
Citation: Giraldo, J.F.; Calo, V.M. An

Adaptive in Space, Stabilized Finite

Element Method via Residual

Minimization for Linear and

Nonlinear Unsteady

Advection–Diffusion–Reaction

Equations. Math. Comput. Appl. 2023,

28, 7. https://doi.org/10.3390/

mca28010007

Academic Editor: Eric T. Chung

Received: 7 October 2022

Revised: 22 December 2022

Accepted: 26 December 2022

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

An Adaptive in Space, Stabilized Finite Element Method via
Residual Minimization for Linear and Nonlinear Unsteady
Advection–Diffusion–Reaction Equations
Juan F. Giraldo 1,2,* and Victor M. Calo 1

1 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987,
Perth, WA 6845, Australia

2 Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington,
Perth, WA 6152, Australia

* Correspondence: jfgiraldoa@unal.edu.co

Abstract: We construct a stabilized finite element method for linear and nonlinear unsteady advection–
diffusion–reaction equations using the method of lines. We propose a residual minimization strategy
that uses an ad-hoc modified discrete system that couples a time-marching schema and a semi-discrete
discontinuous Galerkin formulation in space. This combination delivers a stable continuous solution
and an on-the-fly error estimate that robustly guides adaptivity at every discrete time. We show the
performance of advection-dominated problems to demonstrate stability in the solution and efficiency
in the adaptivity strategy. We also present the method’s robustness in the nonlinear Bratu equation in
two dimensions.

Keywords: residual minimization; unsteady advection–diffusion equations; discontinuous Galerkin;
implicit time-marching schemes; adaptive mesh refinement

1. Introduction

The unsteady advection–diffusion–reaction model system poses distinct challenges
for its numerical approximation. A limit case of interest arises when the equation becomes
advection-dominated, showing sharp internal or boundary layers. Classical numerical
methods (e.g., standard FEM) lead to numerical instabilities when the mesh is not suf-
ficiently fine to capture the fine scales associated with these flow features, leading to
unphysical oscillation.

Stabilized methods, such as Stream Upwind Petrov Galerkin (SUPG) [1] or Galerkin
least squares (GLS) [2], overcome this problem by including artificial diffusion in the
governing equation’s variational form. The variational multi-scale method (VMS) [3,4]
captures fine-scale features by modifying the variational form [5–8]. Other technics such as
the discontinuous Galerkin (dG) methods [9–13] stabilize the solution by providing local
conservation and adding inner penalization across the element interfaces.

Methods based on residual minimization, including Least-Squares Finite Element
Methods (LSFEM) and the Discontinuous Petrov–Galerkin method (DPG), seek stability by
minimizing the discrete residual in dual norms [14–16]. Extensions to these ideas regarding
parabolic problems include: [17–20] for dG and [14,21–24] for DPG methods.

Although these methods show stability for advection-dominated problems, the lack
of a priori localization of the inner or boundary layers in the exact solution leads to
expensive simulations on quasi-uniform meshes. Additionally, the lack of robust re-
finement strategies is critical for unsteady problems where the solution varies in space
and time. Thus, we reduce this computational cost by using adaptive methods that
rely on a posteriori error estimators to refine solution singularities. Posteriori error
estimators for unsteady diffusion advection reaction methods are described in [25,26]
and for unsteady dG implementations in [27–29].
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Recently, Calo et al. [30] introduced a new class of adaptive stabilized conforming
finite elements via residual minimization for steady problems. The method combines resid-
ual minimization ideas with the stability of the discontinuous Galerkin formulations. As a
result, the method delivers a stable continuous solution and a robust error representation to
perform on-the-fly adaptivity. The authors introduce the framework in a series of papers for
linear and nonlinear applications (e.g., advection–diffusion problems with heterogeneous
and highly anisotropic diffusion [31], its use combined with isogeometric analysis [32], non-
linear weak constraint enforcement [33], goal-oriented adaptivity [34], for incompressible
flows [35,36], flow in porous media [37], and dynamic fracture propagation [38]).

In this paper, we extend [30] for unsteady advection–diffusion–reaction problems
using the method of lines. Our method offers robust spatial refinements for a user-
selected time marching method. We first approximate the spatial derivatives using a
space semi-discrete scheme and then solve the resulting system using a time-marching
discretization. As particular examples, this paper uses implicit first- and second-order
time-stepping (BDF1 and BDF2) discretizations [39–41].

Compared to other techniques, the main advantage of this method relies on the non-
conformity of the starting dG formulation, which allows us to work with stronger norms
from the dG theory with a continuous trial space. Moreover, the refinement strategy and
its efficiency in obtaining high-resolution approximations from coarse meshes allow us to
overcome the computational cost resulting from the implicit temporal schemes and the
extra degrees of freedom in the saddle point formulation.

