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Abstract: In this paper, we study the long-time behavior of a weakly dissipative viscoelastic equation

with variable exponent nonlinearity of the form utt + ∆2u −
∫ t

0
g(t − s)∆u(s)ds + a|ut|n(·)−2ut −

∆ut = 0, where n(.) is a continuous function satisfying some assumptions and g is a general
relaxation function such that g′(t) ≤ −ξ(t)G(g(t)), where ξ and G are functions satisfying some
specific properties that will be mentioned in the paper. Depending on the nature of the decay rate
of g and the variable exponent n(.), we establish explicit and general decay results of the energy
functional. We give some numerical illustrations to support our theoretical results. Our results
improve some earlier works in the literature.

Keywords: viscoelasticity; relaxation function; general decay; convex functions; variable exponent;
numerical computations
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1. Introduction

In this paper, we consider the following weakly dissipative viscoelastic equation with
variable exponent nonlinearity

utt + ∆2u−
∫ t

0
g(t− s)∆u(s)ds + a|ut|n(·)−2ut − ∆ut = 0 in Ω× (0,+∞), (1)

subject to the following conditions{
u = ∆u = 0, on ∂Ω,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(2)

where Ω is a bounded domain of Rd with a smooth boundary ∂Ω, a is a positive constant,
n(.) is a continuous function satisfying some assumptions, g is a general relaxation function
satisfying some conditions and (u0, u1) are the given initial data.

For the stabilization of weakly dissipative second-order systems, Rivera et al. [1]
considered the following abstract integro-differential equation

utt +Au + βu−
∫ t

0
g(t− s)Aαuds = 0, (3)

where A is a strictly positive self-adjoint linear operator and established a polynomial
decay result with the interpolating cases α ∈ (0, 1) and g decays exponentially to zero.
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In [2], Hassan and Messaoudi generalized the result of [1] by considering a very general
assumption on the relaxation function g and obtained a new general decay rate. In [3],
Anaya and Messaoudi discussed the following problem

utt + ∆2u−
∫ t

0
g(t− s)∆u(s)ds + h(ut) = 0, (4)

with a general weak damping term, and they derived general decay rate estimates under
certain restrictions for the relaxation function g, and the function h is a nondecreasing
C1(R) function satisfying h(0) = 0, sh(s) ≥ 0 and for c1, c2 > 0,

c1|s| ≤ |h(s)| ≤ c2|s|, s ∈ R. (5)

In recent years, there has been increasing interest in treating equations with variable
exponents of nonlinearity. Some models from physical phenomena such as flows of electro-
rheological fluids or fluids with temperature-dependent viscosity, filtration processes in
porous media, nonlinear viscoelasticity, and image processing give rise to such problems.
This great interest is motivated by the applications to the mathematical modeling of non-
Newtonian fluids. One of these fluids is the electro-rheological fluids which have the
ability to drastically change when applying some external electromagnetic field. The
variable exponent of nonlinearity is a given function of density, temperature, saturation,
electric field, etc. For more information about the mathematical model of electro-rheological
fluids, we refer to [4,5]. However, there are few available works in the literature including
nonlinearities of variable-exponent type. For example, Antontsev [6,7] considered the
following problem

utt − div(a(x)|∇u|p(x,t)−2∇u)− α∆ut = b(x, t)|u|σ(x,t)−2u, (6)

where α is a positive constant and the author established local, global existence and blow-
up results under some conditions on the functions a, b, p, σ. In [8], Problem (6) was also
considered, and the authors proved various blow-up results for the solutions with positive
initial energy. Furthermore, in [9], the authors studied the following equation

utt − div(|∇u|r(x)−2∇u) + a|ut|n(x)−1ut = b|u|p(x)−2u, (7)

and proved the existence of a unique weak solution. The authors of [9] also established
a finite-time blow up of the solutions. In [10], Messaoudi et al. considered Problem (7),
where b = 0, and established decay estimates for the solutions under suitable assumptions
on the initial data and the variable exponents.

Recently, in [11], Messaoudi investigated the following problem

utt − div(a(x)|∇u|r(.)−2∇u)− ∆ut + |ut|n(.)−2ut = 0, (8)

and established exponential and polynomial decay results under some conditions on the
variable exponents n and r. The existence, stability and blow up of solutions of other
problems with variable exponents such as Petrovsky, Kirchhoff and other viscoelastic
equations can be found in the references [12–16].

In the present work, we are interested in establishing explicit and general decay results
for the system (1)–(2) by using the energy method and some properties related to the
variable exponents. Then, we give some numerical examples to illustrate our results. Our
decay results depend on the nature of the decay rate of the relaxation function g and the
variable exponent n(.). The results improve the recent works in [1–3], where the authors
considered the usual constant exponents.

The remainder of this paper is organized as follows: In Section 2, we outline some
preliminaries. In Section 3, we state and prove some essential lemmas which are needed
in the proofs of the decay results. In Section 4, we establish the general decay results of
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our problem (1)–(2) and present some examples. Finally, in Section 5, we provide some
numerical examples to illustrate our theoretical results.

2. Preliminaries

In this work, L2(Ω) denotes the standard Lesbesgue space, and we define following

H(Ω) := {u ∈ H3(Ω) : u = ∆u = 0 on ∂Ω}

is a Sobolev space with the usual scalar products and norms. Throughout this paper, k is a
generic positive constant. Details on Lebesgue and Sobolev spaces with variable exponents
can be found in [17–19]). Here, we provide some basic definitions. Let q : Ω → [1, ∞] be
a measurable function, where Ω is a domain of Rd. The Lebesgue space with a variable
exponent q(·) is given by

Lq(·)(Ω) :=
{

u : Ω→ R; measurable in Ω : ρq(·)(µu) < ∞, for some µ > 0
}

,

where
ρq(·)(u) =

∫
Ω
|u(x)|q(x)dx.

The space Lq(·)(Ω) is Banach (see [18]) when equipped with the norm

‖u‖q(·) := inf
{

µ > 0 :
∫

Ω

∣∣∣u(x)
µ

∣∣∣q(x)
dx < ∞

}
, ∀u ∈ Lq(·)(Ω).

Furthermore, Lq(·)(Ω) is both reflexive and separable for q2 ∈ (q1, ∞), provided q(·)
is bounded with

q1 := essinfx∈Ωq(x), q2 := esssupx∈Ωq(x).

The variable-exponent Sobolev space defined by

W1,q(·)(Ω) =
{

u ∈ Lq(·)(Ω) such that ∇u exists and |∇u| ∈ Lq(·)(Ω)
}

is also Banach when equipped with the norm ‖u‖W1,q(·)(Ω) = ‖u‖q(·) + ‖∇u‖q(·). What

is more is that W1,q(·)(Ω) is separable and reflexive for 1 < q1 ≤ q2 < ∞, provided q(·)
is bounded.

