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Abstract: Many approaches have been developed to solve the hand–eye calibration problem. The
traditional approach involves a precise mathematical model, which has advantages and disadvan-
tages. For example, mathematical representations can provide numerical and quantitative results to
users and researchers. Thus, it is possible to explain and understand the calibration results. However,
information about the end-effector, such as the position attached to the robot and its dimensions, is
not considered in the calibration process. If there is no CAD model, additional calibration is required
for accurate manipulation, especially for a handmade end-effector. A neural network-based method
is used as the solution to this problem. By training a neural network model using data created via the
attached end-effector, additional calibration can be avoided. Moreover, it is not necessary to develop a
precise and complex mathematical model. However, it is difficult to provide quantitative information
because a neural network is a black box. Hence, a method with both advantages is proposed in this
study. A mathematical model was developed and optimized using the data created by the attached
end-effector. To acquire accurate data and evaluate the calibration results, a tablet computer was
utilized. The established method achieved a mean positioning error of 1.0 mm.

Keywords: hand–eye calibration; tablet computer; differential evolution; evolutionary computation

1. Introduction

Robots utilizing vision systems have been introduced at production sites to automate
many assembly processes and supply industrial parts. For a robot to pick an object, which
is identified using a camera, calibration is required in advance because transforming its
position in the image coordinate system to the robot-based coordinate system is necessary.
This is known as hand–eye calibration. Many studies have addressed this problem. One
of the major approaches is to develop a precise mathematical model and use a calibration
board, such as a checkerboard. This is because the feature points of a checkerboard are
easy to detect from a captured image, and several classical studies have adopted it as a
calibrator [1]. Using the captured images, the mathematical model is optimized.

However, this traditional approach has advantages and disadvantages. For exam-
ple, mathematical models can provide numerical and quantitative results to users and
researchers. Hence, they can understand and analyze why the calibration results are good.
However, information about the end-effector, such as the position attached to the robot
and its dimensions, is not considered in the calibration process. If there is no CAD model,
additional calibration is required for accurate manipulation, especially for a handmade
end-effector. One method to solve it is a neural network-based method [2]. By training a
neural network model, it can directly transfer a position in the image coordinate system
to the robot-based coordinate system. Because the training data are created by using an
attached end-effector to the robot hand, developing a complex mathematical model and
additional calibration for the end-effector are not necessary. However, it is difficult to
understand and analyze the reason for the good calibration results because the neural
network is a black box.

Therefore, a method with both advantages is proposed in this study. A mathematical
model was developed and optimized using the data created through the same procedure as
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the neural network-based method. Because the optimized mathematical model can provide
numerical and quantitative data and transfer a position in the image coordinate system
to the robot-based coordinate system considering the offset of the attached end-effector,
detailed information, such as a CAD model and an additional calibration to obtain the
offset, are not required. Hence, the proposed method overcomes the disadvantages of both
of these approaches and also involves some unique advantages. To acquire accurate data
and measure the positioning error to check the calibration performance, a tablet computer
was used.

2. Related Works

Many approaches have been proposed to solve the hand–eye calibration problem [3,4].
The most basic mathematical model is AX = XB [5], where A and B are homogeneous
transformation matrices (HTMs) that represent the relative motions of the robot and an
attached camera, and X is an estimated HTM that represents the relationship between the
hand and a camera. Based on this model, Motai et al. proposed a method considering the
distortion of a camera lens [6]. By estimating camera parameters from multiple viewpoints,
active viewpoints can be generated to obtain three-dimensional (3D) models of objects.
Many methods have been proposed to solve the unknown parameters of X. According
to reference [4], two approaches are represented in the relevant literature, separation, and
simultaneous methods. In the former, a rotation matrix of X and a translation vector are
solved separately [7–11]; in the latter, both are solved simultaneously [12–15]. In addition
to AX = XB, another model (AX = YB [16]) is used. Hand–eye calibration methods have
been developed based on these mathematical models and approaches to solve the unknown
parameters of X.

Mišeikis et al. proposed a rapid automatic calibration method using 3D cameras [17].
Even if the cameras and robots being calibrated are repositioned, this method can recali-
brate rapidly. Koide et al. proposed a method based on reprojection error minimization [18].
Unlike traditional approaches, their method does not need to explicitly estimate the camera
pose for each input image. Pose graph optimization is performed to deal with different
camera models. Cao et al. proposed an approach using a neural network for error com-
pensation [18]. Because any device is not necessary for compensation, this method has a
low cost.