The paper’s outline follows: Section 2 introduces the model problem. Section 3
describes some preliminary concepts for dG discretizations for time marching. Then, we
present the well-posedness of the dG method combined with the backward differentiat-
ing formula for time marching. Section 4 describes the residual minimization problem
and introduces our adaptive stabilized finite element method for parabolic problems.
Finally, Section 5 contains some numerical examples showing uniform and adaptive
refinement cases for two-dimension linear and non-linear problems, followed by some
concluding remarks.

2. Model Problem

Let Ω ∈ Rd, with d = 2, 3 be an open, bounded Lipschitz polygon with boundary Γ.
We denote n as the outward normal vector to Γ. For a given open and bounded domain K,
we represent its L2 inner product and L2 norm as (·, ·)0,K and || · ||0,K, respectively. We set
(·, ·)0 := (·, ·)0,Ω and || · ||0 := || · ||0,Ω for convenience. We define the well-known Hilbert
space H1(Ω) :=

{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)

}
with the inner product on Ω denoted by (·, ·)1

and the space H1
0(Ω) :=

{
v ∈ H1(Ω) : v = 0 on Γ

}
.

For any T > 0, l > 0, and let V be a Hilbert space, we denote by Cl(V) := Cl(0, T; V)
the l-times continuously-differentiable function space in [0, T]. Thus, C0(V) and C1(V) rep-
resent the continuous and continuously differentiable space function in [0, T], respectively.

The inflow (−) and outflow(+) subsets of the boundary Γ are defined by

Γ− := {x ∈ Γ | β · n < 0}, Γ+ := {x ∈ Γ | β · n ≥ 0}.

where β ∈ Lip(Ω) (Lipschitz continuous) represents a velocity vector field.
We denote by ΓD and ΓN the Dirichlet and Nuemann boundary, respectively, such

that Γ = ΓN ∪ ΓD. Thus, we define the inner and outer part of the Neumann boundary
as follows:

Γ−N := ΓN ∩ Γ−, Γ+
N := ΓN ∩ Γ+.

We consider the time evolution of the advection–diffusion–reaction solution defined in
the space–time cylinder Ω× (0, T] for T > 0. The governing equations in strong form read:
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∂tu−∇ · κ∇u + β · ∇u + µu = f in Ω × (0, T],
u = gD on ΓD × (0, T],

(κ∇u− βu) · n = gN on Γ−N × (0, T],
κ∇u · n = gN on Γ+

N × (0, T],
u(· , t = 0) = u0(x) in Ω,

(1)

where µ ∈ L∞ represents the reaction coefficient, κ(x) > 0 the diffusivity, f ∈ C0(L2(Ω))
the source term, and gD ∈ C0(H1/2(ΓD)) and gN ∈ C0(L2(ΓN)) the Dirichlet and Neumann
boundary values. We assume that β, κ and µ are time-independent, and that (β · ∇v +
µv, v)0 ≥ 0 for all v ∈ H1

0(Ω). Denoting Lβ, the Lipschitz modulus of β, we consider a
reference velocity βc and a reference time τc defined respectively as: βc := ‖β‖∞ and
τc :=

{
max

(
‖µ‖∞, Lβ

)}−1.
Introducing the billinear form

a(u, v) := (κ∇u,∇v)0 + (β · ∇u, v)0 + (µu, v)0,

the weak form of (1) then reads: find u ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) such that, for
each t ∈ (0, T],

(∂tu, v)0 + a(u, v) = ( f , v)0, ∀v ∈ H1
0(Ω). (2)

3. Discontinuous Galerkin-Based Time Marching Discretization
3.1. Discrete Setting

We set Th as the triangulation of Ω, and K an element of Th. We define the finite
dimensional spaces:

Vh(Th) :=
{

v ∈ L2(T) : v|K ∈ Pb(K) ∈, ∀K ∈ Th

}
(3)

and
Uh(Th) := Vh(Th) ∩ C0(Ω), (4)

where Pb(K) denotes the set of functions with degree lower or equal than b on K. Given K1
and K2 ∈ Th two disjoint adjacent elements in Th , sharing an internal face F = ∂K1 ∩ ∂K2,
we define nF as the normal vector on the face F from K1 to K2 (see Figure 1). We define the
set of all faces as Sh :=

⋃
K∈Th

F and the internal and boundary faces set by S 0
h := Sh\Γ

and S ∂
h = Sh ∩ Γ, respectively. Moreover, we denote by S D

h := Sh ∩ ΓD the set of Dirichlet
boundary faces and by S N

h := Sh ∩ ΓN the set of Neumann boundary faces. Let hK be the
element diameter of K ∈ Th and hF be the face diameter of F ∈ Sh. Given a face F ∈ S 0

h ,
we define the jump and average of v across F by

[[v]]F(x) := v|K1(x)− v|K2(x) ∀x ∈ F

and
{v}F(x) :=

1
2
(v|K1(x) + v|K2(x)) ∀x ∈ F.

If F ∈ S ∂
h , we set [[v]]F(x) = {u}F(x) := v|K(x) ∀x ∈ F.

