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Abstract: The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm
that uses a group-based representation scheme and variation operators that work at the group-level.
This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its
optimization process consists of different components, although the crossover and mutation operators
are the most recurrent. This article aims to highlight the impact that a well-designed operator can
have on the final performance of a GGA. We present a comparative experimental study of different
mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with
unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in
a set of machines. The proposed approach is focused on identifying the strategies involved in the
mutation operations and adapting them to the characteristics of the studied problem. As a result of
this experimental study, knowledge of the problem-domain was gained and used to design a new
mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art
GGA performance considerably improves by replacing the original mutation operator with the new
one, achieving better results, with an improvement rate of 52%.

Keywords: grouping genetic algorithm; grouping mutation operator; grouping problem; unrelated
parallel-machine scheduling

1. Introduction

Over the last decades, the interest of the scientific community in solving Combinatorial
Optimization Problems (COPs) has grown considerably since these types of problems
emerge in many practical issues in industry, logistics, and engineering. In general, the
optimization of a COP comprises the search of the suitable values for a set of discrete
variables, so that the objective function is optimized, satisfying the given conditions and
constraints. Thus, the solution of this type of problems can involve a feasible disposition,
grouping, order, or selection of discrete objects that typically are finite in number [1]. It is
well-known that many COPs have high complexity, and in the worst-case scenario, there is
no efficient algorithm that solves all their possible cases optimally. Such problems belong
to the NP-hard class [2]. In this order of ideas, this work focuses on grouping problems,
a special type of COPs that in general consist of looking for an efficient arrangement of
a set of elements among a collection of groups [1].

Parallel-Machine Scheduling (PMS) is a classical NP-hard grouping problem, consist-
ing of looking for the most efficient sequential scheduling of a set of n jobs N = {j1, . . . , jn}
among a collection of m parallel-machines M = {i1, . . . , im}, in such a way that each ma-
chine i can process only one job j at a time, and each job j must be processed by a single
machine i [3].

The PMS variants can consider different parameters in the problem definition, such
as resource and scheduling environments, job characteristics, and optimization criteria,
among others. The most general classification of PMS problems is according to the machine

Math. Comput. Appl. 2023, 28, 6. https://doi.org/10.3390/mca28010006 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28010006
https://doi.org/10.3390/mca28010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-1170-2951
https://orcid.org/0000-0001-8078-9491
https://orcid.org/0000-0002-1565-5267
https://orcid.org/0000-0002-0708-9875
https://doi.org/10.3390/mca28010006
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28010006?type=check_update&version=2


Math. Comput. Appl. 2023, 28, 6 2 of 29

environment. In this sense, this work focuses on a variant that belongs to the class with
unrelated machines, i.e., each machine can require a different time to process each job,
and there is not a behavior pattern with respect to the speed of the machines with a ma-
chine always being the fastest or the slowest one (Unrelated Parallel-Machine Scheduling,
UPMS). This problem family has received much recognition due to its numerous real-world
applications [4–6]. Although a large number of mathematical models have been proposed,
the exact approaches can solve only small instances in a reasonable time [7]. Given the
complexity of several UPMS variants, most approaches are metaheuristic algorithms, such
as local searches, swarm intelligence, and evolutionary algorithms. The state of the art
contains local searches such as the Hill Climbing [8], the Iterated Greedy Algorithm [9], the
Variable Neighborhood Descent [10], and the GRASP Algorithm [11]. In the same spirit, the
literature includes several swarm intelligence algorithms, such as the Worm Optimization
Algorithm [12], the Firefly Algorithm [13], the Artificial Bee Colony [14], and the Fruit Fly
Optimization Algorithm [15]. Additionally, we identified several evolutionary algorithms
such as the Genetic Algorithm [16], the Genetic Programming [17], and the Imperialist
Competitive Algorithm with memory [18]. Finally, the specialized literature includes some
memetic algorithms [19,20]. The literature review reveals that there are a wide variety of
UPMS problems, each with particular characteristics and challenges. Given the increasing
appearance of these problems, there exists a trend to explore the algorithmic behavior of
different metaheuristic approaches that can work well or badly according to the properties
of the variant of the problem to solve. One of the main challenges in the development of
high-performance algorithms for UPMS problems is the design of efficient strategies that
work together with the features of the problem variant to find high-quality solutions.

This work addresses the UPMS variant known as the R||Cmax problem, where the
machines {i1, . . . , im} are unrelated, jobs {j1, . . . , jn} have no-preemptions, and the objective
of interest is the reduction of the maximum completion time Cmax, i.e., the processing time
Ci required by the machine i that finishes at the end.

It is well-known that the problem R||Cmax belongs to the class NP-hard [2]. Hence,
over the past forty years, different approaches have been studied to try to solve it efficiently.
The specialized literature includes deterministic methods [21,22], two-phase algorithms (or
rounding methods) [23,24], and branch and bound algorithms [3,25]. The literature also
includes distinct metaheuristic algorithms for R||Cmax, covering proposals based on local
searches [3,26], the swarm intelligence algorithm Particle Swarm Optimization (PSO) [1],
the Genetic Algorithm (GA) [27], and some hybrid approaches [3]. According to the scope
of this review, the approaches based on local searches have shown the best performance
on solving the problem R||Cmax. The state of the art highlights the results reached by the
Iterated Greedy Local Search (NVST-IG+) proposed by Fanjul-Peyro and Ruiz in 2009,
considered one of the best solution methods designed for the problem of interest so far.
The success key of the NVST-IG+ performance is the incorporation of some techniques to
control the way in which the jobs and machines are selected and manipulated during the
construction of the neighborhoods [26].

In [1], we presented one of the most recent related works; the experimental results
suggested that a GA with a group-based representation GGA has a better performance than
a GA with an extended permutation solution encoding and a PSO with a machine-based
representation scheme for the 1400 test instances studied. Such GGA was an adaptation
of the GGA-CGT designed by Quiroz-Castellanos et al. for the Bin Packing Problem [28].
According to Quiroz-Castellanos et al., the performance of the GGA-CGT is related mainly
to the mutation operator, which alone is capable of finding quality solutions. The mutation
is one of the most used genetic operators in GGAs. Commonly, mutation operators promote
the exploration of the search space by slightly altering the solution genetic material. This
behavior is useful for a GGA mainly when it is converging to a local optimum since
it provides the capacity to redirect the search to other areas. Section 2.5 includes an
experimental study with different parameter configurations that allows observing how
the performance of the GGA proposed in [1] is mainly related to the crossover operator,
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while the mutation operator has a low impact. The above motivates this work that aims to
study the performance of different grouping mutation operators to identify the strategies
that they use and that positively impact their performance, to employ them in the design
of a new operator, and to incorporate that operator into the GGA in order to improve its
performance when solving R||Cmax.

This paper continues as follows. Section 2 describes the components and the problem-
domain heuristics of the GGA for R||Cmax. Section 3 reviews the state-of-the-art grouping
mutation operators. Section 4 contains the experimental design proposed to analyze the
impact of different strategies in the performance of grouping mutation operators. Section 5
compares the GGA performance with the new and the old mutation operators to analyze
the improvement rate. Finally, Section 6 summarizes the conclusions and future paths
of research.

2. Grouping Genetic Algorithm for R||Cmax

The state of the art suggests that the GGA is one of the most used metaheuristics
to solve grouping problems. Such popularity is related to its promising results and its
flexibility to adopt new ideas to handle the constraints and conditions of the problem to be
solved [1,29,30].

The GGA is an extension to the standard GA; therefore, it has a similar procedure.
The GGA starts with the generation of the initial population, generally in a random way.
Next, selection strategies and variation operators, mainly crossover and mutation, are
used iteratively so as to find better solutions. Each iteration represents a generation that
starts utilizing a selection strategy to pick some individuals of the population based on
their fitness values; then, the genetic material of the selected individuals is recombined
with the crossover operator to generate offspring. Subsequently, the offspring are added
to the population using a replacement strategy. Finally, some individuals, chosen with
a selection strategy, are slightly modified with the mutation operator. In this way, the GGA
iterates performing the before-mentioned procedure until some stopping criterion (e.g., the
maximum number of generations, the maximum search time, convergence of solutions, or
finding an optimal solution) is met.

One of the main features of the GGA is the group-based scheme that it uses to encode
and manage solutions in the search space. According to Falkenauer, this is a more natural
way of representing solutions to grouping problems. Moreover, it helps to reduce the
search space since it produces fewer isomorphic solutions than a traditional representation
scheme [31]. In this encoding, each gene represents a group that contains the collection of
elements that correspond to it. Therefore, the length of a solution is equal to the number of
groups that it includes.