Lemma 1 ([18]). Let Ω be a bounded domain in Rd with a smooth boundary ∂Ω. Assume that
p, q ∈ C(Ω) such that for all x ∈ Ω,

1 < p1 ≤ p(x) ≤ p2 < +∞, 1 < q1 ≤ q(x) ≤ q2 < +∞, ,

and q(x) < p∗(x) ∈ Ω with p∗(x) ={ dp∗(x)
d−p∗(x) , i f p2 < d,

+∞, i f p2 ≥ d,

then W1,p(.)(Ω) is continuously and compactly embedded in Lq(.)(Ω). Consequently, there exists a
constant ke > 0 such that

‖u‖q ≤ ke‖u‖W1,p(.) , ∀u ∈W1,p(.)(Ω).

In this work, we assume the following:
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(C1)The function g : R+ → R+ is a C1 non-increasing function satisfying

g(0) > 0, 1−ω0

∫ ∞

0
g(s)ds = ` > 0 (9)

where
‖∇u‖2

2 ≤ ω0 ‖∆u‖2
2, ∀u ∈ H(Ω), (10)

and there exists a C1 function G : (0, ∞) → (0, ∞) which is strictly increasing and a
strictly convex C2 function on (0, r], r ≤ g(0), with G(0) = G′(0) = 0, such that

g′(t) ≤ −ξ(t)G(g(t)), ∀t ≥ 0, (11)

where ξ is a positive non-increasing differentiable function.
(C2) n : Ω→ [1, ∞) is a continuous function such that

n1 := essinfx∈Ωn(x), n2 := esssupx∈Ωn(x).

and 1 < n1 ≤ n(x) ≤ n2, where{
n2 < ∞, d = 1, 2;
n2 ≤ 2d

d−2 , d ≥ 3.

Furthermore, the exponent n(·) satisfies the log-Hölder continuity condition; that is

|n(x)− n(y)| ≤ − A
log |x− y| , for all x, y ∈ Ω, with |x− y| < δ, (12)

for any A, δ > 0.

The energy functional associated to (1)–(2) is given by

E(t) = 1
2

[
‖ut‖2

2 + ‖∆u‖2
2 −

( ∫ t

0
g(s)ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)
]

≥ 1
2

[
‖ut‖2

2 +
(

1−ω0

∫ t

0
g(s)ds

)
‖∆u‖2

2 + (g ◦ ∇u)(t)
]
≥ 0,

(13)

for any t ≥ 0, where for v ∈ L2
loc(R

+; L2(Ω)),

(g ◦ v)(t) :=
∫ t

0
g(t− s)‖v(t)− v(s)‖2

2ds.

Lemma 2. For any t ≥ 0, the energy functional E(t) satisfies

E ′(t) = 1
2
(g′ ◦ ∇u)(t)− 1

2
g(t)‖∇u‖2

2 − a
∫

Ω
|ut|n(x)dx− ‖∇ut‖2

2 ≤ 0. (14)

Proof. In view of the boundary conditions (2), we can deduce (14) simply by multiplying
(1) by ut and integrate over Ω.

Remark 1 ([20]). Using (C1), one can show that for any t ∈ [0, t0] and for some κ > 0,

g′(t) ≤ −ξ(t)G(g(t)) ≤ −κξ(t) = − κ

g(0)
ξ(t)g(0) ≤ − κ

g(0)
ξ(t)g(t)

and hence,

ξ(t)g(t) ≤ − g(0)
κ

(t), ∀ t ∈ [0, t0]. (15)
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Moreover, if G is a strictly increasing and strictly convex C2 function on (0, r], with G(0) =
G′(0) = 0, then there is a strictly convex and strictly increasing C2 function G : [0,+∞) −→
[0,+∞) which is an extension of G. For instance, we can define Ḡ, for any t > r, by

Ḡ(t) :=
G′′(r)

2
t2 +

(
G′(r)−G′′(r)r

)
t +
(
G(r) +

G′′(r)
2

r2 −G′(r)r
)

.

3. Technical Lemmas

We establish some important lemmas in this section.

Lemma 3 ([21]). Under Assumption (C1), we have for any
v ∈ L2

loc
(
[0,+∞); L2(0, L)

)
,

∫ L

0

(∫ t

0
g(t− s)(v(t)− v(s))ds

)2
dx ≤ Kε(hε ◦ v)(t), ∀ t ≥ 0. (16)

where

Kε :=
∫ ∞

0

g2(s)
εg(s)− g′(s)

ds and hε(t) := εg(t)− g′(t),

for any 0 < ε < 1.

Lemma 4. Under the assumptions (C1) and (C2), and for 0 < δ < 1, the functional

I(t) :=
∫

Ω
uutdx

satisfies the estimates:

I′(t) ≤ ‖ut‖2
2 +

2ω0

`
‖∇ut‖2

2 −
`

4
‖∆u‖2

2 + k Kε(hε ◦ ∇u)(t)

+
∫

Ω
kδ(x)|ut|n(x)dx, n1 ≥ 2.

(17)

and if 1 < n1 < 2,

I′(t) ≤‖ut‖2
2 +

3ω0

`
‖∇ut‖2

2 −
`

4
‖∆u‖2

2 + k Kε(hε ◦ ∇u)(t)

+ k
[ ∫

Ω
(1 + kδ(x))|ut|n(x)dx +

( ∫
Ω
|ut|n(x)

)n1−1]
,

(18)

where hε is given in Lemma 3 and kδ(x) will be given in the proof below.

Proof. Differentiating I and using (1)–(2), we obtain

I′(t) =
∫

Ω
u2

t dx−
∫

Ω
∇u.∇utdx− ‖∆u‖2

2 −
∫

Ω
u(t)

∫ t

0
g(t− s)∆u(s)ds dx− a

∫
Ω

u|ut|n(x)−2utdx. (19)

Using Young’s inequality, we have

−
∫

Ω
∇u.∇utdx ≤ δ0ω0‖∆u‖2

2 +
1

4δ0
‖∇ut‖2

2.

Now, recalling (10), applying Young’s inequality, using Lemma 3 and (10), we obtain
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−
∫

Ω
u(t)

∫ t

0
g(t− s)∆u(s)ds dx

= −
∫

Ω
u(t)

∫ t

0
g(t− s)

(
∆u(s)− ∆u(t)

)
ds dx−

∫
Ω

u(t)
∫ t

0
g(t− s)∆u(t)ds dx

=
∫

Ω
∇u(t).