Figure 1. Notation of the element interface.
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3.2. Space Semi-Discretization

We formulate the space semi-discretization by combining the Symmetric Interior
Penalty (SIP) and the upwind dG formulations (UPW) for the steady advection–diffusion-
reaction equation. We set that hK ≤ βc min(T, τc) to avoid strong reaction regimes, to allow
the mesh to resolve the spatial variation of the velocity field, and to guarantee that a
particle at speed βc crosses at least one mesh element over the time interval (0, T). Let the
semi-discrete dG approximation (1) in the space Vh be: For t ∈ (0, T], find θh, such that

(∂tθh, vh)0 + ah(θh, vh) = `h(vh) ∀ vh ∈ Vh, (5)

with θh(0) = θ0. We define the advection–diffusion-reaction billinear form ah as follows:

ah(u, v) := ah(u, v)SIP + ah(u, v)UPW, (6)

with

ah(u, v)SIP : = ∑
K∈T

(κ∇hu , ∇hv)K + ∑
F∈S 0

h

neκ([[u]], [[v]])F

− ∑
F∈S 0

h

(
({κ∇hu} · nF , [[v]])F + ([[u]] , {κ∇hv} · nF)F

)
− ∑

F∈S D
h

(
(κ∇hu · nF , v)F + (u , κ∇hv · nF)F − neκ(u, v)F

) (7)

and

ah(u, v)UPW : = ∑
K∈T

(µu + β · ∇hu, v)K + ∑
F∈S ∂

h ∩Γ−
((β · nF)u, v)F

− ∑
F∈S 0

h

(
((β · nF)[[u]], {v}) +

(na

2
|β · nF|[[u]], [[v]]

)
F

)
,

(8)

where ne and na are two positive penalty coefficients for the diffusion and advection
billinear forms. We define ne explicitly as (see [30]) :

ne := no
(p + 1)(p + d)

d


1
2

(
A(∂K1)
V(K1)

+ A(∂K2)
V(K2)

)
, if F = ∂K1 ∩ ∂K2

A(∂K)
V(K) , if F = ∂K ∩ Γ,

(9)

where no > 0 is a user-defined constant, p is the polynomial degree of the test space
and V and A represent the volume and area of an element in 3D, and its length and
area in 2D, respectively. Moreover, na modifies the numerical flux associated with the
upwinding billinear form. The centered fluxes correspond to na → 0 while the upwind
fluxes correspond to na → 1. We set na = 1 and no = 1 for this research. In the general case
when weakly non-homogeneous boundary conditions are enforced, the linear form `h(vh)
for the discrete problem (5) reads:

`h(v) := ( fh(t), v) + ∑
F∈S D

h

(neκ(gD, v)F − (gD , κ∇hv · nF)F)

+ ∑
F∈S D

h ∩Γ−
((β · nF)gD, v)F + ∑

F∈S N
h

(gN , v)F. (10)

We set fh(t) = πh f (t) ∀t ∈ [0, T], where πh is the L2 projection onto Vh. Next, we
manipulate functions of the form (u(t)− vh) in the space V∗h := H1(Ω) +Vh. Thus, we can
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write an equivalent form of (5) in terms of the discrete differential operator Ah : V∗h → Vh,
such that, for all (u, vh) ∈ V∗h ×Vh,

(Ahu, vh)0 := ah(u, vh). (11)

We use the discrete operator Ah to formulate the space semi-discrete problem (12) in
the form: for each t ∈ (0, T], then

(∂tθh(t), v)0 + (Ahθh(t), v)0 = `h(v) in ∀v ∈ H1
0(Ω), (12)

with the initial condition θh(0) = πhu(0). We endow Vh with the norm:

‖v‖2
V := ‖v‖2

SIP + ‖v‖2
UPW, (13)

where ‖v‖2
SIP and ‖v‖2

UPW correspond to the symmetric interior penalty (SIP) and upwinding
(UPW) norms defined as follow:

‖v‖2
SIP : = κ‖∇v‖2

0 + ∑
F∈Sh

neκ‖JvK‖0,F, (14)

and

‖v‖2
UPW := τ−1

c ‖v‖2
0 +

1
2 |β · nF|(v, v)0,Γ + ∑

F∈S 0
h

1
2 |β · nF|(JvK, JvK)0,F

+ ∑
K∈T

β−1
c hK‖β · ∇v‖2

0. (15)

Additionally, we define its extended norm as:

‖v‖2
V ,∗ := ‖v‖2

V + ∑
K∈T

βc

(
‖v‖2

0,Γ + h−1
K ‖v‖

2
0

)
+ ∑

K∈T
hKκ‖∇v · n‖2

0,Γ . (16)

We introduce the discrete properties of the operator Ah following [§ 3–4] [42]

Theorem 1 (Discrete operator Ah properties).

1. Consistency: The exact solution u of (1) satisfies

∂tu(t) + Ahu(t) = `h(t) ∀t ∈ (0, T].