Another important aspect to consider when developing a GGA is the design of vari-
ation operators such as crossover and mutation since they must work at the group level.
With this feature, operators can perform procedures in a more controlled way, determining
which groups and elements vary according to the constraints and objectives of the problem
to solve. The crossover operator uses two or more solutions of the current population to
recombine their genetic material, creating offspring with new characteristics. This operator
is used to give GGA the ability to converge on the most promising areas identified during
the search. One of the advantages of crossover operators for the group-based encoding is
that they can use the quality of the groups to determine how parents transmit the genetic
material to their offspring to perform a more controlled search. On the other hand, the
mutation operator provides GGA the ability to explore new areas of the search space,
producing small modifications to the genetic material of some solutions. This procedure
is helpful for a GGA, mainly to address highly constrained grouping problems, where
there are large possibilities of converging to local optimums. These slight alterations per-
formed by the mutation operator can generate solutions in other regions of the search space,
avoiding premature convergence [32].
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The next sections describe the elements of the state-of-the-art GGA for R||Cmax, the
object of study in this work, including the population initialization strategy, the variation
operators, selection and replacement strategies, and the problem-domain heuristics. This
algorithm is an adaptation of the Grouping Genetic Algorithm with Controlled Gene
Transmission (GGA-CGT) introduced by Quiroz-Castellanos et al. to solve the Bin Packing
problem [28]. The details of the heuristic used to generate the initial population, as well
as the mutation and crossover operators appear in the work of Ramos-Figueroa et al. [1],
while the remaining mechanisms and operators, as well as the parameter settings can be
consulted in the work of Quiroz-Castellanos et al. [28].

2.1. Genetic Encoding, Fitness Function, and Initial Population

The GGA uses the group-based representation scheme to encode and manipulate
solutions, where each machine i is a gene (or group) Gi that will include a set of jobs.
Therefore, all solutions have the same number of genes, equal to the number of machines
m. The quality of each machine i is equal to the time it takes to process its assigned jobs,
denoted as Ci. Thus, the quality of a solution Cmax is equal to the Ci value of the machine
with the longest processing time. The initial population is generated in a random manner
by running the well-known Min() heuristic on random permutations of the n jobs [33].
For each job j, Min() calculates the equation Ci = Ci + pij for all the machines, where pij
indicates the time that the machine i needs to process the job j. In this way, Min() assigns
the job j to the machine i that generates the lowest Ci value.

Figure 1 describes the procedure followed by the population initialization strategy. To
give a comprehensive description, Figure 1a includes an example instance I represented as
a matrix with m = 4 machines depicted by the columns and n = 10 jobs represented by the
rows. Thus, the example starts from a permutation (Figure 1b) of the ten jobs, {j9, j5, j2, j6, j3,
j8, j4, j7, j1, j10}, used to generate the partial solution, shown in Figure 1c. The construction
of the partial solution can be calculated from the first nine jobs in the permutation, {j9, j5,
j2, j6, j3, j8, j4, j7, j1,} and the instance I using the heuristic Min(). To exemplify how this
heuristic Min() works, Figure 1d shows a complete solution, resulting from the assignment
of the last job in the permuted list (i.e., j10) to the solution. Therefore, following the Min()
procedure mentioned above, the processing time Ci of each machine plus the time that
they require to process the job j10 results in the following way: C1 = 26 + 8, C2 = 25 + 20,
C3 = 20 + 18, and C4 = 10 + 28. Hence, Min() assigned the job j10 to the machine i1 since it
generated the lowest Ci value. It is important to note that if two or more machines produce
the same Ci value, this allocation heuristic assigns the job in turn to the machine i that
appears first from i1 to im. Finally, Figure 1d also shows the fitness value of the generated
solution that is equal to the longest processing time Ci, in this case, the C1 = 34, outlined
in bold.

a) Test Instance
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Figure 1. Population initialization strategy.

2.2. Adapted Gene-Level Crossover Operator

The GGA uses the Adapted Gene-Level Crossover (AGLX) operator, a variant of
the GLX operator proposed by Quiroz-Castellanos et al. [28] that produces two children
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solutions by using two parent solutions. Algorithm 1 presents the procedure of AGLX.
We denote S

′
= Sort(S) the solution derived from S by sorting its machines in increasing

order concerning its Ci values (lines 1 and 2). Thus, AGLX first transmits the machines that
process their jobs fastest and then the slowest ones (lines 3–6). In this way, the first child
C1 starts inheriting the fastest machine from the first parent S1, next the fastest machine
from the second parent S2, then the second-fastest machine from the first parent S1, and so
on (line 4). Similarly, the second child C2 receives genes alternately from both parents but
starting with the fastest machine from the second parent S2 (line 5). We denote C = Inherit(C,
ia, ib) the child solution C upgraded with the machines ia and ib, one for each parent. It
is important to remark that before inheriting each machine, the Inherit() function verifies
that it has not already been transmitted by the other parent to the child C. Otherwise, the
machine is discarded. Likewise, before inheriting each job, this function validates that it
has not already been transmitted. Otherwise, it is discarded to avoid infeasible solutions.
It is important to note that in most of cases this procedure generates infeasible solutions,
since some jobs can be missed during the crossover process. Therefore, it is necessary to
re-insert the jobs to transform the solutions into feasible ones (lines 7 and 8). We denote
MJ[] = MissedJobs(C) the set of jobs missed during the genetic material transmission of
a child C. Finally, the missed jobs MJ are permuted and re-inserted with the Min() heuristic
described above (lines 9–12). We denote MJ[]

′
=Permute(MJ[]) the set of jobs derived from

MJ[] by permuting it with a uniform distribution and C
′

= Min(C, MJ[]
′
) the child solution

obtained from the re-insertion of the jobs in MJ[]
′

to the solution C.

Algorithm 1 AGLX operator
Input: Two parent solutions S1 and S2, and the number of machines m.
Output: Two offspring solutions C

′
1 and C

′
2.

1: S
′
1 = Sort(S1);

2: S
′
2 = Sort(S2);

3: for each machine i in S
′
1 and S

′
2 do

4: C1=Inherit(C1, S
′
1[i], S

′
2[i]);

5: C2=Inherit(C2, S
′
2[i], S

′
1[i]);

6: end for
7: MJ1[]=MissedJobs(C1);
8: MJ2[]=MissedJobs(C2);
9: MJ1[]

′
=Permute(MJ1[]);

10: MJ2[]
′
=Permute(MJ2[]);

11: C
′
1=Min(C1, MJ1[]

′
);

12: C
′
2=Min(C2, MJ2[]

′
);

13: end process.

Figure 2 describes the process of the AGLX operator with an example that contains
two parent solutions for the test instance of Figure 1a with four machines (groups). The ten
jobs, from j1 to j10, are distributed among the four machines, from i1 to i4, and the time that
each machine i requires to process its assigned jobs from C1 to C4 is stored in the vector Ci.
Figure 2a depicts the transmission process. Therefore, it shows the two parents with their
groups in increasing order, which indicates the gene transmission sequence, i.e., from best
(Lowest Ci) to worst (Highest Ci). Figure 2b indicates the way the repeated genetic material
is handled. Thus, it contains the two solutions produced during the transmission process,
which only keep the machine i of the parent in which it appears first according to the gene
transmission sequence. Furthermore, this figure includes the repeated jobs, highlighted in
bold, that must be removed from the machine with the highest processing time Ci. Lastly,
this figure shows a list with the jobs missed MJ during the transmission process. Figure 2c
contains the partial solution resulting from the transmission process without the repeating
genetic material, as well as a permutation of the jobs in MJ. Finally, Figure 2d shows the
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complete solutions resulting from the assignment of the missed jobs with the heuristic
Min(). The processing time Ci of each machine i, as well as the operations performed by
the Min() heuristic to assign the missed jobs, can be calculated using the example instance
presented in Figure 1a.

Given two parent solutions for the test instance of Figure 1a, the Adapted Gene-level crossover 
operator (AGLX) proposed by Ramos-Figueroa et al. [ ] works as follows:
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Figure 2. AGLX operator.

2.3. Download Mutation Operator

The GGA includes the Download mutation operator that uses two phases to modify
two genes in a solution. Algorithm 2 contains the procedure of the Download mutation
operator. In the first stage, called download, the operator clusters the genes (machines)
among two sets, W and O (line 1). We denote W, O = Cluster(S) the sets derived by
grouping the machines in the solution S, in such a way that W includes the machines with
a processing time Ci equal to the makespan Cmax, while O holds the ones with an assigned
processing time Ci less than the makespan Cmax. Next, from each set (W and O), one
machine (w and o) is randomly selected (lines 2 and 3). We denote i=Pick(M) the machine i
randomly selected from the set of machines M with a uniform distribution. Subsequently,
the jobs in the selected machines are released (line 4). We denote S

′
, RJ[]= Download(S,

w, o) the solution derived by releasing the jobs of the machines o and w, which are placed
in the set RJ[]. Finally, the arrangement of the jobs in RJ[] is modified with the permute()
function mentioned above, giving rise to the set RJ

′
[] (line 5). Later, in the second stage,

the released jobs are redistributed among the selected machines w and o with the heuristic
Best() (lines 6–8). We denote S

′′
= Best(S

′
, j, w, o) the solution obtained by applying the

Best() heuristic. For each job j, this heuristic calculates the equations Cw = Cw + pwj and
Co = Co + poj, where Cw and Co represent the assigned processing time of machines w
and o, respectively, and pwj and poj the processing time required for machines w and o
to process the job j. In this way, Best() assigns j to the machine that generates the lowest
Ci value. It is important to highlight that the main difference between the reassignment
heuristics Min() and Best() is that Min() re-inserts the jobs considering all the machines,
while Best() re-inserts them by considering only the two selected machines o and w.
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Algorithm 2 Download mutation operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: W, O= Cluster(S);
2: w= Pick(W);
3: o= Pick(O);
4: S

′
, RJ[]= Download(S, w. o);

5: RJ
′
[]= Permute(RJ[]);

6: for all job j ∈ RJ
′
[] do

7: S
′′

= Best(S
′
, j, w, o);

8: end for
9: end process.