∫ t

0
g(t− s)

(
∇u(s)−∇u(t)

)
ds dx +

( ∫ t

0
g(s)ds

)
‖∇u‖2

2.

≤
( ∫ t

0
g(s)ds

)
‖∇u‖2

2 +
`

2ω0

∫
Ω
|∇u(t)|2 + ω0

2`

∫
Ω

( ∫ t

0
g(t− s)

(
∇u(s)−∇u(t)

)
ds
)2

dx.

≤ ω0

( ∫ t

0
g(s)ds

)
‖∆u‖2

2 +
`

2ω0
‖∇u(t)‖2

2 + kKε(hε ◦ ∇u)(t).

≤ (1− `)‖∆u‖2
2 +

`

2
‖∆u(t)‖2

2 + kKε(hε ◦ ∇u)(t).

≤
(

1− `

2

)
‖∆u‖2

2 + kKε(hε ◦ ∇u)(t).

(20)

Applying Young’s inequality with p(x) = n(x)
n(x)−1 and p′(x) = n(x), we can estimate

the last term in (19) as follows

|ut|n(x)−2utu ≤ δ|u|n(x) + kδ(x)|ut|n(x), ∀x ∈ Ω,

where
kδ(x) = δ1−n(x)(n(x))−n(x)(n(x)− 1)n(x)−1.

Hence,
−
∫

Ω
u|ut|n(x)utdx ≤ δ

∫
Ω
|u|n(x)dx +

∫
Ω

kδ(x)|ut|n(x)dx. (21)

To establish (17), we set

Ω+ = {x ∈ Ω : |u(x, t)| ≥ 1} and Ω− = {x ∈ Ω : |u(x, t)| < 1}. (22)

Then, using (10), (13), (14), (22) and Lemma 1, we obtain∫
Ω
|u|n(x)dx ≤

∫
Ω+

|u|n(x)dx +
∫

Ω−
|u|n(x)dx

≤
∫

Ω+

|u|n2 dx +
∫

Ω−
|u|n1 dx ≤

∫
Ω
|u|n2 dx +

∫
Ω
|u|n1 dx

≤
(

kn1
e ||∇u||n1

2 + kn2
e ||∇u||n2

2

)
≤
(

kn1
e ω0

n1
ρ ||4u||n1

2 + kn2
e ω0

n2 ||4u||n2
2

)
≤
(

kn1
e ω0

n1 ||4u||n1−2
2 + kn2

e ω0
n2 ||4u||n2−2

2

)
||4u||22

≤
(

kn1
e ω0

n1

(
2E(0)

`

)n1−2

+ kn2
e ω0

n2

(
2E(0)

`

)n2−2)
||4u||22

≤ k0||4u||22,

(23)

where k0 =

(
kn1

e ω0
n1

(
2E(0)

`

)n1−2

+ kn2
e ω0

n2

(
2E(0)

`

)n2−2)
.
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By fixing δ0 = `
8ω0

and δ = `
8k0

, kδ(x) is still bounded; hence, we obtain the required
estimate (17). To prove (18), we re-write the fourth term in (19) as follows

− a
∫

Ω
u|ut|n(x)−2utdx = −a

∫
Ω1

u|ut|n(x)−2utdx− a
∫

Ω2

u|ut|n(x)−2utdx, (24)

where
Ω1 = {x ∈ Ω : n(x) < 2} and Ω2 = {x ∈ Ω : n(x) ≥ 2}.

We notice that on Ω1, we have

2n(x)− 2 < n(x), and 2n(x)− 2 ≥ 2n1 − 2. (25)

Therefore, using Young’s and Poincaré’s inequalities and (25), we obtain

−
∫

Ω1

u|ut|n(x)−2utdx ≤ η
∫

Ω1

|u|2dx +
1

4η

∫
Ω1

|ut|2n(x)−2dx

≤ ηk2
ρ||∇u||22 + k

[ ∫
Ω+

1

|ut|2n(x)−2dx +
∫

Ω−1
|ut|2n(x)−2dx

]
≤ ηk2

ρω0||∆u||22 + k
[ ∫

Ω+
1

|ut|n(x)dx +
∫

Ω−1
|ut|2n1−2dx

]
≤ ηk2

ρω0||∆u||22 + k
[ ∫

Ω
|ut|n(x)dx +

( ∫
Ω−1
|ut|2dx

)n1−1]
≤ ηk2

ρω0||∆u||22 + k
[ ∫

Ω
|ut|n(x)dx +

( ∫
Ω−1
|ut|n(x)dx

)n1−1]
≤ ηk2

ρω0||∆u||22 + k
[ ∫

Ω
|ut|n(x)dx +

( ∫
Ω
|ut|n(x)dx

)n1−1]
,

(26)

where

Ω+
1 = {x ∈ Ω1 : |ut(x, t)| ≥ 1} and Ω−1 = {x ∈ Ω1 : |ut(x, t)| < 1}. (27)

Fixing η = `
8c2

ρω0
, (26) becomes

−
∫

Ω1

u|ut|n(x)−2utdx ≤ `

8
||∆u||22 + c

[ ∫
Ω
|ut|n(x)dx +

( ∫
Ω
|ut|n(x)dx

)n1−1]
. (28)

Similarly, we set

Ω+
2 = {x ∈ Ω2 : |ut(x, t)| ∈ [1, ∞)} and Ω−2 = {x ∈ Ω2 : |ut(x, t)| ∈ [0, 1)}. (29)



Math. Comput. Appl. 2023, 28, 5 8 of 22

Therefore,

− a
∫

Ω2

u|ut|n(x)−2utdx ≤ δ
∫

Ω2

|u|n(x)dx +
∫

Ω2

kδ(x)|ut|n(x)dx

≤ δ
∫

Ω+
2

|u|n(x)dx + δ
∫

Ω−2
|u|n(x)dx +

∫
Ω

kδ(x)|ut|n(x)dx

≤ δ
∫

Ω+
2

|u|n2 dx + δ
∫

Ω−2
|u|n1 dx +

∫
Ω

kδ(x)|ut|n(x)dx

≤ δ
∫

Ω
|u|n2 dx + δ

∫
Ω
|u|n1 dx +

∫
Ω2

kδ(x)|ut|n(x)dx

≤ δ

(
kn1

e ||∇u||n1
2 + kn2

e ||∇u||n2
2

)
+
∫

Ω
kδ(x)|ut|n(x)dx

≤ δ

(
kn1

e ω0
n1 ||4u||n1−2

2 + kn2
e ω0

n2 ||4u||n2−2
2

)
||4u||22 +

∫
Ω

kδ(x)|ut|n(x)dx

≤ δ

(
kn1

e ω0
n1

(
2E(0)

`

)n1−2

+ kn2
e ω0

n2

(
2E(0)

`

)n2−2)
||4u||22 +

∫
Ω

kδ(x)|ut|n(x)dx

≤ δk0||4u||22 +
∫

Ω
kδ(x)|ut|n(x)dx.

