E2, E3, I1, I2, I3, R) ∈ R9
+ such thatS + V + E1 + E2 + E3 + I1 + I2 + I3 + R ≤ Λ

λ
} (8)

is positively invariant.
Let the total population

N(t) = S(t) + V(t) + E1(t) + E2(t) + E3(t) + I1(t) + I2(t) + I3(t) + R(t), (9)
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By adding all equations of the system (1), we have

Ṅ = Λ− λN(t), (10)

then,

N(t) ≤ Λ
λ

(
N(0)− Λ

λ

)
e−λt, (11)

therefore,

limt→+∞N(t) =
Λ
λ

, (12)

since ∃t0 > 0 such as ∀t ≥ t0, we will have

N(t) ≤ Λ
λ

. (13)

Then, we conclude that P is positively invariant. Therefore, we can conclude that
model (1) has a unique, positive, and bounded solution ∈ R9

+.

3. Analysis of the Model

In this section, we prove that there exists a disease-free equilibrium point and four
equilibrium points. The global stability of these equilibrium points using the Lyapunov
functional method is proved. As the first eight equations of system (1) are independent
of the ninth equation, and also the total number of population N is determined using
Equation (15), system (1) can be reduced to the following system:

ds
dt

= Λ− α1SI1 − α2SI2 − α3SI3 − (σ + λ)S,

dV
dt

= σS− η2VI2 − η3VI3 − λV,

dE1

dt
= α1SI1 − (γ1 + λ)E1,

dE2

dt
= η2VI2 + α2SI2 − (γ2 + λ)E2,

dE3

dt
= η3VI3 + α3SI3 − (γ3 + λ)E3,

dI1

dt
= γ1E1 − (µ1 + δ)I1,

dI2

dt
= γ2E2 − (µ2 + λ)I2,

dI3

dt
= γ3E3 − (µ3 + λ)I3.

(14)

with
R = N − S−V − E1 − E2 − E3 − I1 − I2 − I3. (15)

3.1. The Basic Reproduction Number Calculation

The basic reproduction number R0 is the number of secondary infection cases caused
by one infected individual in a population constituted only by susceptible individuals, and
mathematically, the basic reproduction number is the spectral radius of the matrix called
the next-generation matrix FV−1, with F as the positive matrix of new infection cases and
V as the matrix of the transition of the infections.

Let

a = σ + λ, b = γ1 + λ, c = γ2 + λ, d = γ3 + λ, e = µ1 + λ, f = µ2 + λ, g = µ3 + λ, (16)
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F =



0 0 0
α1σ

a
0 0

0 0 0 0
α1σ

a
+

η2σΛ
λa

0

0 0 0 0 0
α3σΛ

a
+

η3σΛ
λa

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(17)

and

V =



b 0 0 0 0 0
0 c 0 0 0 0
0 0 d 0 0 0
−γ1 0 0 e 0 0

0 −γ2 0 0 f 0
0 0 −γ3 0 0 g

. (18)

Thus, we have

FV−1 =



α1Λγ1

abe
0 0

α1σ

ae
0 0

0
α2Λγ2

ac f
+

η2Λγ2

λac f
0 0

α2λ

a f
+

η2σΛ
λa f

0

0 0
α3Λγ3

adg
+

η3Λγ3

λadg
0 0

α3σΛ
ag

+
α3σΛ
λag

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (19)

Therefore, the basic reproduction number of model (14) is

R0 = max{R1
0, R2

0, R3
0}, (20)

with
R1

0 =
α1Λγ1

abe
, (21)

R2
0 =

α2Λγ2

ac f
+

η2Λγ2

λac f
(22)

and
R3

0 =
α3σΛ

ag
+

α3σΛ
λag

. (23)

3.2. Steady States

Model (14) has one disease-free equilibrium point, and the other four endemic equilib-
rium points are given by

1. The disease-free equilibrium E0 = (S0, V0, 0, 0, 0, 0, 0, 0), where

S0 =
Λ

σ + λ
, V0 =

σΛ
λa

. (24)

2. The strain-1 endemic equilibrium Es1 = (S∗s1
, V∗s1

, E∗1,s1
, E∗2,s1

, E∗3,s1
, I∗1,s1

, I∗2,s1
, I∗3,s1

), where

S∗s1
=

be
α1γ1

, V∗s1
=

σ

λ
S∗s1

=
σbe

λα1γ1
, I∗1,s1

=
a

α1
(R1

0 − 1), (25)

E∗1,s1
= eI∗1,s1

=
ea

γ1α1
(R1

0 − 1), E∗2,s1
= I∗2,s1

= E∗3,s1
= I∗3,s1

= 0. (26)



Math. Comput. Appl. 2023, 28, 9 7 of 18

3. The strain-2 endemic equilibrium Es2 = (S∗s2
, V∗s2

, E∗1,s2
, E∗2,s2

, E∗3,s2
, I∗1,s2

, I∗2,s2
, I∗3,s2

), where

S∗s2
=

Λ
α2 I∗2,s2

+ a
, V∗s2

=
σΛ

(α2 I∗2,s2
+ a)(α2 I∗2,s2

+ λ)
, E∗2,s2

=
f

γ2
I∗2,s2

, (27)

I∗2,s2
=
−B2 −

√
B2

2 − 4A2C2

2A2
, E∗1,s2

= 0, E∗3,s2
= 0, I∗1,s2

= 0, I∗3,s2
= 0. (28)

where I∗2,s2
is solution of the equation A2

2x2 + B2x + C2 = 0, with A2 = α2
2Λ −

f cα2
2

γ2
, B2 = η2σΛ + α2Λλ− f c

γ2(α2λ + α2a)
, C2 = λa.