Figure 3 describes the mutation process of the Download operator with an example
that contains an initial solution for the instance presented in Figure 1a with four genes
(groups). The ten jobs, from j1 to j10, are distributed among four groups, from i1 to i4, and
the time that each group i requires to process its assigned jobs from C1 to C4 is stored in the
vector Ci. Figure 3a shows the result of clustering the machines with processing time Ci
equal to the makespan Cmax in the set W = {i1} and the remaining machines in set O = {i2, i3,
i4}. Figure 3b indicates the machines w = i1 and o = i4, outlined in bold, randomly selected
from the sets W and O, respectively. Figure 3c contains the solution with the selected
machines to be altered, outlined in bold, downloaded by releasing their jobs and placing
them in the box of released jobs RJ. Finally, Figure 3d shows a permutation of the jobs in RJ
and the result of reinserting them with the allocation heuristic Best(). The calculation of the
processing time Ci of each machine i, as well as the operations performed by the allocation
heuristic Best() to assign the released jobs, can be calculated using the example instance
I presented in Figure 1a. As this example shows, the quality of the mutated solution is
better than that of the initial solution, demonstrating the effectiveness of the Download
mutation operator.

Given the following potential solution for the test instance of Figure 1a: 

The Download mutation operator proposed by Ramos-Figueroa et al. [ ] works as 
follows:
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Figure 3. Download mutation operator.
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2.4. Selection and Replacement Strategies

The GGA employs an adaptation of the controlled reproduction technique proposed
by Quiroz-Castellanos et al. [28], which uses an elitist approach together with two inverted
rankings to give all the solutions a chance to contribute to the next generation but forcing
the survival of the best solutions. The replacement strategy preserves the population
diversity and the best solutions by replacing duplicated fitness individuals and the worst
fitness solutions with new offspring. Algorithm 3 contains the procedure of the ranking
strategy. First, this algorithm ranks the population (line 1). We denote P

′
= Rank(P) the

individuals arranged by sorting them from best to worst according to their fitness. Next, if
there are solutions with repeated fitness, only one solution is kept in the ranked, and the
others are placed at the end of the ordered list (line 2). We denote P

′′
= Rearrange(P) the

population rank resulting from placing the similar solutions at the end of the ordered list.
Subsequently, the solutions in P

′′
are distributed among the sets G, R, and B (line 3). We

denote G, R, B = Distribution(P
′′
) the sets obtained by placing the ranked solutions in the

sets G, R, B. In this way, G includes the best nc solutions, where nc is a parameter to be
configured that determines the number of individuals selected for the crossover process
of each generation. On the other hand, the set R contains the solutions in the population
P
′′

without the best nc/2 solutions. Finally, the set B holds the best |B| individuals, called
elite solutions, that receive special treatment since they have the best characteristics of the
population. Therefore, |B| is another parameter to be configured.

Algorithm 3 Ranking strategy
Input: The population P.
Output: The population rearranged en sets the G, R, and B.

1: P
′
= Rank(P);

2: P
′′
= Rearrange(P);

3: G, R, B= Distribution(P
′′
);

4: end process.

Given this solution hierarchical structure, nc/2 parent solutions are randomly taken
from the set G, and the remaining nc/2 parents are randomly picked up from the solutions
in the set R. In this way, each pair of parents is created with a parent selected from the set G
and the other one from the set R. Hence, it is necessary to validate that parent pairs do not
have the same solution since some solutions can be selected more than once. After applying
the crossover operator to each pair of parents, the new individuals are incorporated into
the ranked population P

′′
in the following way. Half of the generated children replace

the parents selected from the set R, and the remaining offspring replace first the solutions
with repeated fitness and then those with worse fitness, i.e., the solutions at the end of the
ranked population P

′′
.

Once the replacement strategy is applied, the population is rearranged again with the
same ranking strategy, described in Algorithm 3, to later select the best nm solutions for
mutation, where nm is a parameter to be configured that determines the number of mutated
solutions each generation. When applying the mutation operator, if a solution belongs to
the elite group B, the solution is first cloned and later mutated. The clones can be entered
into the population, replacing first the solutions with repeated fitness and then those with
worse fitness.

2.5. Impact Analysis of Crossover and Mutation Rate on GGA

In order to identify the impact of each variation operator (crossover and mutation)
on the GGA performance, an experimental study was performed by using three different
values for the number of individuals selected for the crossover process (nc) and the number
of solutions to be mutated (nm): 20, 40, and 60. In this way, GGA was run with the 9 config-
urations (Con f ) generated from all possible combinations of these three parameters: Con f1:
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nc = 20, nm = 20, Con f2: nc = 20, nm = 40, . . . Con f9: nc = 60, nm = 60. Figure 4 shows
a bar graph of the results obtained from this study, where each bar represents 1 of the 9 con-
figurations grouped according to the number of mutated solutions (nm), and each pattern
indicates the number of selected individuals for the crossover process (nc): squares = 20,
waves = 40, and circles = 60. As Figure 4 indicates, the GGA performance tends to im-
prove (lower error rate) as the number of individuals considered for the crossover and
mutation processes increases, although the crossover operator shows a higher impact on its
performance. This behavior is different from the one presented by the GGA-CGT, where
the mutation operator has the greatest positive impact on the final performance of this
algorithm. The results and conclusions obtained from this study motivated the review of
the mutation operator, exploring different strategies to include those that contribute to
the impact improvement of this operator on the GGA final performance on solving the
R||Cmax problem.

Impact of the parameter nm in the GGA performance 

20 40 60

nm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
P
D

nc

20

40

60

Figure 4. Impact analysis of the parameters: number of individuals selected for crossover nc and
number of mutated solutions nm in the GGA final performance.

3. Grouping Mutation Operators

The mutation is a genetic operator generally used to control population diversity
during the GGA search process. The mutation operators for the GGA are called grouping
mutation operators since they work at the group level. That is, they select g groups
using some criterion (such as selecting the best, the worst, or random groups) to slightly
modify them employing different operations. According to Ramos-Figueroa et al. [32], the
specialized literature holds seven mutation operators designed for GGAs in addition to
the Download operator. Three of them, the Swap, the Insertion, and the Item Elimination,
perform small alterations in the solutions with operations directly applied to some items
of the selected groups. In contrast, the remaining operators, called Elimination, Creation,
Merge and Split, and Reordering, promote more severe disturbances in solutions since they
perform operations involving all the items of the selected groups.

The seven mutation operators have been used to solve a wide variety of grouping
problems with different conditions and constraints. Due to these differences, mutation
operators must be adapted to the characteristics of the problem to be solved. As a result,
grouping mutation operators for the R||Cmax problem can differ in the tactics that they
use to select the jobs and machines involved in the mutation operations, the strategies
employed to handle the jobs and the selected machines, and the problem-domain heuristics
included. The following sections show the general procedure of four state-of-the-art
grouping mutation operators: Swap, Insertion, Elimination, and Merge and Split. This
study contemplates the best state-of-the-art mutation operators that apply for the R||Cmax
problem, discarding the infeasible ones and those which have not shown outstanding
performance. However, in [32] a more detailed description of the seven group-oriented
mutation operators procedure can be found, as well as a compilation of other mutation
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operators applied to different grouping problems and the parameter settings approach
that they use. It is important to note that in addition to the Download operator, none
of the four mutations described below have been used to solve the R||Cmax grouping
problem. The above motivates this experimental study, whose main objective is to explore
the performance of the most used mutation operators to solve R||Cmax.

3.1. The Swap Operator

The Swap operator selects two groups to later pick k items from each selected group
and exchange the items from one group to another. Due to its way of working, it can be
adapted and used to solve grouping problems with different constraints and conditions.
Thanks to this quality, the Swap operator has been used to solve classic problems such as
Bin Packing [34] as well as new problems such as Maximally Diverse [35].

3.2. The Insertion Operator

Similar to the Swap operator, the Insertion operator selects two groups to later pick k
items from one selected group and insert them to the other group. This operator has been
used to solve from classic problems such as Graph Coloring [36] to newer problems such as
Group Stock Portfolio [37], covering problems with different constraints and conditions [38].

