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Abstract: Grossman and Katz (five decades ago) suggested a new definition of differential and
integral calculus which utilizes the multiplicative and division operator as compared to addition and
subtraction. Multiplicative calculus is a vital part of applied mathematics because of its application
in the areas of biology, science and finance, biomedical, economic, etc. Therefore, we used a multi-
plicative calculus approach to develop a new fourth-order iterative scheme for multiple roots based
on the well-known King’s method. In addition, we also propose a detailed convergence analysis of
our scheme with the help of a multiplicative calculus approach rather than the normal one. Different
kinds of numerical comparisons have been suggested and analyzed. The obtained results (from line
graphs, bar graphs and tables) are very impressive compared to the earlier iterative methods of the
same order with the ordinary derivative. Finally, the convergence of our technique is also analyzed
by the basin of attractions, which also supports the theoretical aspects.

Keywords: multiplicative derivative; nonlinear equations; order of convergence
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1. Introduction

In the 1970s, multiplicative calculus was introduced by Grossman and Katz [1]. Many
scholars applied multiplicative calculus in various branches. In 2008, Bashirov et al. [2]
discussed the theoretical foundations as well as various applications of multiplicative
calculus. Florack and Van Assen [3] used multiplicative calculus in biomedical image
analysis. Filip and Piatecki [4] used it to investigate economic growth. In addition, Mısırlı
Gurefe [5], Riza et al. [6], and Özyapıcı and Mısırlı [7] used multiplicative calculus to
develop multiplicative numerical methods. On the other hand, Bashirov et al. [8] adopted
it for the development of multiplicative differential equations. Furthermore, Bashirov and
Riza [9] and Uzer [10] extended the multiplicative calculus to include complex-valued
functions of complex variables, which was previously applicable only to positive real-
valued functions of real variables. Recently, Goktaset al. [11] described the multiplicative
derivative and its basic properties on time scales.

From the above discussion, it is straightforward to say that the multiplicative calculus
approach is a very important part of applied mathematics, computational engineering,
and applied sciences [12–22]. In the last few years, researchers used multiplicative deriva-
tives for the development of new iterative schemes for the solutions of nonlinear equations
before starting the applicability of the Multiplicative Calculus Approach (MCA) on iterative
methods. We have to know some information about iterative methods. These methods
can be divided on the basis of: memory (with or without), substeps (one-point or multi-
point), and convergence (local and global). Local and global convergence is one of the
important divisions of iterative methods. Local and global methods are also known as
open and closed-bracket methods, respectively. The local convergent methods are normally
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faster than the global methods but not always convergent as global methods. Newton’s
method and the bisection method are two famous examples of local and global methods,
respectively. We have very limited globally convergent methods. On the contrary, we have
a plethora of locally convergent because of the faster convergence and easy applicability on
nonlinear equations [23–29]. Therefore, we also focus on locally convergent methods in
this study.

In recent years, scholars such as Özyzpici et al. [30] and Ali Özyzpici [31] adopted the
multiplicative calculus approach for the development of one-point iterative methods. We
know that one-point methods have many problems regarding their order of convergence
and efficiency index (for more details, please see Traub [32]). So, many scholars turned
toward the optimal multi-point methods, which is one of the most important classes of
iterative methods. According to our best knowledge, we did not have any optimal/non-
optimal multi-point iterative method with a multiplicative calculus approach that can
handle the solution of nonlinear equations. Finding the multi-point iterative methods with
a multiplicative calculus approach is not an easy task. A few main reasons behind this are
optimal order of convergence, lengthy and complicated calculus work, and the theoretical
proof of an order of convergence requiring a higher efficiency index.

Keeping these things in mind, we suggest a new multi-point iterative technique by
adopting the multiplicative calculus approach. Two main pillars of a new scheme are: the
multiple calculus approach and the well-known King’s method [33]. The detailed conver-
gence analysis is proposed in the main theorem. For a fair comparison of our methods with
the existing methods, we choose six different ways: (i) absolute error difference between
two consecutive iterations, (ii) order of convergence, (iii) number of iterations, (iv) CPU
timing, (v) the line graphs of absolute errors, and (vi) bar graphs. On the basis of six
different ways of comparison, we conclude that our new King’s scheme performs much
better in comparison to the existing methods. Finally, we study the basin of attraction
which also supports the numerical results.