These related studies employed a mathematical model to achieve hand–eye calibration.
Hence, this approach can provide numerical and quantitative information on the calibration
results to users and researchers. However, information on the end-effector, such as the
position attached to the robot and its dimensions, is not considered in the calibration
process. If there is no detailed information, such as a CAD model, additional calibration
is required for accurate manipulation, especially for a handmade end-effector. Hua’s
approach provides an effective solution [2]. By training a neural network model using
the training data, which have various errors and noises in a real environment, robust
transformation from the image coordinate system to the robot-based coordinate system
is directly possible. Because the training data are created using the attached end-effector,
additional calibration is unnecessary. In addition, the neural network model has high
representative power. Therefore, the development of a precise and complex mathematical
model is not required. However, this approach cannot provide quantitative information
because the neural network model is a black box. Therefore, it is difficult to understand
and explain the calibration results.

In this paper, a method with both advantages was proposed. A mathematical model
was developed and the data to optimize the model were created through the same pro-
cedure as the neural network-based method. To acquire accurate data and evaluate the
calibration results, a tablet computer was used.
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3. Proposed Method
3.1. Overview

The developed system is shown in Figure 1. A clear plastic box is attached to the tip
flange of the hand of a robot. An RGB-D camera and a tablet pen holder, which is fabricated
by a 3D printer, are attached. Because an Intel SR300 camera is used, consideration of
image distortion is not necessary [19]. In addition, the intrinsic parameters of the camera
can be obtained easily by a software development kit (SDK). Both the pen and camera
are mounted at positions different from the rotation center of the robot hand because the
end-effector is handmade. Of course, there is no CAD model of it. The pen rotates when
the hand rotates. It is necessary to calibrate in this scenario.

(a)

Tablet pen

RGB-D camera

Plastic box

(b)

Figure 1. (a) Appearance of the developed system; (b) details of the end-effector.

For hand–eye calibration using this developed system, some preparations are neces-
sary, similar to the study of Hua [2]. Figure 2 shows a data processing procedure performed
by the proposed method. First, nine landmarks (i.e., targets to touch by the robot’s hand
with the tablet pen) are displayed on the tablet, as shown in Figure 1a. The interior area
surrounded by landmarks is the considered workspace. Second, the tablet display is cap-
tured by the attached RGB-D camera, and all positions of the landmarks in the image
coordinate system are obtained, as shown in Figure 3a. Third, the robot hand is manually
operated to enable the pen and one landmark to touch each other, and the hand position in
the robot-based coordinate system is acquired. This data acquisition is repeated to obtain
all landmarks. Following this, the rotation angle of the sixth axis is gradually rotated;
therefore, the first and ninth dots are 0◦ and 180◦, respectively. Specifically, the sixth axis is
rotated by 22.5◦. This is because the attached camera and pen are not aligned to the sixth
axis of the robot hand, and calibrating in this scenario is necessary. Figure 3b shows an
example of the acquired data. Because the attached pen is not aligned and the hand rotates,
the data distribution in Figure 3b is different from that in Figure 3a. The parameters of
the homogeneous transformation matrices (HTMs) are optimized by two-stage optimiza-
tion. Using the optimized matrices, the positions to touch in the image coordinate system
(Figure 3a) are converted to those in the robot-based coordinate system (Figure 3b). To
evaluate the calibration performance, the robot hand with the attached pen touches the
nine displayed landmarks, and the mean touching error is calculated after the optimized
parameters are introduced in the robot.
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Figure 2. Data processing procedure.JS.
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Figure 3. (a) positions of landmarks in image coordinate system. (b) positions of hand in robot base
coordinate system.
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Figure 4. Coordinate systems. Red, green, and blue arrows represent x, y, and z axes, respectively.
DENSO VP-6242 robot [20] is used.

Figure 2. Data processing procedure.
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Figure 3. (a) Positions of landmarks in the image coordinate system; (b) positions of the hand in the
robot-based coordinate system.