3.3. The Elimination Operator

The Elimination operator chooses g groups to remove them, release their items, and
re-insert them by applying problem-domain heuristics, for example, the heuristic Min()
used by the state-of-the-art GGA for R||Cmax. According to the scope of the literature
review, this is the most used mutation operator to solve grouping problems because it
has shown promising results, mainly in classic problems such as Bin Packing [28], Cell
Formation [39], Multiple Knapsack [40], and Timetabling [41].

3.4. The Merge and Split Operator

The Merge and Split, also known as Division and Combination operator, works in two
phases. In the first stage, it selects two groups and transforms them into a single one. Then,
in the second stage, it picks a group to distribute its items between two distinct groups.
Merge and Split has been used to solve grouping problems such as Cell Formation [42] and
Multivariate Micro-aggregation [43].

4. Computational Experiments

This section presents the experimental design proposed to analyze the way different el-
ements involved in the mutation process can impact the performance of grouping mutation
operators. The objective of this work is to design an efficient grouping mutation operator
that includes the best features identified during the experimentation, to later incorporate it
to the state-of-the-art GGA for R||Cmax to improve its performance [1]. The experimental
design consists of four phases. The first stage covers the analysis of the state-of-the-art
grouping mutation operators to determine which one has the best performance for R||Cmax.
The second phase comprises an exploratory analysis to observe the influence of the num-
bers of machines and jobs involved in mutation operations. The third phase includes the
assessment of different machine selection strategies, including biased, random, and mixed
approaches. Finally, the fourth phase studies the contribution of distinct rearrangement
heuristics based on insertion and swap operations. The main objective of these strategies is
to reorganize some jobs of the solutions applying more complex and expensive processes.
Although they involve a computational cost, they are of vital importance when the muta-
tion operator alone is unable to leave a local optimum. The information collected is used to
design an efficient grouping mutation operator for R||Cmax.

The performance assessment of each operator involves solving 1400 test instances
introduced by Fanjul-Peyro in 2010, distributed among 7 sets [26]. The first 5 sets differ
in the range employed to generate the pij values with a uniform distribution: U(1, 100),
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U(10, 100), U(100, 120), U(100, 200), and U(1000, 1100). From the remaining sets, one
includes instances with correlated machines (MacCorr) and the other instances with corre-
lated jobs (JobsCorr). These instances can consider 100, 200, 500, or 1000 jobs and 10, 20, 30,
40, or 50 machines. Each set contains 200 instances, 10 for each combination of the number
of machines m and jobs n.

To analyze the performance of each operator, we generate a population of 100 individ-
uals with the heuristic Min() to later mutate them for 500 generations. For a fair comparison,
we use the same seed for each operator. Finally, we use the average Relative Percentage
Deviation (RPD) to compare the operators performance. Given an instance i, the RPD is
defined as in (1), where Cmax(i) depicts the Cmax value found by the operator, and C∗max(i)
represents the best Cmax found using two hours of the commercial solver CPLEX. Thus,
RPD indicates the deviation from the evaluated grouping mutation operators to CPLEX.

RPD =
Cmax(i)− C∗max(i)

C∗max(i)
(1)

4.1. State-of-the-Art Mutation Operators

This experiment aims to study the performance of the state-of-the-art grouping muta-
tion operators in the problem R||Cmax. Recalling from Section 3, this study comprises four
operators: Swap, Insertion, Elimination, and Merge and Split, since this work focuses on
the best state-of-the-art mutation operators that apply for the R||Cmax problem. However,
the specialized literature contains other mutation operators applied to various grouping
problems with different constraints and conditions [32]. Next, the procedures of the four
mutation operators adapted to work with the constraints and conditions of the problem
R||Cmax are presented. This information is reinforced by Algorithms 4–7 and Figure 5 that
includes an example for each operator.

Algorithm 4 contains the procedure of the Swap mutation operator. First, it selects two
machines iA and iB (lines 1 and 2). We denote i= PickMachine(S) the machine i randomly
selected from the solution S with a uniform distribution. Later, this operator selects one job
for each chosen machine (lines 3 and 4). We denote j= PickJob(i) the job j randomly selected
from the machine i with a uniform distribution. Finally, the operator interchanges the two
picked up jobs (line 5). We denote S

′
= Interchange(S, iA, iB, jA, jB) the solution derived by

interchanging the jobs jA and jB in machines iA and iB. Figure 5a explains the mutation
process of the Swap operator adapted to solve the problem R||Cmax with an example in
which the jobs jA = j1 and jB = j7, selected from machines iA = i1 and iB = i4, respectively,
are exchanged. In this way, in the initial individual (Solution), the machines iA and iB
outlined in bold and the jobs in bold jA and jB depict the machines and the jobs selected,
respectively; and the final individual (Mutation) shows the jobs in their new position.

Algorithm 4 Swap operator
Input: A solution S.
Output: A mutated solution S

′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: jA= PickJob( iA);
4: jB= PickJob( iB);
5: S

′
= Interchange(S, iA, iB, jA, jB);

6: end process.
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Figure 5. Group-oriented mutation operators adapted for R||Cmax.
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Similarly, Algorithm 5 includes the procedure of the Insertion mutation operator. First,
it uses the before-mentioned PickMachine() function to select two machines iA and iB
(lines 1 and 2). Next, it employs the PickJob() function described above to select a job
jA from the first selected machine iA (line 3). Finally, this operator inserts the job jA into
the second selected machine iB (line 4). We denote S

′
= Insertion(S, iA, iB, jA) the solution

derived by inserting the job jA from machine iA into machine iB. Figure 5b describes the
mutation process of the Insertion operator implemented to solve the problem R||Cmax with
an example, where the job jA = j7, selected from machine iA = i4, is inserted into machine
iB = i1. For a clear explanation, the example outlines in bold the selected machines iA and
iB and highlights the inserted item in bold jA in the initial individual (Solution). Thus, the
final individual (Mutation) shows the picked job jA in its new position.

Algorithm 5 Insertion operator
Input: A solution S.
Output: A mutated solution S

′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: jA= PickJob( iA);
4: S

′
= Insertion(S, iA, iB, jA);

5: end process.

On the other hand, Algorithm 6 describes the procedure of the Elimination operator.
Like the Swap and the Insertion operators, the Elimination process starts by picking up
two machines iA and iB by using the PickMachine() function (lines 1 and 2). Next, it places
all the jobs of both machines in the set of released jobs RJ, employing the before-mentioned
Download() function (line 3). It is important to remark that this process is performed
instead of the elimination, since the machines cannot be removed due to the characteristics
of the problem. Subsequently, the location of the jobs in RJ is modified by using the
Permute() function (line 4). Finally, the permuted jobs in RJ

′
[] are re-inserted with the Min()

heuristic (lines 5–7). Figure 5c explains the mutation process of the Elimination operator
adapted to solve the problem R||Cmax with an example, where the machines outlined in
bold iA = i3 and iB = i4 depict the machines selected to remove their jobs j3, j5, j6, j7,
and j8 highlighted in bold from the initial individual (Solution). The Incomplete Solution
shows the chromosome without the released items placed in the box RJ. Lastly, the box
Permutation represents the jobs in RJ reordered randomly, and the final solution Mutation
depicts the chromosome generated by assigning the jobs in the box Permutation by using
the problem-domain heuristic Min().

Algorithm 6 Elimination operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: S

′
, RJ[]= Download(S, iA, iB);

4: RJ
′
[]= Permute(RJ[]);

5: for all job j ∈ RJ
′
[] do

6: S
′′

= Min(S
′
, RJ

′
[]);

7: end for
8: end process.

Lastly, Algorithm 7 contains the procedure of the Merge and Split operator. Similar to
the before-described mutation operators, Merge and Split begins by choosing two machines
iA and iB in a random way with the PickMachine() function (lines 1 and 2). Later, it
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locates the jobs of the selected machines in the set of released jobs RJ with the Download()
function (line 3). As can be seen, it is a similar case to the elimination since the machines
cannot be joined or split. Hence, the operator uses the Permute() function to modify the
location of the jobs in RJ (line 4), and later, it simulates the splitting part by re-inserting
the permuted jobs in RJ

′
[] among the two selected machines iA and iB using the above-

described heuristic Best() (lines 5–7). Figure 5d includes the mutation process of the Merge
and Split operator with an example that contains an initial individual (Solution) with the
two selected machines iA and iB outlined in bold and the released jobs j3, j5, j6, j7, and j8
highlighted in bold. Moreover, the example contains the Incomplete Solution without the
jobs in iA ∪ iB placed in a box with the same name (iA ∪ iB). Lastly, this figure includes the
final solution Mutation that depicts the chromosome resulting from the allocation of the
jobs in Permutation (a box with the jobs in iA ∪ iB reordered randomly) by applying the
problem-domain heuristic Best().

Algorithm 7 Merge and Split operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: S

′
, RJ[]= Download(S, iA, iB);

4: RJ
′
[]= Permute(RJ[]);

5: for all job j ∈ RJ
′
[] do

6: S
′′

= Best(S
′
, j, w, o);

7: end for
8: end process.