The remaining content of the paper is summarized in the following. Section 2 discusses
the definition and basics terms of multiplicative calculus. The proposed method and its
convergence analysis are presented in Section 3. The numerical results are depicted in
Section 4. The basins of attraction of the proposed method are discussed in Section 5.
Finally, the conclusion is given in Section 6.

2. Basic Terms of Multiplicative Calculus

Definition 1. Let g(x) be a real positive valued function in the open interval (a, b). Assume
function g(x) changes in x ∈ (a, b) s.t. g(x) changes to g(x + h). Then, the multiplicative forward
operator [7] denoted as ∆∗ is defined as follows

∆∗g(x) =
g(x + h)

g(x)
(1)

By considering the operator ∆∗ (1), the multiplicative derivative can be defined as below

g∗(x) = lim
h→0

(∆∗g)
1
h (2)

The function g∗(x) is said to be multiplicative differentiable at x if the limit on R.H.S exists.
If g is a positive function and the derivative of g at x exists, then nth multiplicative derivatives

of g exist and

g∗(n)(x) = exp
{
(ln ◦ g)(n)(x)

}
(3)
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Theorem 1 ((Multiplicative Taylor Theorem in one variable) [34]). Let g(x) be a function
in open interval (a, b) s.t the functions is n + 1 times ∗ differentiable on (a, b). Then, for any
x, x + h ∈ A(a, b), there is a number θ ∈ (a, b) such that

g(x + h) =
n

∏
m=0

(
g∗(u)(x)

)hu

u! .
(

g∗(n+1)(x + θh)
) hn+1

(n + 1)! (4)

Theorem 2 ((Multiplicative Newton-Raphson theorem) [34]). Consider r to be a simple root
of nonlinear equation g(x) = 1 (or h(x) = g(x) − 1 = 0). According to the multiplicative
analysis [19], the multiplicative Newton theorem can be expressed as follows

g(x) = g(xq)
∫ x

xq
g∗(z)dz = g(xq)exp

(∫ x

xq
(lng(z))′dz

)
(5)

For definite integrals, Equation (5) can be written using Newton Cotes’ quadrature of zeroth
degree as∫ x

xq
g∗(z)dz = exp

(∫ x

xq
(ln g(z))′dz

)
≡ exp((x− xq)(ln g(xq))

′) = (g∗(xq))
x−xq

Since g(x) = 1, the Explicit Multiplicative Newton (MN) is obtained as

xq+1 = xq −
ln g(xq)

ln g∗(xq)
(6)

In the next section, we proposed the Multiplicative King’s method scheme and its
analysis of convergence.

3. The Proposed Method and Analysis of Convergence

The proposed King’s iterative method in the multiplicative derivative is represented as

yq = xq −
ln g(xq)

ln g∗(xq)
,

xq+1 = yq −
(

log g(xq) + βlog g(yq)

log g(xq) + (β− 2)log g(yq)

)(
log g(yq)

log g∗(xq)

)
. (7)

where q is the iteration step, g∗(x) is the multiplicative derivative, and β is a free parameter.
For convergence analysis, we have proved the following theorem.

Theorem 3. For an open interval I, let r ∈ I be a multiplicative zero of a sufficiently multiplicative
differential function g : I ⊆ R→ R+; then, the multiplicative King’s method has a fourth order of
convergence with error

eq+1 = (b3
2 + 2βb3

2 − b2b3)e4
q +O(e5

q).

Proof. Let r be a simple root of equation g(x) = 1 and eq = xq − r be an error at the
qth iteration. Using the multiplicative Taylor expansions (4) for function g(x), it can be
written as

g(xq) = g(r + eq) = g(r)(g∗(r))eq(g2∗(r))
e2
q

2! (g3∗(r))
e3
q

3!O(e4
q). (8)
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If we take the natural logarithm on both sides, we obtain

ln g(xq) = ln g(r) + ln g∗(r)eq + ln g2∗(r)
e2

q

2!
+ ln g3∗(r)

e3
q

3!
O(e4

q),

= ln g∗(r)
(

eq +
1
2!

ln g2∗(r)
ln g∗(r)

e2
q +

1
3!

ln g3∗(r)
ln g∗(r)

e3
q +O(e4

q)

)
,

= ln g∗(r)
(

eq + b2e2
q + b3e3

q +O(e4
q)
)

,

(9)

where bj =
1
j!

ln gj∗(r)
ln g∗(r)

.