4. The strain-3 endemic equilibrium Es3 = (S∗s3
, V∗s3

, E∗1,s3
, E∗2,s3

, E∗3,s3
, I∗1,s3

, I∗2,s3
, I∗3,s3

), where

S∗s3
=

Λ
α3 I∗3,s3

+ a
, V∗s3

=
σΛ

(α3 I∗3,s3
+ a)(α3 I∗3,s3

+ λ)
, E∗3,s3

=
g

γ3
I∗3,s3

, (29)

I∗3,s3
=
−B3 −

√
B2

3 − 4A3C3

2A3
, E∗1,s3

= 0, E∗2,s3
= 0, I∗1,s3

= 0, I∗2,s3
= 0. (30)

where I∗3,s3
is solution of the equation A2

3x2 + B3x + C3 = 0, with A3 = α2
3Λ −

dgα2
3

γ3
, B3 = η3σΛ + α3Λλ− dg

γ3(α3λ + α3a)
, C3 = λa.

5. The total strain endemic equilibrium Et = (S∗t , V∗t , E∗1,t, E∗2,t, E∗3,t, I∗1,t, I∗2,t, I∗3,st
), where

S∗t =
be

α1γ1
, V∗t =

α2be
η2α1γ1

(
R1

0
R2

0
− 1

)
=

α2be
η3α1γ3

(
R1

0

R3
0
− 1

)
, (31)

E∗1,t =
e

γ1
I∗1,t, E∗2,t =

f
γ2

E∗2,t, E∗3,t =
g

γ3
I∗3,t. (32)

where I∗1,t, I∗2,t and I∗3,t are the roots of the following equations:

a1x + b1y + c1z + d1 = 0, (33)

a2y + b2z + d2 = 0 (34)

and
a3x + b3y + c3z + d3 = 0. (35)

where a1 = α1S∗t , b1 = α2S∗t , c1 = α3S∗t , d1 = −λ− aS∗t , a2 = η2V∗t , b2 = η3V∗t , d2 =

σS∗t − λV∗t , a3 =
be
γ1

, b3 =
f c
γ2

, c3 =
dg
γ3

, d3 = aS∗t + λV∗t −Λ− σS∗t .

Remark 1. From the components of the equilibrium points, we conclude that points exist when
R1

0 > 1, R2
0 > 1, and R3

0 > 1.

3.3. Global Stability

In this section, we give the different theorems concerning the global stability of the
different equilibrium points:

Theorem 1. If R1
0 ≤ 1, R2

0 ≤ 1, and R3
0 ≤ 1, then the disease-free equilibrium E f is globally

asymptotically stable.

Proof. We consider the following Lyapunov function L f in R8
+:

L f = S0

(
S
S0
− ln

(
S
S0

)
− 1
)
+ V0

(
V
V0
− ln

(
V
V0

)
− 1
)
+ E1 + E2 + E3 +

b
γ1

I1 +
c

γ2
I2 +

d
γ3

I3. (36)
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The time derivative of L f is given by

L̇ f = Ṡ + V̇ + Ė1 + Ė2 + Ė3 +
b

γ1
İ1 +

c
γ2

İ2 +
d

γ3
İ3 −

S0

S
Ṡ− V0

V
V̇

+ Λ− λS− λV − be
γ1

I1 −
f c
γ2

I2 −
dg
γ3

I3 −Λ
S0

S
+ αS0 I1

+ α2S0 I2 + α3S0 I3 + σS0 + λS0 − σS
V0

V
+ η2V0 I2 + η3V0 I3 + λV0. (37)

As S0 =
Λ

σ + λ
and V0 =

σΛ
λ(σ + λ)

, we will have

L̇ f = λS0

(
2− S0

S
− S

S0

)
+ σS0

(
3− S0

S
− SV0

S0V
− V

V0

)
+

be
γ1

I1

(
R1

0 − 1
)

+
f c
γ2

I2

(
R2

0 − 1
)
+

dg
γ3

I3

(
R3

0 − 1
)

. (38)

Thus, when R1
0 ≤ 1, R2

0 ≤ 1 and R3
0 ≤ 1, we will have L̇ f ≤ 0. Thus, the disease-free

equilibrium point E0 is globally asymptotically stable.

Theorem 2. If R2
0 ≤ 1, R3

0 ≤ 1, and R1
0 > 1, then the strain-1 endemic equilibrium point Es1 is

globally asymptotically stable.

Proof. We consider the following Lyapunov function L1 in R8
+:

L1 = S∗s1

(
S

S∗s1

− ln

(
S

S∗s1

)
− 1

)
+ V∗s1

(
V

V∗s1

− ln

(
V

V∗s1

)
− 1

)
+ E∗1,s1

(
E1

E∗1,s1

− ln

(
E1

E∗1,s1

)
− 1

)

+ E2 + E3 +
b

γ1
I∗1,s1

(
I1

I∗1,s1

− ln

(
I1

I∗1,s1

)
− 1

)
+

c
γ2

I2 +
d

γ3
I3. (39)

The time derivative of L1 is given by

L̇1 =

(
1−

S∗s1

S

)
Ṡ +

(
1−

V∗s1

S

)
V̇ +

(
1−

E∗1,s1

E1

)
Ė1 + Ė2 + Ė3 +

b
γ1

(
1−

I∗1,s1

I1

)
İ1 +

c
γ2

İ2 +
d

γ3
İ3

= Λ− λS− λV − be
γ1
− f c

γ2
− dg

γ3
I3 −Λ

S∗s1

S
+ α1S∗s1

I1 + α2S∗s1
I2 + α3S∗s1

I3 + (σ + λ)S∗s1

− σS
V∗s1

V
+ η2V∗s1

I2 + η3V∗s1
I3 + λV∗s1

− α1SI1
E∗1,s1

E1
+ bE∗1,s1

− bE1
I∗1,s1

I1
+

be
γ1

I∗1,s1
. (40)

As E1 is an equilibrium point of system (14), we will have

Λ = α1S∗s1
I∗1,s1

+ (σ + λ)S∗s1
,

σS∗s1
= λV∗s1

,

bE∗1,s1
= α1S∗s1

I∗1,s1
,

E∗1,s1
=

e
γ1

I∗1,s1
.