(30)

Combining (24)–(30) with (19) and fixing δ = `
8k0

, we obtain (18).

Lemma 5. Suppose that the assumptions (C1) and (C2) are satisfied; then, the functional

J(t) :=
∫ t

0
f (t− s)‖∇u(s)‖2

2ds

satisfies the following estimate:

J′(t) ≤ 3(1− `)‖∆u‖2
2 −

1
2 (g ◦ ∇u)(t), (31)

where f (t) =
∫ ∞

t g(s)ds.

Proof. Applying Young’s inequality, (C1) and the fact that f (t) ≤ f (0) = 1−`
ω0

, we obtain,
for any t ≥ 0,

J′(t) = f (0)‖∇u(t)‖2
2 −

∫ t

0
g(t− s)‖∇u(s)‖2

2ds

= f (t)‖∇u(t)‖2
2 −

∫ t

0
g(t− s)‖∇(u(s)− u(t))‖2

2ds

−2
∫

Ω

∫ t

0
g(t− s)∇u(t).∇(u(s)− u(t))dsdx

≤ f (0)‖∇u(t)‖2
2 − (g ◦ ∇u)(t)

+
2

ω0
(1− `)‖∇u(t)‖2

2 +
1
2
(g ◦ ∇u)(t)

=
3

ω0
(1− `)‖∇u(t)‖2 − 1

2
(g ◦ ∇u)(t)

≤ 3(1− `)‖∆u(t)‖2
2 −

1
2
(g ◦ ∇u)(t).

Lemma 6. Assume that n1 ≥ 2. Then, the functional L defined by

L(t) := NE(t) + ε1I(t)
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satisfies the following equivalence relation

L ∼ E , (32)

and for some positive constants N, ε1, the functional satisfies the following estimate

L′(t) ≤ −k‖ut‖2
2 − 4(1− `)‖∆u‖2

2 +
1
4 (g ◦ ∇u)(t), ∀t ∈ [0, ∞). (33)

Proof. The proof of (32) is completed in [22]. For the proof of (33), combining (14) and (17),
and using the fact that g′(t) := εg(t)− hε(t) yields

L′(t) ≤ −
[

N − ε1kp −
3ε1ω0

`

]
‖∇ut‖2

2 −
l
4

ε1‖∆u‖2
2 +

Nε

2
(g ◦ ∇u)(t)

−
[N

2
− k Kε

]
(hε ◦ ∆u)(t)−

∫
Ω
[aN − kε1]|ut|n(x)dx.

(34)

First, we select ε1 = N
2
(

kρ+
3ω0
`

) ; then, we choose

N > max {ε1kp +
3ε1ω0

`
,

kε1

a
}.

Finally, we set ε = 1
4N . Thus, (33) is established.

Lemma 7. Assume that n1 ∈ (1, 2); then, the functional L defined by

L(t) := NE(t) + ε1I(t)

satisfies
L ∼ E , (35)

for a suitable choice of the positive constants N, ε1, the functional satisfies the following estimate

L′(t) ≤ −k‖ut‖2
2 − 4(1− `)‖∆u‖2

2 +
1
4
(g ◦ ∇u)(t) + k

(
−E ′(t)

)n1−1, ∀t ∈ [0, ∞). (36)

Proof. The proof is similar to the above arguments.

Lemma 8. Assume that (C1) and (C2) hold; then, we have, for n1 ≥ 2,∫ ∞

0
E(s)ds < ∞. (37)

Proof. Using Lemmas 5 and 7 we see that the functional L1 defined by

L1(t) := L(t) + J(t),

satisfies, for any t ∈ [0, ∞) and for some positive constant k1,

L′1(t) ≤− k1‖ut‖2
2 − (1− `)‖∆u‖2

2 −
1
4
(g ◦ ∇u)(t)

≤− kE(t).

We then conclude that ∫ ∞

0
E(s)ds < +∞.
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Lemma 9. Assume that (C1) and (C2) hold; then, for 1 < n1 < 2, we obtain∫ ∞

0
E

1
n1−1 (s)ds < +∞. (38)

Moreover, ∫ ∞

t0

E(s)ds ≤ k(t− t0)
2−n1 , ∀t ≥ t0. (39)

Proof. Using Lemmas (5) and (7), we obtain that the functional L1 defined by

L1(t) := L(t) + J(t)

is non-negative and satisfies, for some t ∈ [t0, ∞) and for some positive constants k0, k1,

L′1(t) ≤− k1‖ut‖2
2 − (1− `)‖∆u‖2

2 −
1
4
(g ◦ ∇u)(t) + K

[ ∫
Ω
|ut|n(x)dx

]n1−1

≤− k0E(t) + k1
(
− E ′(t)

)n1−1.
(40)

Multiplying (40) by E q(t), q = 2−n1
n1−1 > 0, and using Young’s inequality, we obtain:

E q(t)L′1(t) ≤ −k0E q+1(t) + k1E q(t)
(
− E ′(t)

)n1−1

≤ −k0(1− ε)E q+1(t) + k(ε)
(
− E ′(t)

)
.

(41)

Taking ε to be small enough and the fact that E is non-increasing, (41) becomes:

E q+1(t) ≤ −kL′1(t), (42)

where L1(t) = E q(t)L1(t) + kE ′(t). From this estimate, we conclude that∫ ∞

0
E q+1(s)ds < +∞. (43)

Since q + 1 = 1
n1−1 , we end up with

∫ ∞

0
E

1
n1−1 (s)ds < +∞. (44)

Furthermore, from (44) and Hölder’s inequality, we can deduce that

∫ t

t0

E(s)ds ≤ (t− t0)
q

q+1
[ ∫ t

t0

E q+1(s)ds
] 1

q+1 ≤ k(t− t0)
q

q+1 = k(t− t0)
2−n1 , ∀t ≥ t0. (45)

4. Decay Results

We begin with the statement of our main theorem.

Theorem 1 (The case: n1 ≥ 2). Assume that (C1) and (C2) hold and the initial data
(u0, u1) ∈ H(Ω) × H1

0(Ω); then, there exist constants λ1, λ2 ∈ (0, ∞), such that the energy
functional E(t) associated to Problem (1)–(2) satisfies the estimate

E(t) ≤ λ2G−1
0

 λ1∫ t
t0

ξ(s)ds

, ∀ t > t0, (46)

where G0(τ) = τG′(τ).
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Proof. Since ξ is non-increasing, with the identity (14) and inequality (15),∫ t0

0
g(s)‖∇(u(t)− u(t− s))‖2

2ds ≤ 1
ξ(t0)

∫ t0

0
ξ(s)g(s)‖∇(u(t)− u(t− s))‖2

2ds

≤ − g(0)
aξ(t0)

∫ t0

0
(s)‖∇(u(t)− u(t− s))‖2

2ds

≤ −k̃E ′(t), ∀t ∈ [t0, ∞).