2. Boundedness: There is a constant Cbnd < ∞ ,independent of h and τ, such that

(Ahv, wh)0 ≤ Cbnd‖v‖V ,∗‖wh‖V ∀(v, wh) ∈ V∗h ×Vh.

3. Discrete inf-sup stability: There is a constant Csta > 0, such that

Csta‖vh‖V ≤ sup
wh∈Vh\{0}

ah(vh, wh)

‖wh‖V
∀vh ∈ Vh.

3.3. Backward Euler Time Discretization

We first consider the Backward Euler method (BDF1) for time marching and implement
the second-order Backward differentiation formula (BDF2) in Section 3.4. Herein, the .
symbol denotes less or equal to a mesh-independent constant. We define τ := T/N as the
time step, where T is the final time, and N is a positive integer. We set τ ≤ min(T, τc). We
use the following first-order approximation of the time derivative:

δ
(1)
t vn+1 :=

vn+1 − vn

τ
∈ V ∀n ∈ 0, . . . N. (17)
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Thus, the fully discrete problem is: for n = 0, · · · , n− 1, find θn+1
h ∈ Vh, such that

(δ
(1)
t θn+1

h , vn+1
h )0 + (Ahθn+1

h , vn+1
h )0 = (`n+1

h , vn+1
h )0 ∀vn+1

h ∈ Vh, (18)

where θ0
h = πhu0 and `n+1

h denotes the discrete linear form on V∗h (10) at time n + 1. We
define the discrete-time operator Ah,τ : V∗h → Vh, such that, for all (u, wh) ∈ V∗h ×Vh,

(Ah,τu, wh) = ah,τ(u, wh) := (u, wh)0 + τah(u, wh). (19)

Thus, we rewrite problem (18) in terms of the new operator Ah,τ as:{
Given θn

h , find θn+1
h ∈ Vh such that:

(Ah,τθn+1
h , vh) = (ldG

h , vh)0 ∀vh ∈ Vh,
(20)

with
ldG
h := θn

h + τ`n+1
h . (21)

We endow Vh with the time-step dependent norm:

‖wh‖2
τ := ‖wh‖2

0 + τ‖wh‖2
V (22)

and its extension:
‖wh‖2

τ,∗ := ‖wh‖2
0 + τ‖wh‖2

V ,∗. (23)

The operator Ah,τ satisfies the inf-sup condition in terms of the norm ‖wh‖2
τ by ex-

tending Theorem 1. Moreover, the operator Ah,τ is bounded in terms of the above norm
and its extension ‖wh‖2

τ,∗ as:

(Ah,τ(u), vh) . ‖u‖τ,∗‖vh‖τ , ∀(v, wh) ∈ V∗h ×Vh. (24)

3.4. Second-Order Backward Differencing Formula (BDF2)

As above, we use the second-order backward differencing formula as a time marching
method to obtain a fully discrete solution,

δ
(2)
t vn+1 :=

3vn+1 − 4vn + vn−1

2τ
∈ V ∀n ∈ 1, . . . N. (25)

For n = 1, · · · , k− 1, find θn+1
h ∈ Vh, such that

(δ
(2)
t θn+1

h , vn+1
h )0 + (Ahθn+1

h , vn+1
h )0 = (`n+1

h , vn+1
h )0 ∀vn+1

h ∈ Vh, (26)

for this case, we redefine the discrete-time operator Ah,τ , as well as the billinear form ah,τ
as: Ah,τ : V∗h → Vh, such that, for all (u, wh) ∈ V∗h ×Vh,

(Ah,τu, wh) = ah,τ(u, wh) := (u, wh)0 +
3
2 τah(u, wh). (27)

We now write problem (26) following the derivation of (20) with

ldG
h := 2

3 τ`n+1
h + 4

3 θn
h − 1

3 θn−1
h (28)

and a given initial condition θ0
h = πhu0. We compute θ1

h, if necessary, with a first-order
method. This operator satisfies the stability properties described in Section 3.3. Thus,
updating (20) with the definitions (27) and (28), the operator Ah,τ is well-posed.
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4. Fully Discrete Residual Minimization

This section describes the stabilized finite element formulation via residual minimiza-
tion on dual discontinuous Galerkin norms formulated in [30] for unsteady problems. We
develop a method that delivers a stabilized discrete solution in a continuous space by
minimizing the residual in a dual discontinuous norm at each time step. Thus, we choose
Vh as a broken polynomial space described in (3) and Uh as its H1-conforming subspace.
Following the formulation (20) in Vh, we chose a trial conforming subspace Uh ⊂ Vh to
solve the following residual minimization problem:

Given un
h , find un+1

h ∈ Uh ⊂ Vh, such that:

un+1
h = arg min

zh∈Uh

1
2
‖lh − Ah,τzh‖2

τ,∗

= arg min
zh∈Uh

1
2
‖R−1

τ (lh − Ah,τzh)‖2
τ ,

(29)

where u0
h = πhu0 and lh is defined as lh := un

h + τ`n+1
h for BDF1 and lh := 2

3 τ`n+1
h + 4

3 un
h −

1
3 un−1

h for BDF2. R−1
τ denotes the inverse of the Riesz map:

Rτ : Vh → V∗h
(Rτyh, vh)V∗h ×Vh

:= (yh, vh)τ ∀ vh ∈ Vh. (30)

Problem (29) is equivalent to the following saddle-point problem:
Given un

h , find (εn+1
h , un+1

h ) ∈ Vh ×Uh, such that:

(εn+1
h , vh)τ + (Ah,τun+1

h , vh) = (lh, vh)0 ∀vh ∈ Vh,

(Ah,τzh, εn+1
h ) = 0, ∀zh ∈ Uh,

(31)

where the residual representation function εn+1
h is defined by:

εn+1
h := R−1

τ (lh − Ah,τ) ∈ Vh, (32)

We write (31) in the dual space,
Given un

h ,find (εn+1
h , un+1

h ) ∈ Vh ×Uh, such that:

Rτεn+1
h + Ah,τun+1

h = lh, in V∗h ,

Ah,τεn+1
h = 0, in U∗h .

(33)

Remark 1. Substituting the source term (`n+1
h ) from (20) into the first identity in (33), we obtain,

for BDF1, that:
Rτεn+1

h + Ah,τun+1
h = un

h + Ah,τθn+1
h − θn

h . (34)

Rearranging and defining the spatial error at time step i by ξ i := θi
h − ui

h; then, (34)
implies that:

εn+1
h = R−1

τ (Ah,τξn+1 − ξn). (35)

Or, equivalently, for the BDF2 implementation:

εn+1
h = R−1

τ (Ah,τξn+1 − 4
3 ξn + 1

3 ξn−1).

Hence, we can alternatively define εn+1
h as an error measure distance from the continuous

to discontinuous approximation at the n + 1 time step with the k previous time-step spatial error
contributions (for a k-order BDF method).
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Adaptive Mesh Refinement

This section describes the adaptive refinement procedure with the following steps.
First, we solve the saddle-point problem (33) to obtain an error representation (εn+1 ∈ Vh)
in the norm (‖εn+1‖2

τ). Then, we construct a local version of the time-dependent norm (22),
having an error indicator per cell (EK), such that:

E2
K = ‖εn+1‖2

0,K + τ‖εn+1‖2
V ,Loc, (36)

where
‖εn+1‖2

V ,Loc := κ‖∇εn+1‖2
0,K + β−1

c hK‖β · ∇Jεn+1K‖2
0,K+

∑
F∈Sh

(
neκ + 1

2 |β · nF|
)
(Jεn+1K, Jεn+1K)0,F.

(37)

Here, we use an extension of the Dörfler bulk-chasing criterion [43] to mark the cells
with the highest EK values based on an accumulative error in a cell loop. We first organize
the cells in the order of decreasing error per cell. Then, the algorithm marks the elements
in two cases: when the accumulative error in a first loop reaches a user-defined fraction
of the error ‖εn+1‖2

τ , and when the error of the remaining cells in the first loop is larger
than a chosen fraction of the last refined element. By refining all elements with comparable
errors in an iteration, we guarantee refinement in the elements close to the cutoff, which
the original strategy did not mark; this combined strategy reduces the computational cost
per iteration. Let ηre f be 0.25 in 2D and 0.125 in 3D (see [33]) and ν = 0.2 in all cases. Then,
we refine the marked cells using bisection. Algorithm 1 summarizes the marking strategy.

Algorithm 1 Marking strategy

Input: Th, ‖εn+1‖2
τ , ηre f , N, ν

1: Compute EK all K ∈ Th from (36)
2: Sort and store in sortK all K ∈ Th from highest to lowest EK values
3: Initialize cell to mark Kmarked = sortK[0]
4: Initialize the local error of the marked mesh cell EKm = EK[Kmarked]
5: Initialize sum = 0, i = 0, flag = True and Ecut = 0
6: while (sum < η2

re f ‖ε
n+1‖2

τ or EKm ≥ (1− ν)Ecut ) and i < N do
7: Mark Kmarked
8: if sum < η2

re f ‖ε‖
2
τ then

9: sum← sum +EKm
10: else
11: if flag then
12: Ecut ← EKm
13: flag← False
14: i← i +1
15: Kmarked← sortK[i]
16: EKm ← EK[Kmarked]

The stopping criterion for the refinement algorithm is as follows. Starting with a
coarse mesh, we refine while the total estimated error in the norm ‖εn+1‖τ remains above a
time-step dependent tolerance Etol = τCtol , where Ctol is a user-defined constant. For the
numerical examples in this paper, we use Ctol = 1× 10−5. Algorithm 2 details the imple-
mentation of BDF1.
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Algorithm 2 Algorithm for BDF1