(41)
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Thus, after some simplifications and factorizations, we will have

L̇1 = σS∗s1

(
3−

S∗s1

S
−

SV∗s1

S∗s1
V
− V

V∗s1

)
+ λS∗s1

(
2−

S∗s1

S
− S

S∗s1

)

+ bE∗1,s1

(
3−

S∗s1

S
−

E1 I∗1,s1

E∗1,s1
I1
−

SI1E∗1,s1

S∗s1
I∗1,s1

E1

)
+ I1

(
α1S∗s1

− be
γ1

)
+ I2

(
α2S∗s1

+ η2V∗s1
− f c

γ2

)
+ I3

(
α3S∗s1

+ η3V∗s1
− dg

γ3

)
(42)

≤ σS∗s1

(
3−

S∗s1

S
−

SV∗s1

S∗s1
V
− V

V∗s1

)
+ λS∗s1

(
2−

S∗s1

S
− S

S∗s1

)

+ bE∗1,s1

(
3−

S∗s1

S
−

E1 I∗1,s1

E∗1,s1
I1
−

SI1E∗1,s1

S∗s1
I∗1,s1

E1

)
+ I1

(
αS∗s1
− be

γ1

)
+

f c
γ2

(
R2

0 − 1
)
+

dg
γ3

(
R3

0 − 1
)

. (43)

As the arithmetic mean is greater than or equal to the geometric mean, we will have

3−
S∗s1

S
−

SV∗s1

S∗s1
V
− V

V∗s1

≤ 0, (44)

3−
S∗s1

S
−

E1 I∗1,s1

E∗1,s1
I1
−

SI1E∗1,s1

S∗s1
I∗1,s1

E1
≤ 0 (45)

and

2−
S∗s1

S
− S

S∗s1

≤ 0. (46)

Moreover,

S∗s1
− be

γ1
= 0. (47)

Then, when R2
0 ≤ 1 and R3

0 ≤ 1, we will have L̇1 ≤ 0. Thus, the strain-1 endemic
equilibrium point Es1 is globally asymptotically stable.

For the global stability of the equilibrium point Es2 , we assume that this point verifies
the following condition:

α2S∗s2
+ η2V∗s2

− f c
γ2
≤ 0. (H1) (48)

Theorem 3. If R1
0 ≤ 1, R3

0 ≤ 1, and R2
0 > 1, then the strain-2 endemic equilibrium point Es2 is

globally asymptotically stable.

Proof. We consider the following Lyapunov function L2 in R8
+:

L2 = S∗s2

(
S

S∗s2

− ln

(
S

S∗s2

)
− 1

)
+ V∗s2

(
V

V∗s2

− ln

(
V

V∗s2

)
− 1

)
+ E1

+ E∗2,s2

(
E2

E∗2,s2

− ln

(
E2

E∗2,s2

)
− 1

)
+ E3 +

b
γ1

I1 +
c

γ2
I∗2,s2

(
I2

I∗2,s2

− ln

(
I2

I∗2,s2

)
− 1

)
+

d
γ3

I3. (49)

The time derivative of L2 is given by
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L̇2 =

(
1−

S∗s2

S

)
Ṡ +

(
1−

V∗s2

S

)
V̇ + Ė1 +

(
1−

E∗2,s2

E2

)
Ė2 + Ė3 +

b
γ1

İ1 +
c

γ2

(
1−

I∗2,s2

I2

)
İ2

+
c

γ2
İ2 +

d
γ3

İ3 (50)

= Λ− λS− λV − be
γ1
− f c

γ2
− dg

γ3
I3 −Λ

S∗s2

S
+ α1S∗s2

I1 + α2S∗s2
I2 + α3S∗s2

I3 + (σ + λ)S∗s2

− σS
V∗s2

V
+ η2V∗s2

I2 + η3V∗s2
I3 + λV∗s2

− α2SI2
E∗2,s2

E2
− η2VI2

E∗2,s2

E2
+ cE∗2,s2

− cE2
I∗2,s2

I2
+

f c
γ2

I∗2,s2
. (51)

As Es2 is an equilibrium point of system (14), we will have

Λ = α2S∗s2
I∗2,s2

+ (σ + λ)S∗s2
,

σS∗s2
= λV∗s2

+ η2V∗s2
I∗2,s2

,

cE∗2,s2
= α2S∗s2

I∗2,s2
+ η2V∗s2

I∗2,s2
,

E∗2,s2
=

f
γ2

I∗1,s2
.

(52)

Thus, after some simplifications and factorizations, we will have

L̇2 = σS∗s2

(
3−

S∗s2

S
−

SV∗s2

S∗s2
V
− V

V∗s2

)
+ λS∗s2

(
2−

S∗s2

S
− S

S∗s2

)

+ (cE∗2,s2
− η2V∗s2

I∗2,s2
)

(
3−

S∗s2

S
−

E2 I∗2,s2

E∗2,s2
I2
−

SI2E∗2,s2

S∗s2
I∗2,s2

E2

)

+ I1

(
α1S∗s2

− be
γ1

)
+ I2

(
α2S∗s2

+ η2V∗s2
− f c

γ2

)
+ I3

(
α3S∗s2

+ η3V∗s2
− dg

γ3

)
− η2VI2

E∗2,s2

E2
(53)

≤ σS∗s2

(
3−

S∗s2

S
−

SV∗s2

S∗s2
V
− V

V∗s2

)
+ λS∗s2

(
2−

S∗s2

S
− S

S∗s2

)

+ (cE∗2,s2
− η2V∗s2

I∗2,s2
)

(
3−

S∗s2

S
−

E2 I∗2,s2

E∗2,s2
I2
−

SI2E∗2,s2

S∗s2
I∗2,s2

E2

)

+
be
γ1

I1

(
R1

0 − 1
)
+

(
α2S∗s2

+ η2V∗s2
− f c

γ2

)
+

dg
γ3

I3

(
R3

0 − 1
)

. (54)

As the arithmetic mean is greater than or equal to the geometric mean, we will have

3−
S∗s2

S
−

SV∗s2

S∗s2
V
− V

V∗s2

≤ 0, (55)

3−
S∗s2

S
−

E2 I∗2,s2

E∗2,s2
I2
−

SI2E∗2,s2

S∗s2
I∗2,s2

E2
≤ 0 (56)

and

2−
S∗s2

S
− S

S∗s2

≤ 0. (57)

As Es2 verifies condition H1, when R1
0 ≤ 1 and R3

0 ≤ 1, we will have L̇2 ≤ 0. Thus, the
strain-2 endemic equilibrium point is globally asymptotically stable.
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For the global stability of the equilibrium point Es3 , we assume that this point verifies
the following condition:

α3S∗s3
+ η3V∗s3

− dg
γ3
≤ 0. (H2) (58)

Theorem 4. If R1
0 ≤ 1, R2

0 ≤ 1 and R3
0 > 1, then the strain-3 endemic equilibrium point Es3 is

globally asymptotically stable.