3.2. Coordinate System and Homogeneous Transformation Matrix (HTM)

The used DENSO VP-6242 robot [20] has a range of motion with six degrees of freedom
(DoF). The coordinate systems are shown in Figures 4 and 5. Σb, Σh, Σc, Σi, and Σt denote
the robot base, hand, camera, image, and tablet computer coordinate systems. bTh and hTc
represent HTMs, which have rotation and translation parts, as expressed below.

bTh =

 Ry(−180) th

01×3 1

, (1)

hTc =

 Rz(γc)Ry(βc + 180)Rx(αc + 180) tc

01×3 1

, (2)

where th = (xh, yh, zh)
> and tc = (xc, yc, zc)> are translation vectors from Σh to Σb and Σc

to Σh, respectively. Rx(αc), Ry(βc), and Rz(γc) are 3× 3 rotation matrices of the x, y, and z
axes, respectively.

ti represents the transformation from Σi to Σc. It can be achieved using the pinhole
camera model. um

vm
1

 =

 fx 0 cx
0 fy cy
0 0 1

xc
m/zc

m
yc

m/zc
m

1

, (3)

where (um, vm)> represents the mth black dot in Σi. Let fx and fy be the focal lengths of
the x and y axes, respectively. cx and cy are the coordinates of the principal points of the x
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and y axes, respectively. xc
m and yc

m are the transformed positions in Σb. zc
m is the distance

from the camera to the mth black dot. It is measured by the RGB-D camera. Thus,

ti =


xc

m
yc

m
zc

m
1

 =


zc

m(um − cx)/ fx
zc

m(vm − cy)/ fy
zc

m
1

. (4)

Finally, the position in Σb ((xbi
m , ybi

m , zbi
m)
>) can be obtained from the following equation:

xbi
m

ybi
m

zbi
m
1

 = bTh
hTc ti. (5)

In the developed system, the above equation is insufficient because the tablet pen and
the camera are not aligned to the rotation axis of Σh. Hence, the offset ((x′, y′, z′)>) should
be considered, which can be calculated as follows:x′

y′

z′

 =

 Ry(−180)

 Rz(θh)

tp

 (6)

x′

y′

z′

 =

−xp cos θ + yp sin θ
xp sin θ + yp cos θ

−zp

. (7)

As shown in Figure 4, tp = (xp, yp, zp)> is the translation vector from Σh to the tip
of the tablet pen. θh represents the rotation angle of the z-axis in Σh. By combining
Equations (5) and (7), the final equation isxbi′

m
ybi′

m
zbi′

m

 =

xbi
m

ybi
m

zbi
m

−
x′

y′

z′

. (8)

Captured image of 

the tablet display

Figure 4. Coordinate systems. Red, green, and blue arrows represent x, y, and z axes, respectively.
DENSO VP-6242 robot [20] is used.
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Figure 5. The free body diagram of the system.

3.3. Transformation from Σt to Σb

All positions of the black dots displayed on the tablet computer can be transformed
from Σt to Σb. The position in px should be converted to mm as the first step using the
following equation:

lmm = lpx ×
25.4
PPI
× s, (9)

where lmm, lpx, PPI, and s are the converted result in mm, position in pixel, pixel per inch,
and the display scale of the tablet computer, respectively. The PPI and s depend on a used
tablet computer. The transformation from Σt to Σb is

xbt
m

ybt
m

zbt
m

 = bTt


xt

m
yt

m
0
1

, (10)

bTt =

 Rz(γt)Ry(βt)Rx(αt + 180) tt

01×3 1

, (11)

where (xbt
m , ybt

m , zbt
m )> is the transformed result of the mth black dot, which is converted from

px to mm ((xt
m, yt

m, 0)>) using Equation (9), in Σb. tt = (xt, yt, zt)> is the translation vector
from Σt to Σb. αt, βt, and γt are rotation angles of the x, y, and z axes of Σt, respectively.

3.4. Representation by DH Method

The relationships of each coordinate system can be represented by the Denavit–
Hartenberg (DH) method [21]. In contrast to the HTMs with the six-DoF mentioned
above, four parameters an−1, αn−1, dn, and θn are used in this method. Here, let xn and zn
be the x and z axes of the nth link, respectively. These four parameters, respectively, denote
the length of a common normal between the n− 1th and the nth links (link length), the
angle of rotation around the xn−1 from the zn−1 to zn (link twist), the distance from the
intersection of xn−1 and zn to the origin of the ith link’s frame (link offset), and the angle of
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rotation around the zn from the xn−1 to xn (joint angle). Using this method, Equation (5)
can be rewritten. 