(47)

Combining (47) and (33), we obtain

L′(t) ≤ −nE(t)− kE ′(t) + k
∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds, ∀t ∈ [t0, ∞). (48)

Now, define a functional η as

η(t) := γ
∫ t

t0

‖∇(u(t)− u(t− s))‖2
2ds, ∀ t ≥ t0.

Using the inequality,

‖∇u‖2
2 ≤ ω0 ‖∆u‖2

2, ∀u ∈ H(Ω), (49)

we deduce that

E(t) ≥ `

2
‖∆u(t)‖2

2 and E(t) ≥ `

2ω0
‖∇u(t)‖2

2, ∀ t ≥ 0.

These estimates and (37) yield∫ t

t0

(
‖∇(u(t)− u(t− s))‖2

2

)
ds ≤ 2

∫ t

t0

(
‖∇u(t)‖2

2 + ‖∇u(t− s)‖2
2

)
ds

≤ 4ω0

`

∫ t

t0

(
E(t) + E(t− s)

)
ds

≤ 8ω0

`

∫ ∞

t0

E(s)ds < +∞, ∀ t ≥ t0.

So, with γ ∈ (0, 1), we obtain

η(t) ∈ (1, ∞), ∀ t ∈ [t0, ∞). (50)

Let θ be another functional defined by

θ(t) := −
∫ t

t0

g′(s)‖∇(u(t)− u(t− s))‖2
2ds.

In view of estimate (14), we can observe that E ′(t) ≤ 1
2 (g ◦ ∇u)(t). Therefore,

θ(t) ≤ −kE ′(t), ∀ t ∈ [t0, ∞). (51)

Next, the facts that G is strictly convex and G(0) = 0 give that

G(sτ) ≤ sG(τ), for s ∈ [0, 1] and τ ∈ (0, r].
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In view of the assumptions (C1), (C2), (50) and Jensen’s inequality, we obtain

θ(t) = − 1
η(t)

∫ t

t0

η(t)(s)‖∇(u(t)− u(t− s))‖2
2ds

≥ 1
η(t)

∫ t

t0

η(t)ξ(s)G(g(s))‖∇(u(t)− u(t− s))‖2
2ds

≥ ξ(t)
η(t)

∫ t

t0

G(η(t)g(s))‖∇(u(t)− u(t− s))‖2
2ds

≥ ξ(t)
γ

G
(

γ
∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds
)

≥ ξ(t)
γ

Ḡ
(

γ
∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds
)

, ∀t ∈ [t0, ∞).

This yields, for any t ≥ t0,∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds ≤ 1

γ
Ḡ−1

(
γθ(t)
ξ(t)

)
.

Therefore, (48) becomes

F ′(t) ≤ −nE(t) + k
γ
Ḡ−1

(
γθ(t)
ξ(t)

)
, ∀ t ∈ [t0, ∞) (52)

where F := L+ kE.
Let r1 ∈ (0, r), and define a functional F1 by

F1(t) := Ḡ′
(

r1E(t)
E(0)

)
F (t), ∀ t ≥ t0.

Then, using the facts that E ′ ≤ 0, G′ > 0 and G′′ > 0 together with estimate (52)
lead to

F ′1(t) =
r1E ′(t)
E(0) Ḡ′′

(
r1E(t)
E(0)

)
F (t) + Ḡ′

(
r1E(t)
E(0)

)
F ′(t)

≤ −nE(t)Ḡ′
(

r1E(t)
E(0)

)
+

k
γ
Ḡ′
(

r1E(t)
E(0)

)
Ḡ−1

(
γθ(t)
ξ(t)

)
, ∀ t ≥ t0. (53)

Ḡ∗ is the convex conjugate of Ḡ (see ([23], pp. 61–64)), that is

Ḡ∗(s) = s
(
Ḡ′
)−1

(s)− Ḡ
[(
Ḡ′
)−1

(s)
]

(54)

and satisfies the generalized Young inequality

AB ≤ Ḡ∗(A) + Ḡ(B). (55)

Now, set

A = Ḡ′
(

r1E(t)
E(0)

)
and B = Ḡ−1

(
γθ(t)
ξ(t)

)
,

then, in view of (53) and (55), we arrive at

F ′1(t) ≤ −nE(t)Ḡ′
(

r1E(t)
E(0)

)
+

k
γ
Ḡ∗
[
Ḡ′
(

r1E(t)
E(0)

)]
+

kθ(t)
ξ(t)

≤ −n(E(0)− kr1)
E(t)
E(0) Ḡ

′
(

r1E(t)
E(0)

)
+ k

θ(t)
ξ(t)

, ∀ t ≥ t0.
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Fixing r1, we obtain

F ′1(t) ≤ −n1
E(t)
E(0) Ḡ

′
(

r1E(t)
E(0)

)
+ k

θ(t)
ξ(t)

, ∀ t ≥ t0, (56)

where n1 > 0. Multiplying both sides of (56) by ξ(t) r1
E(t)
E(0) < r and using inequal-

ity (51), yields

ξ(t)F ′1(t) ≤ −n1
E(t)
E(0)G

′
(

r1E(t)
E(0)

)
ξ(t) + kθ(t)

≤ −n1
E(t)
E(0)G

′
(

r1E(t)
E(0)

)
ξ(t)− kE ′(t), ∀ t ≥ t0.

Let F2 = ξF1 + kE ; then, we obtain from the non-increasing property of ξ that

n1
E(t)
E(0)G

′
(

r1E(t)
E(0)

)
ξ(t) ≤ −F ′2(t), ∀ t ≥ t0. (57)

The map

t 7−→ E(t)G′
(

ε1E(t)
E(0)

)
is non-increasing, since G′′ > 0 and E non-increasing. As a result, integrating (57) over
(t0, t) yields

n1
E(t)
E(0)G

′
(

r1E(t)
E(0)

) ∫ t

t0

ξ(s)ds ≤
∫ t

t0

E(s)
E(0)G

′( r1E(s)
E(0)

)
ξ(s)ds

≤ F2(t0)−F2(t)

≤ F2(t0), ∀ t ≥ t0.

Finally, we set G0(τ) = τG′(τ). Then, we obtain for some positive constants λ1 and
λ2 the following estimate

E(t) ≤ λ2G−1
0

 λ1∫ t
t0

ξ(s)ds

, ∀ t > t0.