On the other hand, we have

ln g∗(xq) = ln g∗(r) + ln g2∗(r)eq + ln g3∗(r)
e2

q

2!
+O(e3

q),

= ln g∗(r)
(

1 +
1
2!

ln g2∗(r)
ln g∗(r)

eq +
1
3!

ln g3∗(r)
ln g∗(r)

e2
q +O(e3

q)

)
,

= ln g∗(r)
(

1 + 2b2eq + 3b3e2
q +O(e3

q)
)

.

(10)

On dividing Equation (9) by (10), we have

ln g(xq)

ln g∗(xq)
= eq + b2e2

q + 2(b3 − b2
2)e

3
q +O(e4

q). (11)

Now, by subtracting the root r on the sides of the first step of scheme (7) and using
Equation (11), we obtain

yq − r =xq − r−
ln g(xq)

ln g∗(xq)
,

yq − r =b2e2
q + 2(b3 − b2

2)e
3
q +O(e4

q).
(12)

By using the multiplicative Taylor expansion upon g(yq) about r, we obtain

g(yq) = g(r)(g∗(r))eq(g2∗(r))

e2
q

2! (g3∗(r))

e3
q

3!O(e4
q). (13)

As a result of taking the natural logarithm from both sides, we obtain

ln g(yq) = ln g∗(r)(eq + b2e2
q + b3e3

q +O(e4
q)). (14)

Using Equations (9) and (10), we have

log g(xq) + βlog g(yq)

log g(xq) + (β− 2)log g(yq)
.

log g(yq)

log g∗(xq)
= ln g∗(r)(b2e2

q − 2(b2
2 − b3)e3

q

+ (3b3
2 − 2βb3

2 − 6b2b3 + 3b4)e4
q +O(e5

q)).
(15)

Again, subtracting the root r on both sides in (7) and using (12) and (15), we obtained the
final error of scheme

xq+1 − r =yq − r−
log g(xq) + βlog g(yq)

log g(xq) + (β− 2)log g(yq)
.

log g(yq)

log g∗(xq)
,

eq+1 =(b3
2 + 2βb3

2 − b2b3)e4
q +O(e5

q).
(16)

Hence, the method (7) has a fourth order of convergence.



Math. Comput. Appl. 2023, 28, 23 5 of 15

4. Numerical Examples

In this section, we solve the nonlinear equation g(x) = 0 using the ordinary King’s
method [33] denoted as (KM1 f or β = 3, KM2 f or β = 1

2 ,KM3 f or β = −1, respectively),
Chun method [35] denoted as (CM), Jnawali method [36] denoted as (JM) and the pro-
posed multiplicative King’s method denoted as (MKM1 f or β = 3, MKM2 f or β = 1

2 ,
MKM3 f or β = −1, respectively). The results obtained using these methods are pre-
sented in Tables 1–7. All computations have been completed in Mathematica version 11.1.1
software and the stopping criteria |xq+1 − xq| < ε and ε = 10−200 are used. Moreover,
the approximated computational order of convergence (ACOC) is computed by using
the following.

ρ ∼=
ln|
∣∣∣∣ xq+1 − r

xq − r

∣∣∣∣
ln

∣∣∣∣∣ xq − r
xq−1 − r

∣∣∣∣∣
. (17)

Numerical results indicate in Tables 1–7 that the proposed method executes fewer
iterations and reduces the computational time.

Remark 1. The meaning of expression m(±n) is m× 10±n and d represents that the scheme is
divergent in all the tables.

Example 1. Firstly, we consider the population growth model that formulates the following nonlin-
ear equation

g(x) =
1000
1564

ex +
435

1564
(ex − 1)− 1.

In this model, we evaluate the birth rate denoted as x if a specific local area has 1,000,000 people at
first and 435,000 move into the local area in the first year. Likewise, assume 1,564,000 individuals
toward the finish of one year. The computed results toward the root xr = 0.1009979 . . . are displayed
in Table 1. Clearly, the proposed methods MKM1, MKM2, MKM3 show better results in terms of
consecutive error and the number of iterations in comparison to existing ones.