Table 1 shows the results obtained from the computational experiments. For a com-
prehensive study, the performance of the operators was analyzed considering the number
of jobs n, the number of machines m, the distribution of the processing times pij, and
the 1400 instances together. In this way, the first column indicates the criterion used to
study the performance of the operators, the second one contains the classes covered for
each grouping criterion, and the following columns represent the average RPD (Relative
Percentage Deviation) achieved by each operator: Swap, Insertion, Merge and Split, and
Elimination, respectively. Finally, this table highlights in bold the results obtained by the
best operator for each group of instances. From Table 1, it can be observed that the Elimi-
nation operator excelled in all the criteria used to distribute the instances. It is important
to note that the four operators had a similar performance since their average RPD differs
only by hundredths.

Moreover, it is remarkable that the Download mutation operator procedure of the
studied GGA is quite similar to the state-of-the-art mutation operator Merge and Split,
since although the operations merge and split cannot be applied to groups explicitly due
to the characteristics and conditions of the problem, they can be emulated by considering
the jobs. In this way, the first stage of the Download mutation operator represents the
combination of the groups, where the jobs of the two selected machines are released and
placed in a single set. Similarly, the second stage depicts the split operation, where the jobs
are redistributed among the selected machines. Finally, it is also important to mention that
the only difference between the Merge and Split operator and the Elimination operator
(the two operators with the best performance) is the job reassignment strategy they work
with, since Merge and Split re-inserts the jobs only on the two selected machines, while the
Elimination operator tries to re-insert the jobs on all the machines.

The following stages of this experimental study contain the analysis of different aspects
involved in the mutation operator with the reassignment heuristic that considers all the
machines, such as the number of machines to handle, the number of jobs to remove, the
machine selection strategy, and the rearrangement heuristics.
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Table 1. Comparison of Swap, Insertion, Merge and Split, and Elimination mutation operators
using RPD.

Instance Set Swap Insertion Merge and
Split Elimination

100 0.1213 0.1219 0.1071 0.0804
n 200 0.1408 0.1432 0.1353 0.1154

500 0.1365 0.1371 0.1372 0.1281
1000 0.1380 0.1381 0.1387 0.1350

10 0.1291 0.1290 0.1291 0.1178
20 0.1391 0.1402 0.1344 0.1229

m 30 0.1256 0.1252 0.1220 0.1074
40 0.1310 0.1331 0.1270 0.1084
50 0.1460 0.1478 0.1353 0.1172

U(1, 100) 0.2802 0.2740 0.2632 0.2107
U(10, 100) 0.2080 0.2060 0.2039 0.1802

U(100, 120) 0.0417 0.0438 0.0408 0.0384
Pij U(100, 200) 0.1230 0.1248 0.1198 0.1164

U(1000, 1100) 0.0218 0.0230 0.0214 0.0201
JobsCorr 0.1259 0.1307 0.1194 0.1049

MacsCorr 0.1385 0.1432 0.1384 0.1326

1400 instances 0.1341 0.1351 0.1296 0.1147

4.2. Handled Machines and Removed Jobs

After observing that the four operators of the state of the art showed quite similar
performance and that the Elimination operator slightly excelled, the second phase of the ex-
perimental study focused on analyzing how the number of handled machines and removed
jobs impact the performance of the mutation operator. To analyze this phenomenon, we
explore thirty-five variants of the operator. This study consists of evaluating the suitability
of removing 1, 2, 3, 4, 6, 8, and 10 jobs from 2, 4, 6, 8, and 10 different machines, where
each combination of removed jobs and managed machines results in an operator. For this
study, we designed an enhanced version of the Elimination operator, called Elimination
operator-v2. Algorithm 8 contains the procedure of this version that is able to adapt itself
to the number of machines f and jobs h to handle. Therefore, this version receives the
solution and the number of machines and jobs to consider. Thus, it starts by using a cycle
to select the machines with the PickMachine() function (lines 1 and 2). Furthermore, for
each machine, it employs another cycle to choose the h jobs with the PickJob() function
and place them in the set of released jobs RJ (lines 3–5). It is important to highlight that if
a machine does not have enough jobs h, all of them are released and placed in RJ. Finally,
the functions Permute() and Min() are used to modify the location of the jobs and re-insert
them, respectively (lines 7–10).

For a fair comparison, all the operators use randomness to select the machines and the
jobs that intervene in their mutation process. Thus, each operator releases k jobs from g
machines and then re-inserts them with the heuristic Min(). As in the first phase, for each
operator, 100 individuals were generated and mutated during 500 generations using the
same seed.

Table 2 shows the experimental results of the thirty-five variants of the mutation
operator. The first column indicates the number of machines that each operator man-
ages, the second one represents the number of jobs removed from each of the handled
machines, and the last column contains the average RPD of each operator for the 1400 test
instances, highlighting in bold the result obtained by the best variant of the thirty-five
mutation operators.
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Algorithm 8 Elimination operator-v2
Input: A solution S, number of machines f and jobs h handle.
Output: A mutated solution S

′′
.

1: for each machine i from 1 to f do
2: i= PickMachine(S);
3: for each job j from 1 to h do
4: RJ[] = PickJob(i);
5: end for
6: end for
7: RJ

′
[]= Permute(RJ[]);

8: for all job j ∈ RJ
′
[] do

9: S
′′

= Min(S
′
, RJ

′
[]);

10: end for
11: end process.

Table 2. Comparison of handled machines and removed jobs using RPD.

Handled Machines Removed Jobs RPD

1 0.091437
2 0.094475
3 0.097644

2 4 0.100010
6 0.102259
8 0.103456

10 0.103984

1 0.093067
2 0.100647
3 0.104505

4 4 0.107246
6 0.109475
8 0.111302

10 0.111263

1 0.095776
2 0.105834
3 0.109519

6 4 0.111925
6 0.114454
8 0.115151

10 0.115754

1 0.09889
2 0.109016
3 0.112681

8 4 0.114861
6 0.116797
8 0.117525

10 0.117800

1 0.102228
2 0.110804
3 0.114677

10 4 0.116184
6 0.117627
8 0.118031

10 0.117819

It appears from Table 2 that the operators that release only one job from each machine
perform better than those that release more and that the best option is to consider only two
machines. Moreover, to graphically observe the behavior of the 35 designed operators, the
1400 instances were grouped into 20 groups concerning each combination of jobs (100, 200,
500, and 1000) and machines (10, 20, 30, 40, and 50) to calculate the average RPD of each
group and analyze the impact of each operator in more detail, e.g., the group where m = 10
and n = 100, the group where m = 10 and n = 200, and so on. Figures 6 and 7 contain
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two representative graphs of the behavior presented by the thirty-five mutation operator
variants, which allow observing the impact of the two evaluated features, i.e., the number
of machines to be handled and the number of jobs to be removed from each machine.

Handled machines
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Figure 6. Behavior of the mutation operators grouped by the number of handled machines.
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Figure 7. Behavior of the mutation operators grouped by the number of removed jobs from each
handled machine.

Figure 6 allows observing the behavior of the operator’s performance grouped ac-
cording to the number of machines that they handle for all instances with 200 jobs and
30 machines. The x-axis of this figure indicates the number of machines handled, and the
y-axis contains the average RPD reached for each operator. On the other hand, Figure 7
groups the operators according to the number of jobs removed from each machine in in-
stances with 500 jobs and 20 machines. The x-axis contains the operators grouped according
to the number of jobs that they remove, and the y-axis contains the average RPD reached
for each operator. In this way, Figure 6 allows graphically observing that the performance
of the operators improves as the number of handled machines decreases, while Figure 7
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shows that the operators removing fewer jobs have better performance. In this fashion, the
analysis suggests that the operators handling a fewer number of machines and releasing
fewer jobs are more suitable.

4.3. Machines Selection Strategy

Once identifying that the variant that considers two machines and releasing one job
from each machine has the best performance, in this stage, we evaluate the performance
of four machine selection strategies, Random, Worst, Worst Best, and Worst Random, to
analyze how they affect the performances of the mutation operators. Given a solution to be
mutated, these strategies work as follows. Random chooses the two machines randomly.
Worst selects the two machines with the worst Ci values (i.e., the machines with the highest
loads). Worst Best picks the worst and the best machine (i.e., the machines with the highest
and the lowest loads). If there are several machines with the lowest or highest load, first,
they are identified to later use a uniform distribution to select one of them randomly. Finally,
Worst Random divides the machines into two groups (W and O) in such a way that W
contains the machines with Ci = Cmax and O the remaining machines. Next, it randomly
selects the machines w and o from sets W and O, respectively. It is important to note that
for each machine selection strategy, the two released jobs are selected randomly using
a uniform distribution and later re-inserted employing the heuristic Min().