Proof. We consider the following Lyapunov function L3 in R8
+:

L3 = S∗s3

(
S

S∗s3

− ln
(

S
S∗s3

)
− 1
)
+ V∗s3

(
V

V∗s3

− ln
(

V
V∗s3

)
− 1
)
+ E1 + E2

+ E∗3,s3

(
E3

E∗3,s3

− ln

(
E3

E∗3,s3

)
− 1

)
+

b
γ1

I1 +
c

γ2
I2 +

d
γ3

I∗3,s3

(
I3

I∗3,s3

− ln

(
I3

I∗3,s3

)
− 1

)
. (59)

The time derivative of L3 is given by

L̇3 =

(
1−

S∗s3

S

)
Ṡ +

(
1−

V∗s3

V

)
V̇ + Ė1 + Ė2 +

(
1−

E∗3,s3

E3

)
Ė3 +

b
γ1

İ1 +
c

γ2
I2

+
d

γ3

(
1−

I∗3,s3

I3

)
İ3 (60)

= Λ− λS− λV − be
γ1

I1 −
f c
γ2

I2 −
dg
γ3

I3 −Λ
S∗s3

S
+ α1S∗s3

I1 + α2S∗s3
I2 + α3S∗s3

I3 + (σ + λ)S∗s3

− σS
V∗s3

V
+ η2V∗s3

I2 + η3V∗s3
I3 + λV∗s3

− η3V∗s3
I3

E∗3,s3

E3
− α3SI3

E∗3,s3

E3
+ dE∗3,s3

− dE3
I∗3,s3

I3

+
dg
γ3

I∗3,s3
. (61)

As Es3 is an equilibrium point of system (14), we will have

Λ = α3S∗s3
I∗3,s3

+ (σ + λ)S∗s3
,

σS∗s3
= λV∗s3

+ η3V∗s3
I∗3,s3

,

dE∗3,s3
= α3S∗s3

I∗3,s3
+ η3V∗s3

I∗3,s3
,

E∗3,s3
=

g
γ3

I∗3,s3
.

(62)

Thus, after some simplifications and factorizations, we will have

L̇3 = σS∗s3

(
3−

S∗s3

S
−

SV∗s3

S∗s3
V
− V

V∗s3

)
+ λS∗s3

(
2−

S∗s3

S
− S

S∗s3

)

+ (dE∗3,s3
− η3V∗s3

I∗3,s3
)

(
3−

S∗s3

S
−

E3 I∗3,s3

E∗3,s3
I3
−

SI3E∗3,s3

S∗s3
I∗3,s3

E3

)

+ I1

(
α1S∗s3

− be
γ1

)
+ I2

(
α2S∗s3

− f c
γ2

)
+ I3

(
α3S∗s3

+ η3V∗s3
− dg

γ3

)
− η3VI2

E∗3,s3

E3
(63)

≤ σS∗s3

(
3−

S∗s3

S
−

SV∗s3

S∗s3
V
− V

V∗s3

)
+ λS∗s3

(
2−

S∗s3

S
− S

S∗s3

)

+ (dE∗3,s3
− η3V∗s3

I∗3,s3
)

(
3−

S∗s3

S
−

E3 I∗3,s3

E∗3,s3
I3
−

SI3E∗3,s3

S∗s3
I∗3,s3

E3

)

+
be
γ1

I1

(
R1

0 − 1
)
+

f c
γ2

I2

(
R2

0 − 1
)
+ I2

(
α3S∗s3

+ η3V∗s3
− dg

γ3

)
. (64)
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As the arithmetic mean is greater than or equal to the geometric mean, we will have

3−
S∗s3

S
−

SV∗s3

S∗s3
V
− V

V∗s3

≤ 0, (65)

3−
S∗s3

S
−

E3 I∗2,s3

E∗3,s3
I3
−

SI3E∗3,s3

S∗s3
I∗3,s3

E3
≤ 0 (66)

and

2−
S∗s3

S
− S

S∗s3

≤ 0. (67)

As Es3 verifies condition H2, when R1
0 ≤ 1 and R2

0 ≤ 1, we will have L̇3 ≤ 0. Thus, the
strain-3 endemic equilibrium is globally asymptotically stable.

Theorem 5. If 1 < R1
0 < max{R2

0, R3
0}, then the total endemic equilibrium point Et is globally

asymptotically stable.

Proof. We consider the following Lyapunov function L4 in R8
+:

L4 = S∗t

(
S
S∗t
− ln

(
S
S∗t

)
− 1
)
+ V∗t

(
V
V∗t
− ln

(
V
V∗t

)
− 1
)
+ E∗1,t

(
E1

E∗1,t
− ln

(
E1

E∗1,t

)
− 1

)

+ E∗2,t

(
E2

E∗2,t
− ln

(
E2

E∗2,t

)
− 1

)
+ E∗3,t

(
E3

E∗3,t
− ln

(
E3

E∗3,t

)
− 1

)
+

b
γ1

I∗1,t

(
I1

I∗1,t
− ln

(
I1

I∗1,t

)
− 1

)

+
c

γ2
I∗2,t

(
I2

I∗2,t
− ln

(
I2

I∗2,t

)
− 1

)
+

d
γ3

I∗3,t

(
I3

I∗3,t
− ln

(
I3

I∗3,t

)
− 1

)
. (68)

The time derivative of L4 is given by

L̇4 =

(
1− S∗t

S

)
Ṡ +

(
1− V∗t

V

)
V̇ +

(
1−

E∗1,t

E1

)
Ė1 +

(
1−

E∗2,t

E2

)
Ė2 +

(
1−

E∗3,t

E3

)
Ė3

+
b

γ1

(
1−

I∗1,t

I1

)
İ1 +

c
γ2

(
1−

I∗2,t

I2

)
İ2 +

d
γ3

(
1−

I∗3,t

I3

)
İ3 (69)