xbi
m

ybi
m

zbi
m
1

 = bTh
hTDH

c Rxyz(αc, βc, 90 + γc) ti, (12)

Rxyz(αc, βc, 90 + γc) =

 Rz(90 + γc) 03×1

01×3 1


 Ry(βc) 03×1

01×3 1


 Rx(αc) 03×1

01×3 1

, (13)

hTDH
c =


cos
(
90 + θc

1
)
− sin

(
90 + θc

1
)

0 ac
1

sin
(
90 + θc

1
)

cos
(
90 + θc

1
)

0 0
0 0 1 dc

1
0 0 0 1

. (14)

The hTDH
c is an HTM in the DH method that represents the relationship between Σh

and Σc. The bTh can also be represented by the DH method; however, it can be acquired
from the robot controller and it is considered a known quantity. The Rxyz is a rotation
matrix for each axis in the 3D space. Similarly, the relationship between the Σb and Σt can
be rewritten as follows.

xbt
m

ybt
m

zbt
m

 = bTDH
t Rxyz(αt, βt, γt)


xt

m
yt

m
0
1

, (15)

bTDH
t =


cos
(
θt

1
)
− sin

(
θt

1
)

0 at
1

− sin
(
θt

1
)
− cos

(
θt

1
)

0 0
0 0 −1 dt

1
0 0 0 1

. (16)

In addition to this approach, many other methods that represent the relationships of
the coordinate system have been reported. In this study, a comparison of representations
used by the 6-DoF HTM and DH methods was focused on.

3.5. Parameters to be Optimized

The known and unknown parameters that should be optimized are listed (Table 1). In
Equation (1), (xh, yh, zh)

> are known because they can be obtained from the robot controller.
In Equation (2), (xc, yc, zc)> can be approximately measured by hand. However, the manual
measurement has an error and affects the final positioning error of the robot hand. Thus,
they were optimized in this study. Because the robot hand is operated by causing the pen
and the tablet display to touch each other, the optimization of zc is unnecessary. In the
same equation, αc, βc, and γc are optimized. In Equation (3), fx, fy, cx, and cy are known
because they can be obtained from the software development kit (SDK) of the RGB-D
camera. zc

m is also known because the camera can measure the distance. In Equation (6), θh
is known because a user sets the angle to rotate the hand. (xp, yp, zp)> can be measured
by hand; however, they should be optimized because of the above reasons. Similarly, zp
can be ignored. In Equation (11), αt, βt, γt, xt, yt, and zt are unknown. However, zt can be
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ignored. Therefore, optimizing the 12 parameters is necessary for the six-DoF HTMs. For
the DH method, the parameters of θc

1, ac
1, θt

1, and at
1 must be optimized. The dc

1 and dt
1 can

be ignored for the same reason regarding zc, zp, and zt.

Table 1. Known and unknown (should be optimized) parameters.

Equation Number Known Unknown (Six-DoF HTM) Unknown (DH Method)

(1) xh, yh, zh
(2) xc, yc, αc, βc, γc
(3) fx, fy, cx, cy, zc

m
(6) θh xp, yp xp, yp
(11) αt, βt, γt, xt, yt
(13) αc, βc, γc
(14) θc

1, ac
1

(15) αt, βt, γt
(16) θt

1, at
1

3.6. Two-Stage Optimization

To optimize the 12 unknown parameters and further minimize the positioning error
of the robot hand, the developed method introduces a two-stage optimization. In the first
stage, the 12 parameters are optimized based on the mathematical model described in
Section 3.2. Using the optimized parameters, the positions of the black dots in Σi (Figure 3a)
can be converted to Σb (Figure 3b). Thus, the robot hand with the tablet pen can touch the
black dots of the tablet display. To further minimize the error, affine transformation-based
optimization is introduced in the second stage.

3.6.1. First Optimization

Many optimization algorithms can be used. In this study, differential evolution
(DE) [22] is adopted because of its ease of use. In DE, search points in a search space are
referred to as individuals. Each individual includes a set of optimized parameters encoded
as a vector. After the fitness of each individual is calculated using a fitness function, new
individuals are generated for the next generation based on the calculated fitness, mutation,
and crossover strategies. By iterating these procedures, the individuals gradually converge
to an optimal solution.

In this study, the following equations are used for the fitness function.