Example 2. Now, we apply the proposed methods to the improved cubic equation of the state known
as Redlich–Kwong. The equation of state relates the molar volume (V), temperature (T), and pressure
(P) of a substance defined as

V3 − RT
P

V2 − (b2 +
RT
P

b− a
P
)V − ab

P
= 0,

where a = 0.42748 R2T2

P , b = 0.08664 RT
P , and R is the universal gas constant. By using T = 304.2,

P = 72.85, V = x, and R = 0.082057366080960, we obtain the following nonlinear problem to
determine V at the critical isotherm.

g(x) = x3 − 4.175703501x2R + 5.8123166576xR2 − 2.696653814R3.

The computed results toward the root xr = 0.109416 . . . are displayed in Table 2. Clearly, the pro-
posed methods MKM1, MKM2, andMKM3 show equivalent results in terms of consecutive error
and the number of iterations but with less C.P.U time in comparison to existing ones. Moreover,
the consecutive error of the proposed methods and original King’s methods seem to be the same, but
after a few digits, it is different.

Example 3. Using the following nonlinear model, we determine how pressure gradients relate to
fluid velocity in porous media.

R f x3 − 20p(1− x)2 = 0,
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where R f stands for the radius of the fiber, p shows the specific hydraulic permeability, and x ∈ [0, 1]
is the porosity of the medium. If we assume R f = 100× 10−9 and p = 0.4655, we obtain the
following third-degree polynomial

g(x) = −100× 10−9x3 + 9.3100x2 − 18.6200x + 9.3100.

It is clear from Table 3 that the proposed methods approach to the root xr = 1.000104 . . . in fewer
iterations and less time than the earlier schemes.

Example 4. Next, we apply the proposed method to some of the following academic problems.

(a) g(x) = (x + 2)ex − 1 having approximate root xr = −0.4428544 . . . .
(b) g(x) = (x− 1)6 − 1 having exact root xr = 2.
(c) g(x) = ex3+7x−30 − 1 with an approximate root xr = 2.3741 . . . .
(d) g(x) = xex2 − sin2x + 3cos x− 4 having approximate root xr = 1.0651 . . . .

In Tables 4, 5 and 7, it is clearly seen that the proposed method shows more effective results as
compared to others in terms of absolute error and consecutive error. The errors are reduced at each
iteration by four times compared with the error in the previous step. In Table 6, the proposed method
converges and gives the results while all other methods fail to converge.

Table 1. Results of population growth model with initial guess x0 = 1.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2 4.4(−5)
KM1 3 2.4(−18) 4.000 5 0.32

4 2.1(−71)

2 2.7(−18)
MKM1 3 4.8(−74) 4.000 4 0.32

4 4.6(−297)

2 4.1(−7)
KM2 3 3.8(−27) 4.000 5 0.39

4 3.0(−107)

2 2.7(−19)
MKM2 3 2.4(−78) 4.000 4 0.26

4 1.5(−314)

2 1.8(−5)
KM3 3 1.8(−20) 4.000 5 0.39

4 1.9(−80)

2 2.2(−20)
MKM3 3 5.5(−83) 4.000 4 0.29

4 2.0(−333)

2 1.8(−5)
CM 3 4.8(−20) 4.000 5 0.37

4 2.5(−78)

2 4.4(−6)
JM 3 8.8(−23) 4.000 5 0.34

4 1.5(−89)
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Table 2. Results of Redlich–Kwong equation with initial guess x0 = 0.11.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2 4.3(−12)
KM1 3 2.0(−38) 4.000 5 0.21

4 9.2(−144)

2 4.3(−12)
MKM1 3 2.0(−38) 4.000 5 0.10

4 9.2(−144)

2 7.0(−16)
KM2 3 3.5(−54) 4.000 5 0.12

4 2.1(−207)

2 7.0(−16)
MKM2 3 3.5(−54) 4.000 5 0.11

4 2.1(−207)

2 2.1(−16)
KM3 3 2.3(−56) 4.000 5 0.23

4 3.2(−216)

2 2.1(−16)
MKM3 3 2.3(−56) 4.000 5 0.15

4 3.2(−216)

2 3.5(−13)
CM 3 5.9(−43) 4.000 5 0.14

4 5.0(−162)