= Λ− λS− λV − be
γ1

I1 −
f c
γ2

I2 −
dg
γ3

I3 −Λ
S∗t
S

+ α1S∗t I1 + α2S∗t I2 + α3S∗t I3 + (σ + λ)S∗t

− σS
V∗t
V

+ η2V∗t I2 + η3V∗t I3 + ηV∗t − α1SI1
E∗1,t

E1
+ bE∗1,t − α2SI2

E∗2,t

E2
− η2VI2

E∗2,t

E2
+ cE∗2,t

− α3SI3
E∗3,t

E3
− η3VI3

E∗3,t

E3
+ dE∗3,t − bE1

I∗1,t

I1
+

be
γ1

I∗1,t − cE2
I∗2,t

I2
+

f c
γ2

I∗2,t − dE3
I∗3,t

I3
+

dg
γ3

I∗3,t. (70)

As Es4 is an equilibrium point of system (14), we will have

Λ = α1S∗t I∗1,t + α2S∗t I∗2,t + α3S∗t I∗3,t + (σ + λ)S∗t ,

σS∗t = λV∗t + η2V∗t I∗2,t + η3V∗t I∗3,t,

bE∗1,t = α1S∗t I∗1,t, cE∗2,t = α2S∗t I∗2,t + η2V∗t I∗2,t, dE∗3,t = α3S∗t I∗3,t + η3V∗t I∗3,t,

E∗1,t =
f

γ1
I∗1,t, E∗2,t =

c
γ2

I∗2,t, E∗3,t =
d

γ3
I∗3,t.

(71)

Thus, after some simplifications and factorizations, we will have
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L̇4 = σS∗t

(
3− S∗t

S
−

SV∗st

S∗t V
− V

V∗t

)
+ λS∗t

(
2− S∗t

S
− S

S∗t

)
+ bE∗1,t

(
3− S∗t

S
−

E1 I∗1,t

E∗1,st
I1
−

SI1E∗1,st

S∗t I∗1,tE1

)

+ (cE∗2,t − η2V∗t I∗2,t)

(
3− S∗t

S
−

E2 I∗2,t

E∗2,st
I2
−

SI2E∗2,t

S∗t I∗2,tE3

)

+ (dE∗3,t − η3V∗t I∗3,t)

(
3− S∗t

S
−

E3 I∗3,t

E∗3,t I3
−

SI3E∗3,t

S∗t I∗3,tE3

)

+ I1

(
α1S∗t −

be
γ1

)
+ I2

(
α2S∗t + η2V∗t −

f c
γ2

)
+ I3

(
α3S∗t + η3V∗t −

dg
γ3

)
− η2VI2

E∗2,t

E2
− η3VI3

E∗3,t

E3
. (72)

As the arithmetic mean is greater than or equal to the geometric mean, we will have

3− S∗t
S
−

SV∗st

S∗t V
− V

V∗t
≤ 0, (73)

2− S∗t
S
− S

S∗t
≤ 0, (74)

3− S∗t
S
−

E1 I∗1,t

E∗1,st
I1
−

SI1E∗1,st

S∗t I∗1,tE1
≤ 0, (75)

3− S∗t
S
−

E2 I∗2,t

E∗2,st
I2
−

SI2E∗2,t

S∗t I∗2,tE3
≤ 0, (76)

and

3− S∗t
S
−

E3 I∗3,t

E∗3,t I3
−

SI3E∗3,t

S∗t I∗3,tE3
≤ 0. (77)

Moreover, if R1
0 < R2

0 and R1
0 < R3

0, we will have

α1S∗t −
be
γ1
≤ 0, (78)

α2S∗t + η2V∗t −
f c
γ2
≤ 0 (79)

and
α3S∗t + η3V∗t −

dg
γ3
≤ 0. (80)

Then, when 1 < R1
0 < max{R2

0, R3
0}, we will have L̇4 ≤ 0.Thus, the total endemic

equilibrium is globally asymptotically stable.

4. Numerical Simulations

In order to confirm our theoretical results, some numerical simulations and discussions
are presented in this section by using the value of the parameter given in Table 2. We
performed our numerical simulations with the Runge–Kutta method [44] to test the effect
of the vaccine in reducing the infection; in reality, the vaccination against a strain of an
infectious disease such as COVID-19 leads to a reduction in the total number of infections.
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Table 2. The parameter values of system (1).

Parameters Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Λ 1 1 1 1 1
α1 0.2 0.5 0.2 0.2 0.2
α2 0.2 0.2 0.6 0.2 0.6
α3 0.2 0.2 0.2 0.7 0.7
σ 0.2 0.2 0.2 0.2 0.2
λ 0.2 0.2 0.2 0.2 0.2
η2 0.01 0.01 0.01 0.01 0.01
η3 0.005 0.005 0.005 0.005 0.005
γ1 0.1 0.1 0.1 0.1 0.1
γ2 0.1 0.1 0.1 0.1 0.1
γ3 0.1 0.1 0.1 0.1 0.1
µ1 0.1 0.1 0.1 0.1 0.1
µ2 0.1 0.1 0.1 0.1 0.1
µ3 0.1 0.1 0.1 0.1 0.1
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Figure 2. Stability of disease-free equilibrium E f of the three-strain SVEIR model with R1
0 = 0.55,

R2
0 = 0.82, and R3

0 = 0.68.
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Figure 3. Stability of the strain-1 endemic equilibrium Es1 of the three-strain SVEIR model with
R1

0 = 1.38, R2
0 = 0.82 and R3

0 = 0.68.
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Figure 4. Stability of the strain-2 endemic equilibrium Es2 of the three-strain SVEIR model with
R1

0 = 0.55, R2
0 = 1.93, and R3

0 = 0.68.
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Figure 5. Stability of the strain-3 endemic equilibrium Es3 of three-strain SVEIR model with R1
0 = 0.55,

R2
0 = 0.82, and R3

0 = 2.21.
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Figure 6. Stability the total endemic equilibrium Et of the three-strain SVEIR model with R1
0 = 1.38,

R2
0 = 1.93, and R3

0 = 2.21.