We consider the following examples:

Example 1. (1) Take g(t) = λe−βt, t ∈ [0, ∞], λ, β ∈ (0, ∞) as constants. The constant λ is
carefully chosen to satisfy the assumption (C1). Consequently,

g′(t) = −βG(g(t)), ξ(t) = β and G(s) = s.

Hence, in view of Theorem 1, we conclude that for some constant K, t0 ∈ (0, ∞),

E(t) ≤ K
t− t0

, ∀ t ∈ [t0, ∞).

(2) Let g(t) = λe−(1+t)γ
, for t ∈ [0, ∞), γ ∈ (0, 1) and λ selected such that (C1) is satisfied.

Then,

g′(t) = −ξ(t)G(g(t)), ξ(t) = γ(1 + t)γ−1 and G(s) = s.
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In view of Theorem 1, we deduce that for some constant K, t0 ∈ (0, ∞),

E(t) ≤ K
(1 + t)γ

, for t large enough.

(3) For γ ∈ (1, ∞), let

g(t) =
λ

(1 + t)γ
, t ∈ [0, ∞)

and λ carefully chosen so that (C1) is valid. Then,

g′(t) = −βG(g(t)), ξ(t) = β and G(s) = sp,

with p = 1+γ
γ ∈ (1, 2), and β is a positive constant. It follows from Theorem 1 that for some

constants K, t0 ∈ (0, ∞),

E(t) ≤ K
(1 + t)γ/(γ+1)

, ∀ t > t0.

Theorem 2 (The case: 1 < n1 < 2). Assume that hypotheses (C1) and (C2) hold and the
data (u0, u1) ∈ H(Ω)× H1

0(Ω). Then, there exist positive constants λ1, λ2 such that the energy
functional associated to Problem (1)–(2) satisfies the estimate

E(t) ≤ λ2(t− t0)
2−n1G−1

0

 λ1

(t− t0)
2−n1
n1−1

∫ t
t0

ξ(s)ds

, ∀ t > t0, (58)

where G0(τ) = τG′(τ).

Proof. Similar to the proof of Theorem 1, we use (47) and (33) to obtain

L′(t) ≤ −nE(t)− kE ′(t) + k
∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds + k

[
− E ′(t)

]n1−1

, ∀t ∈ [t0, ∞). (59)

We then define another functional η as

η(t) :=
γ

(t− t0)2−n1

∫ t

t0

(
‖∇(u(t)− u(t− s))‖2

2

)
ds, ∀ t ≥ t0.

Using (39), we conclude that
η(t) ≤ kγ, (60)

then choosing 0 < γ < 1 small enough so that

η(t) < 1, ∀ t ≥ t0. (61)

Combining this with the hypotheses (C1), (C2), Jensen’s inequality and (61), we obtain
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θ(t) = − 1
η(t)

∫ t

t0

η(t)(s)‖∇(u(t)− u(t− s))‖2
2ds

≥ 1
η(t)

∫ t

t0

η(t)ξ(s)G(g(s))‖∇(u(t)− u(t− s))‖2
2ds

≥ ξ(t)
η(t)

∫ t

t0

G(η(t)g(s))‖∇(u(t)− u(t− s))‖2
2ds

≥ (t− t0)
2−n1 ξ(t)
γ

G
(

γ

(t− t0)2−n1

∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds
)

≥ (t− t0)
2−n1 ξ(t)
γ

Ḡ
(

γ

(t− t0)2−n1

∫ t

t0

g(s)‖∇(u(t)− u(t− s))‖2
2ds
)

, ∀t ∈ (t0, ∞),

where Ḡ is a C2 extension of G which is strictly increasing and strictly convex on (0, ∞).
This yields, for any t ≥ t0,∫ t

t0
g(s)‖∇(u(t)− u(t− s))‖2

2ds ≤ (t−t0)
2−n1

γ Ḡ−1
(

γθ(t)
(t−t0)

2−n1 ξ(t)

)
(62)

and (59) becomes

F ′(t) ≤ −nE(t) + (t− t0)
2−n1

γ
Ḡ−1

(
γθ(t)

(t− t0)2−n1 ξ(t)

)
+

[
− E ′(t)

]n1−1

, ∀ t ≥ t0, (63)

where F := L+ kE . Let 0 < r1 < r; then, define a functional F1 by

F1(t) := Ḡ′
(

r1

(t− t0)2−n1
.
E(t)
E(0)

)
F (t), ∀ t ≥ t0.

Since E ′ ≤ 0, G′ > 0 and G′′ > 0, we obtain

F ′1(t) =
[ (n− 2)r1

n(t− t0)
n+2

n

E(t)
E(0) +

r1

(t− t0)2−n1

E ′(t)
E(0)

]
Ḡ′′
(

r1

(t− t0)2−n1

E(t)
E(0)

)
F (t)

+Ḡ′
(

r1

(t− t0)2−n1

E(t)
E(0)

)
F ′(t)

≤ Ḡ′
(

r1

(t− t0)2−n1
.
E(t)
E(0)

)
F ′(t), ∀ t ≥ t0. (64)

Estimates (63) and (64) imply that

F ′1(t) ≤ −nE(t)Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ (t−t0)

2−n1

γ Ḡ−1
(

γθ(t)
(t−t0)

2−n1 ξ(t)

)
Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+cḠ′

(
r1

(t−t0)
2−n1

. E(t)E(0)

)[
− E ′(t)

]n1−1

, ∀ t ≥ t0.
(65)

Let Ḡ∗ be defined as in (54) and satisfy (55). Set

A = Ḡ′
(

r1

(t− t0)2−n1
.
E(t)
E(0)

)
and B = Ḡ−1

(
γθ(t)

(t− t0)2−n1 ξ(t)

)
;

then, it follows from a combination of (55) and (64) that

F ′1(t) ≤ −nE(t)Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ k(t−t0)

2−n1

γ Ḡ∗
[
Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)]
+ θ(t)

ξ(t)

+kḠ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)[
− E ′(t)

]n1−1

.
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By definition of Ḡ∗ and since Ḡ > 0, we have:

F ′1(t) ≤ −nE(t)Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ k r1

E(t)
E(0) Ḡ

′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ θ(t)

ξ(t)

+kḠ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)[
− E ′(t)

]n1−1

,

and it can be written as

F ′1(t) ≤ −n(E(0)− kr1)
E(t)
E(0) Ḡ

′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ θ(t)

ξ(t) + kḠ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)[
− E ′(t)

]n1−1

.