2 1.9(−15)
JM 3 2.3(−52) 4.000 5 0.17

4 5.0(−200)

Table 3. Results of fluid permeability in bio gels with initial guess x0 = 1.5.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2 3.6(−2)
KM1 3 1.2(−2) 4.000 11 0.07

4 3.8(−3)

2 1.1(−2)
MKM1 3 3.7(−3) 4.000 10 0.06

4 1.2(−3)

2 2.7(−2)
KM2 3 7.5(−3) 4.000 11 0.12

4 2.1(−3)

2 1.0(−2)
MKM2 3 2.9(−3) 4.000 9 0.09

4 7.8(−4)

2 6.8(−3)
KM3 3 8.3(−4) 4.000 8 0.20

4 4.3(−5)

2 6.2(−3)
MKM3 3 7.6(−4) 4.000 8 0.15

4 3.5(−5)

2 3.4(−2)
CM 3 1.0(−2) 3.995 12 0.28

4 3.3(−3)

2 2.9(−2)
JM 3 8.3(−3) 4.000 11 0.23

4 2.4(−3)
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Table 4. Example 4(a) at initial point x0 = 2.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2 3.4(−1)
KM1 3 1.2(−2) 3.996 7 0.25

4 4.0(−8)

2 4.2(−10)
MKM1 3 2.3(−40) 4.000 5 0.25

4 2.0(−161)

2 1.2(−1)
KM2 3 7.5(−5) 4.000 6 0.29

4 1.5(−17)

2 1.7(−10)
MKM2 3 2.3(−42) 4.000 5 0.28

4 8.0(−170)
2

KM3 3 d d d d
4

2 4.7(−9)
MKM3 3 4.2(−36) 4.000 5 0.28

4 2.8(−144)

2 2.9(−1)
CM 3 5.7(−3) 4.000 5 0.39

4 1.6(−9)

2 2.3(−1)
JM 3 1.6(−3) 4.000 6 0.26

4 5.7(−12)

Table 5. Example 4(b) with initial guess x0 = 2.5.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2 1.4(−2)
KM1 3 3.5(−6) 4.000 6 0.28

4 1.5(−20)

2 1.8(−5)
MKM1 3 7.3(−20) 4.000 4 0.29

4 2.0(−77)

2 2.1(−3)
KM2 3 4.8(−10) 4.000 6 0.37

4 1.2(−36)

2 3.7(−11)
MKM2 3 1.5(−43) 4.000 4 0.39

4 4.5(−173)
2

KM3 3 d d d d
4

2 4.3(−9)
MKM3 3 9.7(−35) 4.000 4 0.31

4 2.6(−137)

2 1.0(−2)
CM 3 7.1(−7) 3.609 4 0.31

4 1.8(−23)

2 5.9(−3)
JM 3 4.3(−8) 4.000 5 0.26

4 1.2(−28)
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Table 6. Example 4(c) at initial point x0 = 4.5.

Method q |xq− xq−1| ρ No. of Iterations CPU Time (s)

2
KM1 3 d d d d

4

2 7.9(−4)
MKM1 3 6.7(−14) 3.922 4 0.23

4 3.4(−54)
2

KM2 3 d d d d
4

2 2.6(−5)
MKM2 3 1.9(−20) 4.000 4 0.26

4 4.8(−81)
2

KM3 3 d d d d
4

2 6.3(−5)
MKM3 3 6.1(−19) 3.231 4 0.32

4 5.3(−75)
2

CM 3 d d d d
4
2

JM 3 d d d d
4

Table 7. Example 4(d) with initial guess x0 = 2.

Method q |xq+1− xq| ρ No. of Iterations CPU Time (s)

2 2.2(−1)
KM1 3 5.7(−2) 3.853 5 0.20

4 6.0(−4)

2 1.2(−2)
MKM1 3 4.8(−8) 4.000 3 0.32

4 1.2(−29)

2 1.4(−1)
KM2 3 4.8(−3) 3.997 5 0.20

4 1.3(−8)

2 1.5(−2)
MKM2 3 1.0(−9) 4.000 3 0.14

4 1.3(−38)
2

KM3 3 d d d d
4

2 1.6(−2)
MKM3 3 7.9(−8) 4.000 3 0.25

4 5.4(−29)