Figure 2 shows the dynamics of the infection of the three strains SVEIR model. In this
figure, we can see that the curves E1, E2, E3, I1, I2, I3 drop to zero, except the curves repre-
senting the susceptible and vaccinated individuals. This behavior is clearly observed in the
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zoomed part of the same figure. The obtained numerical result perfectly coincides with
our theoretical result given in Theorem 1 concerning the global stability of the disease-free
equilibrium (R1

0 = 0.55 < 1, R2
0 = 0.82 < 1 and R3

0 = 0.68 < 1). Figure 3 describes the
evolution of the different three strains of SVEIR model components. In this figure, we
notice that the first strain persists in contrast to the others strains that die out. The zoomed
part of the same figure more clearly shows the persistence of the first strain. The strain-1
basic reproduction number is greater than 1 (R1

0 = 1.38 > 1), and the basic reproduction
numbers of the other strains are less than 1 (R2

0 = 0.82 < 1, R3
0 = 0.68 < 1). This numerical

result verifies our theoretical result given in Theorem 2 concerning the global stability of
the strain-1 endemic equilibrium. Figure 4 shows the global stability of the strain-2 en-
demic equilibrium, it is easy to observe that strain-2 persists while the other strains die out.
The zoomed part of the same figure more clearly shows the persistence of the second strain.
The basic reproduction number of this strain is greater than 1 (R2

0 = 1.93 > 1), while the ba-
sic reproduction numbers of the other strains are less than 1 (R1

0 = 0.55 < 1, R3
0 = 0.68 < 1),

which confirms our theoretical result given in Theorem 3 concerning the global stability
of the strain-2 endemic equilibrium. Figure 5 describes the global stability of the strain-3
endemic equilibrium. This figure shows that strain-3 persists, while the other strains die
out. The zoomed part of the same figure more clearly shows the persistence of the third
strain. The basic reproduction number of this strain is greater than 1 (R3

0 = 2.21 > 1),
while the basic reproduction numbers of the other strains are less than 1 (R1

0 = 0.55 < 1,
R2

0 = 0.82 < 1), which confirms our theoretical result given in Theorem 4 concerning the
global stability of this equilibrium point. For the case of the global stability of the total
endemic equilibrium, Figure 6 shows that all the strains persist. The zoomed part of the
same figure more clearly shows the persistence of the all acting strains. Indeed, the basic
reproduction number of every strain is greater than 1 (R1

0 = 1.38 > 1, R2
0 = 1.93 > 1 and

R3
0 = 2.21 > 1); this numerical result is in a good argument with our theoretical result

given in Theorem 5 concerning the global stability of this equilibrium point.

5. Conclusions

In this paper, we analyzed a three-strain epidemic model with a vaccination strat-
egy. The model contains nine compartments, namely susceptible individuals, vaccinated
individuals, the three categories of exposed individuals, the three categories of infected
individuals, and the recovered individuals. We started the analysis of this model by giving
the different results of the existence, positivity, and boundedness of the model solutions.
The suggested model has five steady states, namely the disease-free equilibrium, the strain-
1 endemic equilibrium, the strain-2 endemic equilibrium, the strain-3 endemic equilibrium,
and the total endemic equilibrium. By using the new generation method, we obtained the
three basic reproduction numbers R1

0, R2
0, and R3

0. Next, by using some suitable Lyapunov
functions, we gave the global stability of the different steady states. This stability depends
on different values of basic reproduction numbers. More precisely, if the three basic re-
production numbers are less than 1, the free equilibrium point is globally asymptotically
stable. In addition, if R1

0 > 1, R2
0 ≤ 1, and R3

0 ≤ 1, the strain-1 endemic equilibrium point is
globally asymptotically stable, while the strain-2 endemic equilibrium point and strain-3 en-
demic equilibrium point are, respectively, globally asymptotically stable if R2

0 > 1, R1
0 ≤ 1,

and R3
0 ≤ 1; and R3

0 > 1, R2
0 ≤ 1, and R2

0 ≤ 1. Finally, the total endemic equilibrium is
globally asymptotically stable if all reproduction numbers are greater than 1. We showed
that any strain with a higher reproduction number value outperforms the other strains.
Numerical simulations were given in order to confirm and validate our theoretical results.
It was observed that, in order to eradicate an infection, the basic reproduction numbers of
all the strains must be less than unity.

Author Contributions: Writing—original draft, Z.Y.; Writing—review & editing, Z.Y. and K.A.;
Visualization, K.A.; Supervision, K.A. All authors have read and agreed to the published version of
the manuscript.



Math. Comput. Appl. 2023, 28, 9 17 of 18

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arruda, E.F.; Das, S.S.; Dias, C.M.; Pastore, D.H. Modelling and optimal control of multi strain epidemics, with application to

COVID-19. PLoS ONE 2021, 16, e0257512. [CrossRef] [PubMed]
2. Khyar, O.; Allali, K. Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: Application to

COVID-19 pandemic. Nonlinear Dyn. 2020, 102, 489–509. [CrossRef] [PubMed]
3. Chen, W.; Tuerxun, N.; Teng, Z. The global dynamics in a wild-type and drug-resistant HIV infection model with saturated

incidence. Adv. Differ. Equ. 2020, 2020, 1–16. [CrossRef]
4. Amine, S.; Allali, K. Dynamics of a time-delayed two-strain epidemic model with general incidence rates. Chaos Solitons Fractals

2021, 153, 111527.
5. Sweilam, N.H.; AL–Mekhlafi, S.M. Optimal control for a time delay multi-strain tuberculosis fractional model: A numerical

approach. IMA J. Math. Control. Inf. 2019, 36, 317–340. [CrossRef]
6. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927,

115, 700–721.
7. Godio, A.; Pace, F.; Vergnano, A. SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence.