Input: T0
h u0

h, T, τ, Etol , n = 0

1: un
h = u0

h
2: for t ∈ {0 . . . T} do
3: while E ≥ Etol do
4: Project un

h on Tn
h

5: Solve un+1
h and εn+1

h using the saddle point problem from( 33)
6: Compute E using εn+1

h
7: if E < ETol then
8: Use εn+1

h and the marking criteria described in the Algorithm 1 to obtain the
refined mesh T

9: Tn
h ← T

10: t← t + τ
11: n← n + 1

5. Numerical Examples

This section presents four numerical examples to show the performance properties of
our adaptive stabilized finite element method. First, we solve the heat equation problem,
obtaining optimal space and time convergences for uniform refinements. We use the classic
Eriksson–Johnson problem in the second case to test the adaptive refinement strategy and
its convergence in space for different polynomial degrees and Péclet numbers. The third
example shows the stability in two dimensions for the unsteady pure-advection problem
where the mesh moves in time. Here, we compare the computational time of the stabilized
finite element method using adaptivity for a uniform mesh with the dG method. Finally,
we show the performance of our procedure in a nonlinear unsteady reaction–diffusion
problem with two-branched numerical solutions.

Since we minimized the residual in the energy norm (τ), we focused this research on
the spatial convergence study in this norm. For the following numerical examples, we
implement the iterative algorithm described in [30,44] to solve the resulting saddle point
system (33) and use FEniCS [45] as a platform to perform all the numerical simulations.

5.1. Heat Equation (2D)

We start the method’s performance analysis by solving the 2D heat equation while
refining the spatial domain uniformly. Although this case does not present any particular
challenge to classical methods, it is a standard benchmark problem to test space and time
convergences of parabolic problems.

Let the domain Ω be [0, 1]2; we consider the problem:

∂tu− ∆u = f in Ω × (0, T],
u = 0 on ΓD × (0, T],

u(· , t = 0) = u0 in Ω,
(38)

with the initial condition:
u0 = sin(πx) sin(πy),

and the source term f that satisfies the exact solution:

u((x, y), t) = exp(−π2t) sin(πx) sin(πy).

To formulate the fully discrete problem, we combine the SIP billinear form (for κ = 1)
with the BDF1/BDF2 time marching scheme. We show the convergence plots for linear
and quadratic polynomials in space (Figures 2 and 3) and time (Figure 4). To perform
the spatial convergence test, we compute the errors ‖u − uh‖τ (in black), ‖u − θh‖τ (in
blue), ‖θh − uh‖τ (in green) and ‖εh‖τ (in red) for different mesh sizes (∆x). We denote ∆x
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equal to hK for uniform meshes. To perform the time convergence, we show ‖u− uh‖0
varying with the time step τ for ∆x = 0.01. As a result, we recover space optimality for
the continuous approximation (from dG formulation) and the first- and second-order time
convergence for BDF1 and BDF2, respectively. We show that the saturation assumption
in [30] holds in our formulation (i.e., ‖u(T)− θh(T)‖τ . ‖u(T)− uh(T)‖τ) and the residual
representation is efficient until the error dominates (i.e., ‖εh‖τ . ‖u(T)− uh(T)‖τ in [30]).
To illustrate, Figure 3b shows that for p = 2 and high DoF, the temporal error is no longer
negligible to the spatial error; however, the error estimator continues decaying since it does
not consider the temporal error contribution. We will seek to prove these properties in
future work.

Figure 2. BDF1 spatial convergence using fixed time step and uniform meshes.

(a) T = 0.1, τ = 0.001, p = 1

Figure 3. Cont.
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(b) T = 1, τ = 0.001, p = 2

Figure 3. BDF2 spatial convergence using fixed time step and uniform meshes.

(a) T = 0.1, ∆x = 0.01, p = 1

(b) T = 1, ∆x = 0.01, p = 2
Figure 4. Time convergence for BDF1 and BDF2 time integrators using a fixed mesh.
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5.2. Advection–Diffusion Problem

We complement the spatial convergence study of the previous example, using adaptive
refinement for the unsteady advection–dominated Eriksson–Johnson problem. Let the
domain Ω be [0, 1]× [−0.5, 0.5]; we consider the exact solution

u((x, y), t) = exp(−lt)[exp(λ1x)− exp(λ2x)] + cos(πy) exp(s1x)−exp(r1x)
exp(−s1)−exp(−r1)

,

for f = 0 and l = 2, λ1,2 = −1±
√

1−4κl
−2κ , r1 = 1+

√
1+4κ2π2

2κ and s1 = 1−
√

1+4κ2π2

2κ . Here, we set
β = [1, 0] and µ = 0 for different diffusion coefficient values. Based on the exact solution,
we apply Neumann boundary conditions at x = −1 and t = 0; meanwhile, we impose
Dirichlet boundary conditions at x = 0, y = −0.5 and y = 0.5 at time t = 0.