Table 3 shows the experimental results of the operators with the four machine selection
strategies. As can be seen, this table has the same structure as Table 1. That is, it clusters the
instances according to the number of jobs n, the number of machines m, the distribution of
the processing times pij of the instances, and the 1400 test instances together. Therefore,
the first column indicates the criterion used to study the performance of the operators, the
second one contains the classes covered for each grouping criterion, and the following
columns represent the average RPD (Relative Percentage Deviation) achieved by the
operators with each machine selection strategy: Random, Worst, Worst Best, and Worst
Random. Finally, this table highlights in bold the results obtained by the best mutation
operator for each group of instances. The experimental results in Table 3 suggest that the
most suitable machine selection strategy is Worst Random, with an average RPD of 0.0674
since the other approaches (Random, Worst, and Worst Best) reached higher RPD averages
of 0.0913, 0.0875, and 0.0912, respectively.

Table 3. Comparison of mutation operators with selection strategies Random, Worst, Worst Best, and
Worst Random using RPD.

Instance Set Random Worst Worst Best Worst Random

n

100 0.0605 0.0577 0.0618 0.0296
200 0.0848 0.0797 0.0832 0.0533
500 0.1030 0.0987 0.1028 0.0827

1000 0.1175 0.1147 0.1178 0.1046

m

10 0.0873 0.0857 0.0894 0.0718
20 0.0978 0.0942 0.0977 0.0752
30 0.0842 0.0824 0.0854 0.0635
40 0.0908 0.0853 0.0885 0.0631
50 0.0963 0.0900 0.0951 0.0634

U(1, 100) 0.1430 0.1470 0.1522 0.1146
U(10, 100) 0.1321 0.1319 0.1362 0.1003
U(100, 120) 0.0351 0.0309 0.0329 0.0244

Pij U(100, 200) 0.1017 0.0939 0.0970 0.0740
U(1000, 1100) 0.0182 0.0155 0.0171 0.0123

JobsCorr 0.0909 0.0820 0.0810 0.0576
MacsCorr 0.1179 0.1112 0.1220 0.0888

1400 instances 0.0913 0.0875 0.0912 0.0674
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4.4. Rearrangement Heuristics

After identifying the machine selection strategy that provides the best performance to
the mutation operator, we noted that there are high possibilities that the genetic material
of many solutions does not undergo any alteration during the mutation process. Such
a phenomenon can occur because it is likely that the two released jobs can be re-inserted in
the same machine to which they belonged. In order to analyze the above, we evaluated
the success rate (i.e., the number of the alterations in the genetic material divided by the
mutation attempts) of the mutation operator with the best properties identified in the two
previous stages. The experimental results revealed that only about the 42% of the mutation
attempts are successful.

The above motivates this stage of the experimental study that consists of evaluating
the utility of incorporating two rearrangement heuristics, called Insertion and Assemble, to
increase the operator’s success rate and improve its performance. These heuristics are only
used if, after releasing and reinserting the jobs, the genetic material of the mutated solution
has not been altered.

The rearrangement heuristic Insertion seeks to reduce the number of jobs in one of the
two selected machines by trying to insert each of their jobs into the other ones. Algorithm 9
has the procedure of the rearrangement heuristic Insertion. We denote S

′
= Insertion(S, jsm,

sm, i) the solution derived from S by inserting job jsm (jw or jo) from the selected machine
sm (w or o) into machine i. As can be seen, this heuristic goes through the jobs jw and jo of
the machines w and o selected with the machine selection strategy Worst Random (line 1).
Thus, for each pair of jobs (jw and jo), this algorithm traverses the m machines (line 2). In
this way, for each machine i different from machine w and o (line 3 and line 9), it tries to
insert the job jw of the worst machine w (line 3) and then the job jo from the other machine
o (line 7) following two conditions, denoted as Cnd_1 and Cnd_2.

Algorithm 9 Rearrangement heuristic Insertion
Input: A solution S and two machines w and o.
Output: A mutated solution S

′
.

1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then
5: S

′
= Insertion (S, jw, w, i);

6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then
11: S

′
= Insertion (S, jo, o, i);

12: end process;
13: end if
14: end if
15: end for
16: end for

Cnd_1(S, jsm, sm, i) (line 4 and line 10) allows verifying that the mutated solution (S
′
)

will have equal or better quality than the initial solution (S). In this way, Cnd_1 checks
out that the sum of the processing time resulted from the insertion in the intervened
machines i and sm (w or o) will be less than or equal to the sum of their processing times
without performing the insertion. Hence, for each job jw, Cnd_1(S, jw, w, i) returns TRUE if
Cw − pwjw + Ci + pijw ≤ Cw + Ci, where Cw and Ci represent the time that machines w and i
require to process their assigned jobs, respectively, while pwjw and pijw depict the processing
time that machines w and i require to process job jw, respectively. Otherwise, it returns
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FALSE. In the same way, for each job jo, Cnd_1(S, jo, o, i) returns TRUE if Co− pojo +Ci + pijo
≤ Co + Ci, where Co and Ci represent the time that machines o and i require to process their
assigned jobs, respectively; while pojo and pijo depict the processing time that machines o
and i require to process job jo, respectively. Otherwise, it returns FALSE.

On the other hand, Cnd_2(S, jsm, sm, i) (line 4 and line 10) checks out that the mutated
solution (S

′
) will have equal or better quality than the initial solution (S). Cnd_2 verifies

that the processing time Ci of the machine i with the new job, either jw or jo, will be less
than or equal to the current makespan Cmax. Therefore, for each job jw, Cnd_2(S, jw, w, i)
returns TRUE if Ci + pijw ≤ Cmax. Otherwise, it returns FALSE. Similarly, for each job jo,
Cnd_2(S, jo, o, i) returns TRUE if Ci + pijo ≤ Cmax. Otherwise, it returns FALSE.

In this way, the function Insertion(S, jsm, sm , i) (lines 5 and 11) is applied to S if and
only if a job j (jw or jo) satisfies the two conditions (Cnd_1 and Cnd_2). The rearrangement
process ends once an insertion is performed (lines 6 and 12), but if none of the jobs satisfied
the three conditions, the mutated solution would remain with its genetic material without
any modification.

On the other hand, the rearrangement heuristic Assemble uses two functions. The first
one is the Insertion(S, jsm, sm, i) that works similarly to the above rearrangement heuristic.
Additionally, it incorporates a second function called Interchange that seeks to exchange
each job of the selected machines with each job of the other machines in an attempt to
reduce the processing time of the selected machines. Algorithm 10 contains the procedure
of the rearrangement heuristic Assemble. We denote S

′
= Interchange(S, jsm, sm, ji, i) the

solution derived from S by exchanging job jsm (jw and jo) from the selected machine sm (w
or o) with each job ji in machine i. Like the Insertion rearrangement heuristic, Assemble
loops through the jobs jw and jo of the machines w and o selected with the machine selection
strategy Worst Random (line 1). Thus, for each pair of jobs (jw and jo), this algorithm goes
through the m machines (line 2). In this fashion, first, it tries to insert the jobs jw of the worst
machine w and jo of the other machine o into every machine i different from machines w
and o (line 3 and line 9) according to the two conditions described in Algorithm 9: Cnd_1
and Cnd_2 (line 4 and line 10). Next, it attempts to interchange the same jobs jw and jo with
each job ji in every machine i (line 15) different from machine w and o (line 16 and line 22),
validating two conditions: Cnd_3 and Cnd_4 (line 17 and line 23).

Cnd_3(S, jsm, sm, ji, i) (line 17 and line 23) allows verifying that the mutated solution
(S
′
) will have equal or better quality than the initial solution (S). In this way, Cnd_3 checks

out that the processing time resulted from the exchange in the intervened machines i and
sm (w or o) will be less than or equal to the sum of their processing times without swapping
their jobs. Hence, for each job jw, Cnd_3(S, jw, w, ji, i) returns TRUE if (Cw − pwjw + pwji ) +
(Ci − piji + pijw ) ≤ Cw + Ci, where Cw and Ci represent the time that machines w and i
require to process their assigned jobs, respectively; pwjw and piji depict the processing
time that machines w and i require to process jobs jw and ji, respectively; pwji pijw indicate
the processing time that machines w and i require to process job ji and jw, respectively.
Otherwise, it returns FALSE. In the same way, for each job jo, Cnd_3(S, jo, o, ji, i) returns
TRUE if (Co − pojo + poji ) + (Ci − piji + pijo ) ≤ Co + Ci, where Co and Ci represent the time
that machines o and i require to process their assigned jobs, respectively; pojo and piji depict
the processing time that machines o and i require to process jobs jo and ji, respectively; and
poji and pijo indicate the processing time that machines o and i require to process job ji and
jo, respectively. Otherwise, it returns FALSE.

On the other hand, the condition Cnd_4(S, jsm, sm, ji, i) (line 17 and line 23) validates
that the processing time resulting from the interchange in the intervened machines i and
sm (w or o) will be less than or equal to the current makespan (Cmax) of the initial solution S.
Hence, for each job jw, Cnd_4(S, jw, w, ji, i) returns TRUE if (Cw − pwjw + pwji ≤ Cmax) and
(Ci − piji + pijw ≤ Cmax). Otherwise, it returns FALSE. Similarly, for each job jo, Cnd_4(S, jo,
o, ji, i) returns TRUE if (Co − pojo + poji ≤ Cmax) and (Ci − piji + pijo ≤ Cmax). Otherwise, it
returns FALSE.
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Algorithm 10 Rearrangement heuristic Assemble
Input: A solution S and two machines w and o.
Output: A mutated solution S

′
.