Int. J. Environ. Res. Public Health 2020, 17, 3535. [CrossRef] [PubMed]
8. Rangasamy, M.; Chesneau, C.; Martin-Barreiro, C.; Leiva, V. On a novel dynamics of SEIR epidemic models with a potential

application to COVID-19. Symmetry 2022, 14, 1436. [CrossRef]
9. Marinca, B.; Marinca, V.; Bogdan, C. Dynamics of SEIR epidemic model by optimal auxiliary functions method. Chaos Solitons

Fractals 2021, 147, 110949. [CrossRef]
10. Bajiya, V.P.; Tripathi, J.P.; Kakkar, V.; Wang, J.; Sun, G. Global dynamics of a multi-group SEIR epidemic model with infection age.

Chin. Ann. Math. Ser. B 2021, 42, 833–860. [CrossRef]
11. Paul, S.; Mahata, A.; Ghosh, U.; Roy, B. Study of SEIR epidemic model and scenario analysis of COVID-19 pandemic. Ecol. Genet.

Genom. 2021, 19, 100087. [CrossRef] [PubMed]
12. Weinstein, S.J.; Holl, ; M.S.; Rogers, K.E.; Barlow, N.S. Analytic solution of the SEIR epidemic model via asymptotic approximant.

Phys. D Nonlinear Phenom. 2020, 411, 132633. [CrossRef] [PubMed]
13. Upadhyay, R.K.; Pal, A.K.; Kumari, S.; Roy, P. Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates.

Nonlinear Dyn. 2019, 96, 2351–2368. [CrossRef]
14. Qiu, X.; Nergiz, A.I.; Maraolo, A.E.; Bogoch, I.I.; Low, N.; Cevik, M. The role of asymptomatic and presymptomatic infection in

SARS-CoV-2 transmission—A living systematic review. Clin. Microbiol. Infect. 2021, 27, 511–519. [CrossRef] [PubMed]
15. Wang, J.J.; Zhang, J.Z.; Jin, Z. Analysis of an SIR model with bilinear incidence rate. Nonlinear Anal. Real World Appl. 2010,

11, 2390–2402. [CrossRef]
16. Junhua, C.; Shengjun, W. Modeling and analyzing the spread of worms with bilinear incidence rate. In Proceedings of the 2009

Fifth International Conference on Information Assurance and Security, Xi’an, China, 18–20 August 2009; IEEE: Piscataway, NJ,
USA, 2009; Volume 2, pp. 167–170.

17. Roy, M.; Pascual, M. On representing network heterogeneities in the incidence rate of simple epidemic models. Ecol. Complex.
2006, 3, 80–90. [CrossRef]

18. Li, J.H.; Cui, N.; Niu, L.; Zhang, J. Dynamic analysis of an SEIS model with bilinear incidence rate. In Proceedings of the 2011
International Conference on Computer Science and Network Technology, Harbin, China, 24–26 December 2011; IEEE: Piscataway,
NJ, USA, 2011; Volume 4, pp. 2268–2271.

19. Liu, S.; Zhang, L.; Zhang, X.B.; Li, A. Dynamics of a stochastic heroin epidemic model with bilinear incidence and varying
population size. Int. J. Biomath. 2019, 12, 1950005. [CrossRef]

20. Kuddus, M.A.; McBryde, E.S.; Adekunle, A.I.; Meehan, M.T. Analysis and simulation of a two-strain disease model with nonlinear
incidence. Chaos Solitons Fractals 2022, 155, 111637. [CrossRef]

21. Meehan, M.T.; Cocks, D.G.; Trauer, J.M.; McBryde, E.S.Coupled, multi-strain epidemic models of mutating pathogens. Math.
Biosci. 2018, 296, 82–92. [CrossRef]

22. Sardar, T.; Ghosh, I.; Rodó, X.; Chattopadhyay, J. A realistic two-strain model for MERS-CoV infection uncovers the high risk for
epidemic propagation. PLoS Neglected Trop. Dis. 2020, 14, e0008065. [CrossRef]

23. Khatua, A.; Pal, D.; Kar, T.K. Global Dynamics of a Diffusive Two-Strain Epidemic Model with Non-Monotone Incidence Rate.
Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 859–868. [CrossRef]

24. Bentaleb, D.; Amine, S.Lyapunov function and global stability for a two-strain SEIR model with bilinear and non-monotone
incidence. Int. J. Biomath. 2019, 12, 1950021. [CrossRef]

25. Meskaf, A.; Khyar, O.; Danane, J.; Allali, K. Global stability analysis of a two-strain epidemic model with non-monotone incidence
rates. Chaos Solitons Fractals 2020, 133, 109647. [CrossRef]

26. Yaagoub, Z.; Danane, J.; Allali, K. Global Stability Analysis of Two-Strain SEIR Epidemic Model with Quarantine Strategy. In
Nonlinear Dynamics and Complexity; Springer: Cham, Switzerland, 2022; pp. 469–493.

http://doi.org/10.1371/journal.pone.0257512
http://www.ncbi.nlm.nih.gov/pubmed/34529745
http://dx.doi.org/10.1007/s11071-020-05929-4
http://www.ncbi.nlm.nih.gov/pubmed/32921921
http://dx.doi.org/10.1186/s13662-020-2497-2
http://dx.doi.org/10.1093/imamci/dnx046
http://dx.doi.org/10.3390/ijerph17103535
http://www.ncbi.nlm.nih.gov/pubmed/32443640
http://dx.doi.org/10.3390/sym14071436
http://dx.doi.org/10.1016/j.chaos.2021.110949
http://dx.doi.org/10.1007/s11401-021-0294-1
http://dx.doi.org/10.1016/j.egg.2021.100087
http://www.ncbi.nlm.nih.gov/pubmed/34095599
http://dx.doi.org/10.1016/j.physd.2020.132633
http://www.ncbi.nlm.nih.gov/pubmed/32834248
http://dx.doi.org/10.1007/s11071-019-04926-6
http://dx.doi.org/10.1016/j.cmi.2021.01.011
http://www.ncbi.nlm.nih.gov/pubmed/33484843
http://dx.doi.org/10.1016/j.nonrwa.2009.07.012
http://dx.doi.org/10.1016/j.ecocom.2005.09.001
http://dx.doi.org/10.1142/S1793524519500050
http://dx.doi.org/10.1016/j.chaos.2021.111637
http://dx.doi.org/10.1016/j.mbs.2017.12.006
http://dx.doi.org/10.1371/journal.pntd.0008065
http://dx.doi.org/10.1007/s40995-022-01287-5
http://dx.doi.org/10.1142/S1793524519500219
http://dx.doi.org/10.1016/j.chaos.2020.109647