The problem’s main challenge is capturing the boundary layer, especially for high
Péclet numbers. Figure 5 shows how the error estimator drives spatial adaptivity to
smooth the regions with sharp gradients in each time step. Figure 6 shows the errors
‖u− uh‖τ , ‖u− θh‖τ and ‖εh‖τ versus the square of total degrees of freedom (DoF1/2) (i.e.,
dim(Uh)+dim(Vh) ); these plots verify the optimal spatial convergence in the fully discrete
energy norm using BDF1 and BDF2 time integrators for linear and quadratic polynomial
trial functions at T = 0.1 and τ = 0.005. In Figure 7, we verify our method’s convergence
for higher Péclet numbers by setting the diffusivity in 10−3 and 10−4. Figure 8 shows the
evolution of our transient solution to the analytical steady-state Eriksson–Johnson. Similarly
to the uniform refinement case, we preserve the efficiency of the residual representative
and the saturation assumptions as stated for the adaptive steady state case.

Level 0 Level 3 Level 6

Figure 5. Mesh refinement τ = 0.005, T = 0.1, p = 1.
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(a) BDF1, p = 1

(b) BDF2, p = 1, 2

Figure 6. Spatial convergence for adaptive refinement (BDF1 & BDF2: κ = 10−2, T = 0.1, τ = 0.005).
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(a) κ = 10−3

(b) κ = 10−4

Figure 7. Spatial convergence for adaptive refinement using BDF2. p = 2 , T = 0.1, τ = 0.005.

Time 0 Time 0.1 Time 0.5

Figure 8. Solution convergence to the steady Eriksson–Johnson solution.
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5.3. Rotating Flow Transporting a Gaussian Profile

In this example, we analyze the performance of our method in a convective transport
problem with a localized disturbance. Thus, we test the adaptive algorithm in the case
where the region of interest moves within the domain as time passes. We study the solution
of a 2D convection–diffusion transport by a rotatory flow of a Gaussian profile. We set
Ω = [−2, 2]2, T = π, β = [y,−x], κ = 10−5, µ = 0 and f = 0. The initial condition is

u0 = exp(−64(x− 0.5)2) exp(−64y2),

we impose Dirichlet boundary conditions from the exact solution:

u((x, y), t) =
1

1 + 256κt
exp

(
−64(x− 0.5 cos(t))2

1 + 256κt

)
exp

(
−64(y + 0.5 sin(t))2

1 + 256κt

)
.

Figure 9 shows the profiles of the solutions and the corresponding adaptively refined
meshes at different time steps. These results demonstrate the continuous solution stabil-
ity and consistency with the physical phenomena, even for low diffusivities. Moreover,
the mesh nodes concentrate where the solution varies largely, showing the robustness of
the error estimator and the efficiency of the marking strategy when adding new degrees of
freedom. Regarding computational cost, our stabilized finite element formulation using
adaptivity is competitive with the dG methodology using uniform refinement. Solving the
saddle point formulation requires an extra cost due to the additional degrees of freedom.
However, adaptivity compensates for the excess due to the solution’s stability in coarse
meshes and the robustness of the error estimator. Figure 10 shows a comparison between
the total computational cost required to obtain a solution with the adaptive stabilized
method (blue line) and the computational cost using a regular mesh in the dG method (red
line). Besides, the figure shows that the adaptivity can reduce the computational cost by up
to one order of magnitude to get a resolution of 1 × 10−5 in the energy norm.

Time 0 Time 0.6π Time π

Figure 9. Time evolution p = 1 (T = π, τ = π/512).
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Figure 10. Computational cost [s] vs. total degrees of freedom.

5.4. Unsteady Bratu Equation: Non-Linear Diffusion-Reaction Equation

We conclude the method’s performance analysis by studying the solution of a nonlin-
ear diffusion-reaction equation. Let λ be a positive real constant and Ω = [0, 1]2; we solve
the unsteady version of Bratu’s problem in the following form:

Find u such that, for T > 0,

∂tu = ∆u + λexp(u) in Ω × (0, T],
u = 0 on Γ × (0, T],

u(·, t = 0) = u0(x) in Ω,

(39)

The two-dimensional steady version of (39) has a branched solution for λ < λc (lower
and upper branches) and a unique solution when λ = λc, with λc ≈ 6.8081 as a critical
point. The problem’s main challenges are the lack of stable solutions in the upper branch
and close to the critical point λc, leading to classical techniques converging only to the
stable lower branch. We test our method’s robustness, accuracy and performance in this
transient bifurcation problem; we compare the solutions obtained in (39) when t→ ∞, with
the 2D steady Bratu’s approach obtained in [33]. We formulate the space semi-discretization
of (39) as follows: {

Find θh ∈ Vh, such that:

(∂tθh, vh)0 + ηh(θh; vh) = `h(vh), ∀vh ∈ Vh,
(40)

where ηh(uh; vh) denotes the nonlinear form, including the SIP formulation in (7) with a
non-linear reactive contribution. We define it as:

ηh(uh; vh) : = ∑
K∈T

(∇huh · ∇hvh)K − ∑
K∈Sh

(λ exp(uh) , vh)K

− ∑
F∈S ∂

h

(
({∇huh} · nF , [[vh]])F + ([[uh]] , {∇hvh} · nF)F − neκ([[uh]], [[vh]])F

)
.