After fixing r1, we arrive at

F ′1(t) ≤ −n1
E(t)
E(0) Ḡ

′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
+ θ(t)

ξ(t) + kḠ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)[
− E ′(t)

]n1−1

, (66)

where n1 > 0. Multiplying both sides of (66) by ξ(t)E
2−n1
n1−1 (t), we reach

ξ(t)E
2−n1
n1−1 (t)F ′1(t) ≤ −n1

E(t)
E(0) ξ(t)E

2−n1
n1−1 (t)Ḡ′

(
r1

(t−t0)
2−n1

. E(t)E(0)

)
− k1(E ′(t))E

2−n1
n1−1 (t)

+kξ(t)Ḡ′
(

r1
(t−t0)

2−n1
. E(t)E(0)

)
E

2−n1
n1−1 (t)

(
− E ′(t)

)n1−1.

Using Young’s inequality with p = 1
n1−1 and q = 1

2−n1
, we obtain

ξ(t)E
2−n1
n1−1 (t)F ′1(t) ≤ (kε− n1

E(0) )ξ(t)E
2−n1
n1−1 (t)Ḡ′

(
r1

(t−t0)
2−n1

. E(t)E(0)

)
−k1(E ′(t) + E

2−n1
n1−1 (t))− k2E ′(t).

(67)

Let F2 = ξF1E
2−n
2n−2 + k1EE

2−n
2n−2 + k2E(t); then, we obtain, from the non-increasing

property of ξ and the fact that E ′ ≤ 0 and for ε small enough that

F ′2(t) ≤ −n2ξ(t)E
2−n1
n1−1 (t)Ḡ′

(
r1

(t− t0)2−n1
.
E(t)
E(0)

)
, (68)

for some n2 > 0. Then, we have for n3 = n2E(0) and r1
(t−t0)

2−n1
. E(t)E(0) < r for small r1,

n3

(E 2−n1
n1−1 (t)
E(0)

)
G′
(

r1

(t− t0)2−n1
.
E(t)
E(0)

)
ξ(t) ≤ −F ′2(t). (69)

Integrating (69) over (t0, t) yields

∫ t

t0

n3
E

2−n1
n1−1 (s)
E(0) G′

(
r1

(s− t0)2−n1
.
E(s)
E(0)

)
ξ(s)ds ≤ −

∫ t

t0

F ′2(s)ds ≤ F ′2(t0). (70)

It follows from the fact that G′′ > 0 and non-increasing property of E(t) that the map

t 7−→ E
2−n1
n1−1 (s)
E(0)

(
r1

(s− t0)2−n1
.
E(s)
E(0)

)
is non-increasing. Consequently, we have

n3
E

2−n1
n1−1 (t)
E(0) G′

(
r1

(t−t0)
2−n1

. E(t)E(0)

) ∫ t
t0

ξ(s)ds ≤
∫ t

t0
n3
E

2−n1
n1−1 (s)
E(0) G′

(
r1

(s−t0)
2−n1

. E(s)E(0)

)
ξ(s)ds

≤ −
∫ t

t0
F ′2(s)ds ≤ F ′2(t0) = n4.

(71)
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To finish the proof of Theorem 2, we multiply (71) by
(

1
(t−t0)

) 2−n1
n1−1

to obtain

n5

[
E(t)

E(0)(t−t0)

] 2−n1
n1−1 G′

(
r1

(t−t0)
2−n1

. E(t)E(0)

) ∫ t
t0

ξ(s)ds ≤
(

n4
t−t0

) 2−n1
n1−1

. (72)

Next, we set G0(τ) = τ
1

n1−1 G′(τ) which is strictly increasing; then, we obtain for two
positive constants λ1 and λ2

E(t) ≤ λ2(t− t0)
2−n1G−1

0

 λ1

(t− t0)
2−n1
n1−1

∫ t
t0

ξ(s)ds

, ∀ t > t0.

Example 2. (1) Let g(t) = λe−β(1+t)γ
, t ∈ [0, ∞), λ, β ∈ (0, ∞) and γ ∈ (0, 1) and λ is

selected such that (C1) is satisfied; then, g′(t) = −βG(g(t)) with ξ(t) = γ(1 + t)γ−1 and
G(s) = s. So, in view of Theorem 2, we conclude that the solution of (1)–(2) satisfies the
energy estimate

E(t) ≤ K
(t− t0)n1−1 , ∀ t > t1.

(2) Suppose
g(t) = λ(1 + t)−γ, γ ∈ (1, ∞),

and λ is chosen so that (C1) is satisfied. Then, for a positive constant β,

g′(t) = −βG(g(t)), ξ(t) = β and G(s) = sp, ∀ p =
1 + γ

γ
.

Similar to the arguments in Example 1, we deduce that the solution of (1)–(2) satisfies the
energy estimate

E(t) ≤ K
(t− t0)µ ,

where µ = (n1−1)(n1+γ−2)
n1+γ−1 ∈ (0, ∞), and for sufficiently large t and some constant

K, t0 ∈ (0, ∞).

5. Numerical Results

We produce some numerical experiments in this section to demonstrate the theoretical
findings of Theorems 1 and 2. For this reason, we discretize our Problem (1) in the time–
space domain (0, 1]× [0, 1] using the second-order finite difference method (FDM) in time
and fourth-order in space. The time interval (0, T) is split into N = 10,000 subintervals

with a time step ∆t =
T
N

, and the spatial interval (0, 1) is divided into 50 subintervals.
The homogeneous Dirichlet boundary condition for Problem (1) is stated, and ∆u = 0 at
boundary. Based on the relaxation function G and the initial conditions u(x, 0) = sin(πx)
and ut(x, 0) = 0, we contrast the following numerical two tests.

• Test 1: We show the exponential decay of the solution of the problem (1) and the

energy function given by (13), using g(t) = e−t and n(x) = 2 +
1

x + 1
.

• Test 2: In the second test, we let g(t) =
1

(t + 1)2 and n(x) = 3 +
1

x + 1
.

In Figures 1 and 2, we show the cross-sections of the approximate solution u at x = 0.3,
x = 0.5, x = 0.6, and x = 0.7 for Test 1 and Test 2, respectively. In Figures 3 and 4, we graph
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the corresponding energy functional (13). In addition, we show the decay behavior of the
whole wave over the time interval [0, 1] in Figures 5 and 6 for Test 1 and Test 2, respectively.

Figure 1. Test 1: The solution u(t) of the problem at fixed values of x.
Math. Comput. Appl. 2023, 28, 5 19 of 22

Figure 2. Test 2: The solution u(t) of the problem at fixed values of x.

Figure 3. Test 1: The energy decay.

Figure 2. Cont.
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Figure 2. Test 2: The solution u(t) of the problem at fixed values of x.

Figure 3. Test 1: The energy decay.

Figure 2. Test 2: The solution u(t) of the problem at fixed values of x.