Math. Comput. Appl. 2023, 28, 9 18 of 18

27. El-Shabasy, R.M.; Nayel, M.A.; Taher, M.M.; Abdelmonem, R.; Shoueir, K.R. Three wave changes, new variant strains, and
vaccination effect against COVID-19 pandemic. Int. J. Biol. Macromol. 2022, 204, 161–168. [CrossRef] [PubMed]

28. de León, U.A.P.; Avila-Vales, E.; Huang, K.L. Modeling COVID-19 dynamic using a two-strain model with vaccination. Chaos
Solitons Fractals 2022, 157, 111927. [CrossRef] [PubMed]

29. Tchoumi, S.Y.; Rwezaura, H.; Tchuenche, J.M. Dynamic of a two-strain COVID-19 model with vaccination. Results Phys. 2022,
39, 105777. [CrossRef] [PubMed]

30. Guo, J.; Wang, S.M. Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay. AIMS Math.
2022, 7, 6331–6355. [CrossRef]

31. Chang, Y.C.; Liu, C.T. A Stochastic Multi-Strain SIR Model with Two-Dose Vaccination Rate. Mathematics 2022, 10, 1804. [CrossRef]
32. Angeli, M.; Neofotistos, G.; Mattheakis, M.; Kaxiras, E. Modeling the effect of the vaccination campaign on the COVID-19

pandemic. Chaos Solitons Fractals 2022, 154, 111621. [CrossRef] [PubMed]
33. Marinov, T.T.; Marinova, R.S. Adaptive SIR model with vaccination: Simultaneous identification of rates and functions illustrated

with COVID-19. Sci. Rep. 2022, 12, 1–13. [CrossRef]
34. Lin, L.; Zhao, Y.; Chen, B.; He, D. Multiple COVID-19 waves and vaccination effectiveness in the united states. Int. J. Environ. Res.

Public Health 2022, 19, 2282. [CrossRef]
35. Kayanja, A.; Abola, B.; Kikawa, C.; Oyo, B.; Ssematimba, A. Modelling the transmission dynamics of a multi-strain SARS-CoV-2

epidemic with vaccination for an emerging strain. Res. Sq. 2022,. [CrossRef]
36. Bugalia, S.; Tripathi, J.P.; Wang, H. Mutations make pandemics worse or better: Modeling SARS-CoV-2 variants and imperfect

vaccination. arXiv 2022, arXiv:2201.06285.
37. El Hajji, M.; Albargi, A.H. A mathematical investigation of an “SVEIR” epidemic model for the measles transmission. Math. Biosc.

Eng. 2022, 19, 2853–2875. [CrossRef] [PubMed]
38. Shoaib, M.; Anwar, N.; Ahmad, I.; Naz, S.; Kiani, A.K.; Raja, M.A.Z. Intelligent networks knacks for numerical treatment of

nonlinear multi-delays SVEIR epidemic systems with vaccination. Int. J. Mod. Phys. B 2022, 36, 2250100. [CrossRef]
39. Xu, J. Global dynamics for an SVEIR epidemic model with diffusion and nonlinear incidence rate. Bound. Value Probl. 2022,

2022, 1–13. [CrossRef]
40. Nasution, H.; Khairani, N.; Ahyaningsih, F.; Alamsyah, F. Mathematical modeling of the spread of corona virus disease 19

(COVID-19) with vaccines. AIP Conf. Proc. 2022, 2659, 110009.
41. Sun, D.; Li, Y.; Teng, Z.; Zhang, T.; Lu, J. Dynamical properties in an SVEIR epidemic model with age-dependent vaccination,

latency, infection, and relapse. Math. Methods Appl. Sci. 2021, 44, 12810–12834. [CrossRef]
42. Onwubuya, I.O.; Madubueze, C.E. SVEIR model of an infectious disease among infected immigrants with nonlinear incidence

rate. J. Niger. Soc. Math. Biol. 2021, 4, 1–18.
43. Baba, I.A.; Kaymakamzade, B.; Hincal, E. Two-strain epidemic model with two vaccinations. Chaos Solitons Fractals 2018,

106, 342–348. [CrossRef]
44. Macías-Díaz, J.E.; Raza, A.; Ahmed, N.; Rafiq, M. Analysis of a nonstandard computer method to simulate a nonlinear stochastic

epidemiological model of coronavirus-like diseases. Comput. Methods Programs Biomed. 2021, 204, 106054. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijbiomac.2022.01.118
http://www.ncbi.nlm.nih.gov/pubmed/35074332
http://dx.doi.org/10.1016/j.chaos.2022.111927
http://www.ncbi.nlm.nih.gov/pubmed/35185299
http://dx.doi.org/10.1016/j.rinp.2022.105777
http://www.ncbi.nlm.nih.gov/pubmed/35791392
http://dx.doi.org/10.3934/math.2022352
http://dx.doi.org/10.3390/math10111804
http://dx.doi.org/10.1016/j.chaos.2021.111621
http://www.ncbi.nlm.nih.gov/pubmed/34815624
http://dx.doi.org/10.1038/s41598-022-20276-7
http://dx.doi.org/10.3390/ijerph19042282
http://dx.doi.org/10.21203/rs.3.rs-1559636/v1
http://dx.doi.org/10.3934/mbe.2022131
http://www.ncbi.nlm.nih.gov/pubmed/35240810
http://dx.doi.org/10.1142/S0217979222501004
http://dx.doi.org/10.1186/s13661-022-01660-8
http://dx.doi.org/10.1002/mma.7583
http://dx.doi.org/10.1016/j.chaos.2017.11.035
http://dx.doi.org/10.1016/j.cmpb.2021.106054

	Introduction
	Existence, Positivity, and Boundedness of Solutions
	Analysis of the Model
	The Basic Reproduction Number Calculation
	Steady States
	Global Stability

	Numerical Simulations
	Conclusions
	References