(41)
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For BDF1 time marching, we define the discrete-time nonlinear form as:

ηh,τ(uh; vh) := (uh, vh)K + τηh(uh; vh). (42)

Thus, the full-discrete formulation for problem (39) is:{
Given θn

h , find θn+1
h ∈ Vh such that:

ηh,τ(θ
n+1
h ; vh) = (ldG

h , vh)0 ∀vh ∈ Vh,
(43)

with ldG
h := θn

h + τ`n+1
h . We use a Newton–Raphson iteration scheme combined with the

residual minimization strategy described in Section 4 to solve (43). We seek a solution at
every Newton step increment wh for each time step n + 1 by using the linearized form:

η′h,τ(uh; wh, vh) := (wh, vh)K + τ
(

∑
K∈T

(∇hwh · ∇hvh)K − ∑
K∈Sh

(λ exp(uh)wh , vh)K

− ∑
F∈Sh

(
({∇hwh} · nF , [[vh]])F + ([[wh]] , {∇hvh} · nF)F − neκ([[wh]], [[vh]])F

))
(44)

Since (44) takes the form of a diffusion-reaction problem, we use a time-step dependent
norm (22), with the SIP contribution to the Vh−norm, to minimize the discrete residual of
the linearized system. The norm ‖ · ‖τ is enforced with an L2 contribution to measure the
nonlinear reactive term. Starting with an initial guess (εn+1

h,0 , un+1
h,0 ) and given (εn+1

h,i , un+1
h,i ),

we find:
(δεn+1

h , δun+1
h ) ∈ Vh ×Uh, such that: ∀(zh, vh) ∈ Vh,×Uh

(δεn+1
h , vh)τ + η′h,τ(u

n+1
h,i ; δun+1

h , vh) = (lh, vh)0 − (εn+1
h,i , vh)τ − ηh,τ(un+1

h,i ; vh)

η′h,τ(u
n+1
h,i ; zh, δεn+1

h ) = −η′h,τ(u
n+1
h,i ; zh, εn+1

h,i )

(45)

un+1
h,i and εn+1

h,i are updated at every i-th increment as follows:

un+1
h,i+1 = un+1

h,i + kδun+1
h , εn+1

h,i+1 = εn+1
h,i + kδεn+1

h ,

where k denotes a relaxation parameter from the Damped Newton’s method [46], and it
is detailed to our formulation’s context in [33]. For the time step n = 1, we set the initial
guess (εn+1

h,0 , un+1
h,0 ) = (0, uIG), where uIG varies depending on the solution branch we want

to capture. Here, we assume uIG equal to the initial solution (i.e., uIG = u0) with u0 = 0
for the stable lower branch and u0 = uup for the upper branch. Since the lower branch
is stable, many different initial guesses converge to it; however, we only use one option.
The unstable upper branch is more restrictive; therefore, we follow [47] and use:

uup(x, y) =
50(2 + λ)

λ
(x− x2)(y− y2).

Figures 11 and 12 show the two branch solutions obtained for a time step increment
τ = 0.1 with an initial mesh of 4 × 4 elements and a final time T = 1.0. Figure 11 shows a
time sequence for lower and upper solutions from t = 0 to t = T at λ = 2. Figure 12 shows
the classical bifurcation diagram for Bratu’s problem evaluating the maximum value umax
at the time T for different λ values from 0 to λc. At this time, we guarantee a convergent
solution over time to approach the steady state of this problem. We demonstrate the
robustness of our approach and the efficient refinement strategy to capture all stable and
unstable branches, even close to the critical point (λc). We test the accuracy of the results by
successfully validating our bifurcation map at time T with results obtained from different
authors at the steady state [31,47].
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Figure 11. Solution’s temporal evolution for λ = 2 for the lower and upper branches.
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T

Figure 12. Bratu’s bifurcation diagram for T = 1.0 and τ = 0.1.

6. Discussion

This paper proposes an adaptive-stabilized finite element method based on residual
minimization for unsteady advection–diffusion–reaction problems using the method of
lines. The method provides a stable solution and a robust error representation to guide
adaptivity at every discrete time. We demonstrate the method’s performance for challeng-
ing linear and nonlinear problems with optimal spatial and temporal convergence and the
efficiency of the adaptive refinement strategy to capture sharp inner and boundary layers.
We present evidence that the adaptive refinement process could overcome the required
computational cost to solve the saddle-point problem compared to the uniformly refined
schemas on discontinuous Galerkin approximation. Other time-marching approaches, in-
cluding explicit time-marching schemas with time adaptivity and space–time formulation,
will be described in future publications.
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