1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then
5: S

′
= Insertion (S, jw, w, i);

6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then
11: S

′
= Insertion (S, jo, o, i);

12: end process;
13: end if
14: end if
15: for job ji in i do
16: if i != w then
17: if Cnd_3(S, jw, w, ji, i) and Cnd_4(S, jw, w, ji, i) then
18: S

′
= Interchange (S, jw, w, ji, i);

19: end process;
20: end if
21: end if
22: if i != o then
23: if Cnd_3(S, jo, o, ji, i) and Cnd_4(S, jo, o, ji, i) then
24: S

′
= Interchange (S, jo, o, ji, i);

25: end process;
26: end if
27: end if
28: end for
29: end for
30: end for

The Assemble process ends once an operation, either the insertion or the interchange,
is accomplished (lines 6, 12, 19, and 25). If none of the jobs met the two conditions, the
mutated solution remains with its genetic material without any modification.

In this way, two variants of the operator with the best characteristics identified in the
two previous stages (i.e., removing one job from two machines selected with the strategy
Worst Random and re-inserting such jobs with the Min() heuristic) were created, one for
each rearrangement heuristics presented in this section: Insertion and Assemble. The
performance of the two variants, called Insertion and Assemble, was evaluated using the
methodology mentioned above, i.e., starting from an initial population of 100 individuals
that are subsequently mutated during 500 generations and using the same seed. Table 4
holds the experimental results obtained by the two mutation operators generated in this
phase. Moreover, Table 4 includes the performance of the Download mutation operator,
the original GGA operator described in Section 2.5, to compare the degree of improvement
provided by the variants of the operator proposed in this section. For a comprehensive
analysis, the performance of the operators was analyzed clustering the instances with the
criteria used in the previous stages: number of jobs n, number of machines m, distribution
of processing times pij, and the 1400 instances together. Thus, each column shows the
performance of each assessed operator for the different criteria used to group the instances,
highlighting in bold the results obtained by the best mutation operator.

As can be observed in Table 4, the best variant is that with the rearrangement heuristic
Assemble, which for each pair of jobs first tries the insertion and then the interchange. The
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variants with the rearrangement heuristics Insertion and Assemble reached an average
RPD of 0.0552 and 0.0395, respectively. However, it is important to note that the two
versions of the mutation operators presented in this section outperformed the original
Download mutation operator of the GGA studied that reached an average RPD of 0.1139,
as well as the four state-of-the-art operators, which had an average RPD above 0.1.

Table 4. Comparison of mutation operators with the rearrangement heuristics Insertion and Assemble
and the Download operator using RPD.

Instance Set Insertion Assemble Download

n

100 0.0306 0.0185 0.0730
200 0.0480 0.0280 0.1125
500 0.0631 0.0441 0.1328

1000 0.0793 0.0671 0.1383

10 0.0612 0.0416 0.1261
20 0.0617 0.0429 0.1258

m 30 0.0497 0.0366 0.1076
40 0.0507 0.0376 0.1054
50 0.0528 0.0382 0.1048

U(1, 100) 0.0523 0.0407 0.2307
U(10, 100) 0.0538 0.0331 0.1862
U(100, 120) 0.0286 0.0176 0.0358

Pij U(100, 200) 0.0750 0.0362 0.1072
U(1000, 1100) 0.0150 0.0100 0.0182

JobsCorr 0.0664 0.0654 0.0892
MacsCorr 0.0952 0.0728 0.1304

1400 instances 0.0552 0.0394 0.1139

5. Comparing GGA with the Old and the New Mutation Operators

Given the knowledge gained from the experimental study, we propose a mutation
operator called 2-Items Reinsertion. This operator randomly chooses two jobs from two
different machines selected with the strategy Worst Random to release them and later rein-
sert them with the allocation heuristic Min(). Furthermore, it employs the rearrangement
heuristic Assemble, based on insertion and interchange operations. The rearrangement
process is only applied if, after releasing and reinserting the jobs, the genetic material of the
mutated solution has not been modified.

To assess the 2-Items Reinsertion mutation operator performance, we run two variants
of the state-of-the-art GGA for R||Cmax [1]. One with the old mutation operator (the Down-
load mutation operator), i.e., the state-of-the-art GGA and the Enhanced GGA (EGGA) that
uses the 2-Items Reinsertion mutation instead of the Download operator to evaluate their
performance over the 1400 benchmark instances. For an equivalent comparison, the effec-
tiveness and efficiency of both GGA variants were compared by using the same parameter
configuration, i.e., the one proposed by Ramos-Figueroa et al. [1]. Table 5 contains the
parameter values utilized for the population size |P|, number of individuals selected for
the crossover nc, number of individuals selected for the mutation nm, elite population size
|B|, and maximal number of generations max_gen. In this way, we analyze the strengths
and weaknesses of the 2-Items Reinsertion mutation operator, distinguishing the quality
of the solutions found by each GGA variant, their search time, as well as their ability to
escape from local optima.

Table 5. Parameter configuration.

Parameter Value

|P| 100
nc 20
nm 83
|B| 20

max_gen 500
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For a fair comparison, both algorithms were programmed in the Rust language and
were compiled using Visual Studio in the 64-bits mode. The experiments were performed
on a computer with an Intel Core i5 (3.10 GHz), and 16 GB in RAM. Similar to Ramos-
Figueroa et al. [1], for each instance, a single execution of the algorithms was run, with the
same initial seed for the random number generation.

5.1. Comparing the effectiveness of GGA with the old and the new mutation operators

To measure the effectiveness of the designed 2-Items Reinsertion mutation operator,
we applied the two GGA variants to the 1400 test instances and measured the improvement
degree in the quality of the solutions found by each algorithm based on the RPD. Table 6
contains the experimental results. The first and second columns indicate the criteria used
to group the test instance based on the number of jobs n, the number of machines m, the
processing time distribution pij, and the 1400 instances together. On the other hand, the
remaining columns contain the average RPD obtained by each metaheuristic algorithm
for the four grouping criteria, respectively. Finally, this table highlights in bold the results
obtained by the best GGA for each group of instances.

Table 6. Comparison of the state-of-the-art GGA and the EGGA presented in this work using RPD.

Instance Set GGA EGGA

n

100 0.0391 0.0176
200 0.0565 0.0224
500 0.0665 0.0291

1000 0.0724 0.0441

10 0.0512 0.0220
20 0.0606 0.0306

m 30 0.0559 0.0275
40 0.0596 0.0308
50 0.0657 0.0306

U(1, 100) 0.0719 0.0465
U(10, 100) 0.0853 0.0361
U(100, 120) 0.0278 0.0092

Pij U(100, 200) 0.0820 0.0229
U(1000, 1100) 0.0131 0.0036

JobsCorr 0.0522 0.0380
MacsCorr 0.0780 0.0419

1400 instances 0.0586 0.0283

Table 6 illustrates that the EGGA showed a better performance than the state-of-the-art
GGA using any criteria to group the test instances. Furthermore, it is worth noting that
the EGGA reaches an average RPD considerably lower than the state-of-the-art GGA by
solving the 1,400 test instances, with 0.028 and 0.059, respectively. Additionally, we applied
the Wilcoxon rank-sum test to assess whether the differences in the RPD achieved by
both GGAs for the 1,400 test instances are statistically significant. The Wilcoxon rank-
sum is a non-parametric test that compares two algorithms without assuming a normal
distribution, even for small sample sizes [44]. Table 7 presents the results obtained by
the Wilcoxon rank-sum for the RPD values reached by both algorithms in the benchmark
considered with a 95%-confidence level. For a comprehensive comparison, we generated
a hypothesis test for the RPD achieved by both GGAs in groups of instances sorted
according to the number of jobs n, the number of machines m, the distribution of the
processing times pij of the instances, and the complete benchmark (1400 instances). In this
way, the first column indicates the criterion used to compare the algorithms, the second
one contains the classes covered for each grouping criterion, and the last column indicates
the p-values obtained by the Wilcoxon test.
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Table 7. p-values for the Wilcoxon test for GGA and EGGA.

Instance p-Value

n

100 7.10 × 10−26

200 6.70 × 10−43

500 2.30 × 10−46

1000 8.16 × 10−29

10 4.57 × 10−39

20 1.63 × 10−29

m 30 2.98 × 10−21

40 3.51 × 10−20

50 3.37 × 10−25

U(1, 100) 1.13 × 10−12

U(10, 100) 1.59 × 10−49

U(100, 120) 2.03 × 10−33

Pij U(100, 200) 1.01 × 10−51

U(1000, 1100) 2.25 × 10−37

JobsCorr 2.19 × 10−15

MacsCorr 4.44 × 10−27

1400 instances 5.44 × 10−120

Table 7 indicates that the EGGA is indeed statistically better than the state-of-the-art
GGA considering the RPD that they reached for the test benchmark for all the groups of
instances considered since all p-values are less than the level of significance α = 0.05.