2 3.3(−1)
CM 3 2.2(−1) 3.922 5 0.34

4 4.2(−2)

2 2.0(−1)
JM 3 2.5(−2) 3.979 5 0.39

4 1.3(−5)
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Remark 2. Figure 1 represents the error analysis of Examples 1 to 4(d). It is clear from all subfig-
ures of Figure 1 that the proposed method error reduction is faster than existing methods. The figures
of Examples 4(a), (b), (c), and (d) represent the divergence of the method KM3, and the figure of
Example 4(c) shows that the methods KM1, KM2, KM3, CM, andJM are divergent. In a similar
way, iteration comparisons of different existing methods with proposed methods are depicted in Fig-
ure 2. Clearly, the proposed method converges to root in fewer iterations compared with other schemes.
Furthermore, Examples 4(a), (b), (c), and (d) by the methods KM3, KM1, KM2, KM3, CM, andJM
are not approaching the desired root, and these are tested for up to 15 iterations.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4(a)

(e) Example 4(b) (f) Example 4(c)

(g) Example 4(d)

Figure 1. Graphical Error Analysis.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4(a)∗

(e) Example 4(b)∗ (f) Example 4(c)∗

(g) Example 4(d)∗

Figure 2. Bar graph on the basis of the number of iterations. * Note that in these figures, bars for 15
iterations does not means convergent. It is a case of divergence.

5. Basin of Attraction

The concept of the basin of attraction confirms the convergence of all the possible roots
of the nonlinear equation within a specified rectangular region. So, here, we present the
convergence of ordinary King’s methods (KM1, KM2, KM3), multiplicative King’s methods
(MKM1, MKM2, MKM3), Chun method (CM), and Jnawali method (JM) on different initial
values in the rectangular region [−2, 2]× [−2, 2] by dynamical planes explained in [37]. In
this section, we have tested three problems to analyze the basin of attraction for solving
nonlinear equations. Each image is plotted by an initial guess as an ordered pair of
256 complex points of abscissa and coordinate axis. If an initial point does not converge to
the root, then it is plotted with black color; otherwise, different colors are used to represent
different roots with tolerance 103.
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Example 5. The scalar equation z2 − 1 has the roots {−1, 1}. In Figure 3, pink and yellow colors
represent the convergence of roots and black color represents the divergence. It is clear that the
proposed methods are approaching the desired root.

(a) KM2 (b) MKM2 (c) KM3

(d) MKM3 (e) CM (f) JM

Figure 3. Dynamical planes of new and existing methods for Example 5.

Example 6. The nonlinear equation z3 − 1 having the roots {1,−i, i} is tested and the basin of
attraction is shown in Figure 4. The divergence area is significantly smaller in MKM2 and MKM3.

(a) KM2 (b) MKM2 (c) KM3

Figure 4. Cont.
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(d) MKM3 (e) CM (f) JM

Figure 4. Dynamical planes of new and existing methods for Example 6.

Example 7. Lastly, the basin of attraction of the nonlinear equation z3 + z with roots {0,−i, i}
is shown in Figure 5. It is clear that the methods KM3, and CM have a more divergent area in
comparisons of proposed methods.

(a) KM2 (b) MKM2 (c) KM3

(d) MKM3 (e) CM (f) JM

Figure 5. Dynamical planes of new and existing methods for Example 7.

6. Conclusions

By adopting the multiplicative calculus approach, we suggested a new fourth-order
multi-point iterative technique for solving nonlinear equations. A well-known King’s
method and the MCA are the two main pillars for the construction of the new scheme.
With the help of the free disposable parameter β, we can obtain many new variants of the
fourth order. In addition, we studied the convergence analysis of the newly constructed
scheme. We compare our methods with the existing techniques on the basis of absolute error
difference between two consecutive iterations, order of convergence, number of iterations,
CPU timing, the graphs of absolute errors, and bar graphs. We found that our methods
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provide better approximations, which can be achieved with less computational time and
complexity. In addition, the proposed methods provide a stable COC for each example.
The only limitation of our method is that the multiplicative derivative g∗(x) approaches
or near 1. Furthermore, we also study the basin of attraction which also supports the
numerical results. In future work, we will try to extend this idea to the system of nonlinear
equations. In this way, this new approach to multiplicative calculus will open a new era of
numerical techniques.
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