Figure 3. Test 1: The energy decay.
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Figure 4. Test 2: The energy decay.

Figure 5. Test 1: The solution function u(x, t).



Math. Comput. Appl. 2023, 28, 5 21 of 22

Figure 6. Test 2: The solution function u(x, t).

6. Conclusions

In this work, we considered a weakly dissipative viscoelastic equation with variable-
exponent nonlinearity. We showed that the decay rate of the energy is weaker than that of
the relaxation function. An open question is: can we obtain a similar or even weaker decay
rate in the absences of the damping term ∆ut?

Author Contributions: Conceptualization, M.M.A.-G. and A.M.A.-M.; methodology, M.M.A.-G. and
A.M.A.-M.; software, M.N.; validation, M.M.A.-G., A.M.A.-M. and J.D.A.; formal analysis, M.M.A.-G.
and A.M.A.-M.; investigation, M.M.A.-G. and A.M.A.-M.; data curation, M.N.; writing—original draft
preparation, J.D.A.; writing—review and editing, M.M.A.-G. and A.M.A.-M.; visualization, A.M.A.-M.;
supervision, M.M.A.-G.; project administration, A.M.A.-M.; funding acquisition, A.M.A.-M. All
authors have read and agreed to the published version of the manuscript

Funding: This research was funded by KFUPM grant number SB20101.

Acknowledgments: The authors would like to express their profound gratitude to King Fahd Uni-
versity of Petroleum and Minerals (KFUPM) for its continuous support. The authors also thank the
referee for his/her very careful reading and valuable comments. This work was funded by KFUPM
under Project #SB201012.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Rivera, J.E.M.; Naso, M.G.; Vegni, F.M. Asymptotic behavior of the energy for a class of weakly dissipative second-order systems

with memory. J. Math. Anal. Appl. 2003, 286, 692–704. [CrossRef]
2. Hassan, J.H.; Messaoudi, S.A. General decay rate for a class of weakly dissipative second-order systems with memory. Math.

Methods Appl. Sci. 2019, 42, 2842–2853. [CrossRef]
3. Anaya, K.; Messaoudi, S.A. General decay rate of a weakly dissipative viscoelastic equation with a general damping. Opuscula

Mathematica 2020, 40, 647–666. [CrossRef]
4. Acerbi, E.; Mingione, G. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 2002, 164, 213–259.

[CrossRef]
5. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer Science & Business Media: New York, NY,

USA, 2000.
6. Antontsev, S. Wave equation with p(x, t)-Laplacian and damping term: Existence and blow-up. Differ. Equ. Appl. 2011, 3, 503–525.

[CrossRef]

http://doi.org/10.1016/S0022-247X(03)00511-0
http://dx.doi.org/10.1002/mma.5554
http://dx.doi.org/10.7494/OpMath.2020.40.6.647
http://dx.doi.org/10.1007/s00205-002-0208-7
http://dx.doi.org/10.7153/dea-03-32


Math. Comput. Appl. 2023, 28, 5 22 of 22

7. Antontsev, S. Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions. Comptes Rendus Mécanique 2011,
339, 751–755. [CrossRef]

8. Guo, B.; Gao, W. Blow-up of solutions to quasilinear hyperbolic equations with p(x, t)-Laplacian and positive initial energy.
Comptes Rendus Mécanique 2014, 342, 513–519. [CrossRef]

9. Messaoudi, S.A.; Talahmeh, A.A. A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities. Appl.
Anal. 2017, 96, 1509–1515. [CrossRef]

10. Messaoudi, S.A.; Al-Smail, J.H.; Talahmeh, A.A. Decay for solutions of a nonlinear damped wave equation with variable-
exponent nonlinearities. Comput. Math. Appl. 2018, 76, 1863–1875. [CrossRef]

11. Messaoudi, S.A. On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities. Math.
Methods Appl. Sci. 2020, 43, 5114–5126. [CrossRef]

12. Antontsev, S.; Shmarev, S. Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl.
Math. 2010, 234, 2633–2645. [CrossRef]

13. Antontsev, S.; Ferreira, J.; Piskin, E. Existence and blow up of solutions for a strongly damped Petrovsky equation with
variable-exponent nonlinearities. Electron. J. Differ. Equ. 2021, 2021,1–18.

14. Abita, R. Existence and asymptotic behavior of solutions for degenerate nonlinear Kirchhoff strings with variable-exponent
nonlinearities. Acta Math. Vietnam. 2021, 46, 613–643. [CrossRef]

15. Rahmoune, A.; Benabderrahmane, B. On the viscoelastic equation with Balakrishnan–Taylor damping and nonlinear bound-
ary/interior sources with variable-exponent nonlinearities. Stud. Univ. Babes-Bolyai Math. 2020, 65, 599–639. [CrossRef]

16. Al-Gharabli, M.M.; Al-Mahdi, A.M.; Kafini, M. Global existence and new decay results of a viscoelastic wave equation with
variable exponent and logarithmic nonlinearities. AIMS Math. 2021, 6, 10105–10129. [CrossRef]

17. Antontsev, S.; Shmarev, S. Evolution PDEs with Nonstandard Growth Conditions; Atlantis Press: Paris, France, 2015.
18. Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Springer: New York, NY,

USA, 2011.
19. Radulescu, V.D.; Repovs, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis;

CRC Press: Boca Raton, FL, USA, 2015; Volume 9.
20. Mustafa, M.I. Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 2018, 41, 192–204. [CrossRef]
21. Jin, K.-P.; Liang, J.; Xiao, T.-J. Coupled second order evolution equations with fading memory: Optimal energy decay rate. J.

Differ. Equ. 2014, 257, 1501–1528. [CrossRef]
22. Messaoudi, S.A. General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 2008, 341, 1457–1467. [CrossRef]
23. Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer Science & Business Media: New York, NY, USA, 2013;

Volume 60.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.crme.2011.09.001
http://dx.doi.org/10.1016/j.crme.2014.06.001
http://dx.doi.org/10.1080/00036811.2016.1276170
http://dx.doi.org/10.1016/j.camwa.2018.07.035
http://dx.doi.org/10.1002/mma.6254
http://dx.doi.org/10.1016/j.cam.2010.01.026
http://dx.doi.org/10.1007/s40306-021-00420-7
http://dx.doi.org/10.24193/subbmath.2020.4.09
http://dx.doi.org/10.3934/math.2021587
http://dx.doi.org/10.1002/mma.4604
http://dx.doi.org/10.1016/j.jde.2014.05.018
http://dx.doi.org/10.1016/j.jmaa.2007.11.048

	Introduction
	Preliminaries
	Technical Lemmas
	Decay Results
	Numerical Results
	Conclusions
	References