Finally, in order to graphically show the suitability of the designed mutation operator,
the experimental study presented in Section 2.5 was repeated but this time for the impact
analysis of crossover and mutation rates on the EGGA. In this way, the EGGA that incorpo-
rates the 2-Items Reinsertion mutation operator was run with the same 9 configurations,
i.e., Con f1: nc = 20, nm = 20, Con f2: nc = 20, nm = 40, ... Con f9: nc = 60, nm = 60. Figure 8
presents a bar graph with the results obtained from this study, where each bar depicts one
of the 9 configurations grouped according to the number of mutated solutions (nm), and
each pattern indicates the number of selected individuals for the crossover process (nc):
squares = 20, waves= 40, and circles= 60. As Figure 8 indicates, the EGGA performance
is mainly related to the number of individuals considered for the mutation processes nm
in such a way that the performance of the EGGA improves (lower RPD) as the number
of mutated solutions increases. Similarly, as the number of selected individuals for the
crossover process nc increases, the GGA performance improves but to a lesser degree.

Impact of the parameter nm in the EGGA performance 
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Figure 8. Impact analysis of the parameters: number of individuals selected for crossover nc and
number of mutated solutions nm in the EGGA final performance.

The behavior mentioned above shows the suitability of the 2-Items Reinsertion mu-
tation, which is the operator with the biggest impact on EGGA final performance and



Math. Comput. Appl. 2023, 28, 6 25 of 29

improves it considerably. Thus, the EGGA behavior is quite similar to the one presented by
the GGA-CGT [28], where the mutation operator has the greatest positive impact on the
final performance of this algorithm.

5.2. Comparing the Efficiency of GGA with the Old and the New Mutation Operators

After analyzing the effectiveness of the EGGA, we evaluate the implications associated
with the computational time of using the 2-Items Reinsertion mutation operator. Table 8
includes the experimental results. Like Table 6, the first and second columns describe
the characteristics used to cluster the instances: the number of jobs n and machines m,
the processing time distribution pij, and the 1400 instances together. Thus, the following
columns contain the average time in seconds obtained by the state-of-the-art GGA and the
EGGA for each instance set, respectively.

Table 8. Comparison of the state-of-the-art GAA and the EGGA based on the time (time in seconds).

Instance GGA EGGA

n

100 1.2 5.71
200 1.2 5.68
500 1.24 5.49

1000 1.36 9.44

10 1.26 8.71
20 1.24 7.66

m 30 1.21 6.94
40 1.19 6.33
50 1.17 5.79

U(1, 100) 1.25 34.09
U(10, 100) 1.25 14.04
U(100, 120) 1.25 2.52

Pij U(100, 200) 1.25 2.88
U(1000, 1100) 1.25 2.71

JobsCorr 1.25 1.50
MacsCorr 1.25 1.69

1400 instances 1.25 8.49

Table 8 shows that the 2-Items Reinsertion mutation operator causes the EGGA to
be much slower. Said computational cost is closely related to the rearrangement strategy
Assemble, incorporated to avoid, as far as possible, becoming stuck in a local optima.
Although the computational cost of this strategy is high, it is also too useful, since the
properties and characteristics of the addressed problem make the mutation operator by
itself incapable of avoiding local optima., mainly in the instances with processing times
generated in the ranges U(1, 100) and U(10, 100), where the average times increased from
1.25 to 34.09 and 14.04 seconds, respectively. To review such algorithmic behavior, we
analyzed the average generation in which the state-of-the-art GGA and the EGGA find the
best solution for each test instance.

Table 9 shows that the GGA becomes quickly trapped in local optima in generation 16
on average, while the EGGA shows a better ability to deal with the landscape characteristics
of the R||Cmax search space, finding its best solutions in generation 362 on average. In
this way, Table 9 shows the importance of incorporating the 2-Items Reinsertion mutation
operator to the GGA since, although the computational cost is high, it provides to the
EGGA a better exploration capability during the search process.
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Table 9. Comparison of the state-of-the-art GAA and the EGGA based on the generation in which the
best solution in population is improved.

Instance GGA EGGA

n

100 9.27 358.34
200 8.00 369.31
500 8.00 380.83

1000 17.09 362.54

10 16.35 358.46
20 13.69 359.06

m 30 11.79 359.78
40 11.05 360.96
50 10.01 362.20

U(1, 100) 64.80 218.56
U(10, 100) 8.00 305.34
U(100, 120) 8.00 360.44

Pij U(100, 200) 8.00 391.96
U(1000, 1100) 8.00 390.13

JobsCorr 8.00 474.82
MacsCorr 8.00 392.95

1400 instances 16.11 362.03

From this study, we can conclude that it is still necessary to improve the performance
of the EGGA and study its other operators, evaluation function, and stop criteria in order
to better explore the search space, since it also becomes stuck in local optima, although
not as soon as the original GGA. Additionally, we will focus on analyzing the properties
and characteristics of the instances in the sets U(1, 100) and U(10, 100), where the EGGA
stagnates sooner and requires a longer processing time since the rearrangement heuristic is
used more times during the solution process of instances with those characteristics.

6. Conclusions and Paths of Work

The GGA has become one of the most outstanding metaheuristics for the solution of
combinatorial optimization problems related to the partition of a set of items into different
subsets. The development of a GGA involves the definition of variation operators adapted
to work at the group level. The main goal of this paper was to promote the design of
intelligent operators for GGAs as a more suitable way to obtain high-performance GGAs
that incorporate knowledge of the problem-domain.

We present a systematic experimental examination to gain insights into the impor-
tance of each phase involved in the mutation operator of a GGA designed to solve the
Parallel-Machine scheduling problem with unrelated machines and makespan minimiza-
tion (R||Cmax), analyzing whether different strategies actually contribute to the performance
of the operator. The overall procedure of a grouping mutation operator for R||Cmax com-
prises: (1) selecting one or more machines; (2) selecting one or more jobs from each of the
selected machines; and (3) reinserting the selected jobs in some of the machines. In order
to learn something about each of these three algorithmic components, this work covered
the analysis of each component in isolation by evaluating distinct strategies to deal with it.
In this way, the study covered the evaluation of four state-of-the-art grouping mutation
operators, thirty-five operators with different numbers of machines and jobs handled, four
machine selection strategies, and two rearrangement heuristics for the reinsertion of the
selected jobs. The experimental results suggested that the mutation operator with the best
performance: (1) selects two machines, one of the machines with the worst Ci value and
one random machine; (2) selects one random job from each of the selected machines; and
(3) reinserts the selected jobs in two stages. First, for each job, each machine is checked
in an attempt to insert the job in the machine with the lowest Ci value. Second, if the
first stage yields the original solution, a rearrangement heuristic is applied to attempt to
reduce the processing time of the selected machines by trying to insert one of their jobs
into the other machines or to exchange one of their jobs with one job of the other machines.
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The knowledge gained from the systematic study was used to design a new grouping
mutation operator, called 2-Items Reinsertion. The new operator was incorporated into the
state-of-the-art GGA (replacing the original mutation operator) to solve 1400 benchmark
instances, showing significant differences with an improvement rate of 52%. These results
underline the importance of evaluating the performance of the different components of the
GGA operators.

We are aware that the current performance of the Enhanced GGA (EGGA) is still far
from reaching the performance of state-of-the-art algorithms for R||Cmax. However, the
improvements achieved with the approach proposed in this work are quite promising.
Therefore, we believe that with the design and implementation of experimental approaches
such as the one presented in this paper we can further improve the performance of EGGA
by studying the behavior of other genetic components, such as the population initialization
strategy, the selection mechanism, the crossover operator, the replacement mechanism, and
the objective function. In this order of ideas, the study of the final performance obtained by
the EGGA for the R||Cmax problem revealed that there still are benchmark instances that
show a high degree of difficulty; for these instances, the included strategies in the EGGA
do not appear to lead to better solutions. Future work will consist of studying the different
components of each operator and technique included in the EGGA, designing a better
crossover operator, implementing an efficient reproduction technique, and analyzing the
EGGA behavior to understand the impact of each strategy when solving different instances
of the R||Cmax problem. We are also developing a new fitness function that will allow us to
discriminate between solutions with the same Cmax value but with a different exploitation of
the machine’s processing time. The knowledge gained from the analysis of each component
of the grouping mutation operator for the R||Cmax problem can help us gain a better
understanding of the performance of other heuristics for this problem and opens up an
interesting range of possibilities for future research on other Parallel-Machine Scheduling
variants. It is expected that the study presented in this paper represents a guideline to
carry out similar systematic experimental examinations to analyze the components of
other GGAs. This knowledge can be used to develop new intelligent operators for solving
NP-hard grouping problems.
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