F1st = f 1st
1 + f 1st

2 , (17)

f 1st
1 =

8

∑
m=0

√
(xbi

m − xbt
m )2 + (ybi

m − ybt
m )2

9
, (18)

f 1st
2 =

8

∑
m=0

√
(xbi′

m − xr′
m)

2 + (ybi′
m − yr′

m)
2

9
, (19)

xr′
m

yr′
m
0
0

 =


xr

m
yr

m
0
0

− bTt


∆xr

m
∆yr

m
0
0

, (20)

where F1st is the fitness function, and it consists of f 1st
1 and f 1st

2 . f 1st
1 represents the mean

Euclidean distance of the transformed nine black dots from Σi to Σb by Equation (5) and
from Σt to Σb by Equation (10). This function is set because the transformed black dots
by the different HTMs should match each other in Σb if the unknown parameters in
Equations (2) and (11) are optimized correctly.
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To optimize the remaining unknown parameters in Equation (6), f 1st
2 is introduced. If

all unknown parameters are optimized correctly, xbi′
m and ybi′

m , which are calculated from
Equation (8), as well as the hand positions in Σb (Figure 3b), should match each other.
However, when the data of the hand positions are the generated errors that occur, the
generated data cannot be used as the perfect ground truth. The reason these errors occur
is the difficulty in operating the robot hand manually to ensure that each center of the
displayed landmarks and the tip of the tablet pen touch each other perfectly (with no
distance error). To minimize the error as much as possible in the optimization process,
Equation (20) is introduced. Let xr

m and yr
m be the created mth position of the robot hand in

Σb, where the pen and the mth black dot touch each other with a small distance error. ∆xr
m

and ∆yr
m are the distance errors between the mth landmark and the touched position in Σt.

They can be obtained easily from the tablet computer in px. The unit can be converted to
mm using Equation (9). This conversion is necessary before applying Equation (20).

3.6.2. Second Optimization

By the first optimization, a good calibration result of the six-DoF HTMs is confirmed,
as shown in Figure 6. To further minimize the error, affine transformation matrices are
optimized in the second stage to match the two data distributions more. For this purpose,
the following fitness function is set:

F2nd = f 2nd
1 + f 2nd

2 , (21)

f 2nd
1 =

8

∑
m=0

√
(A1(xbi

m)− xbt
m )2 + (A1(ybi

m)− ybt
m )2

9
, (22)

f 2nd
2 =

8

∑
m=0

√
(A2(xbi′

m )− xr′
m)

2 + (A2(ybi′
m )− yr′

m)
2

9
, (23)An(xtgt)

An(ytgt)
0

 =

1 0 Xn
0 1 Yn
0 0 1

1 0 Xcr
n

0 1 Ycr
n

0 0 1

cos(θn) − sin(θn) 0
sin(θn) cos(θn) 0

0 0 1


Sx

n 0 0
0 Sy

n 0
0 0 1

1 0 −Xcr
n

0 1 −Ycr
n

0 0 1

xtgt

ytgt

0

, (24)

where F2nd is the fitness function, which consists of f 2nd
1 and f 2nd

2 . They are almost the
same as f 1st

1 and f 1st
2 . The difference is that affine transformation for a target position

((An(xtgt), An(ytgt))>) is introduced. Let Xn and Yn be the amounts of translation of the x
and y axes, respectively. Xcr

n and Ycr
n represent the centers of rotation of the x and y axes,

respectively. In this study, the position of the fourth black dot was the center of rotation. θn
is the angle of rotation. Sx

n and Sy
n are the scaling factors of the x and y axes, respectively.

The unknown parameters to be optimized are Xn, Yn, θn, Sx
n, and Sy

n. Because n ∈ 1, 2
(A1 and A2), ten parameters should be optimized to match the two data distributions as
much as possible. Figure 7 shows examples using the optimized affine transformation
matrices and the six-DoF HTMs. The error decreases in both results. In the experiments,
this effectiveness was evaluated quantitatively.
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Figure 6. (a) Transferred landmarks from Σi to Σb and Σt to Σb using optimized parameters, respec-
tively. (b) Output hand positions using Equation (8) with optimized parameters and compensated
ground truth using Equation (20).
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Figure 7. Result examples by optimized affine transformation matrices: (a) transferred positions
of black dots. (b) Output hand positions using Equation (8) and compensated ground truth using
Equation (20).

4. Experiment
4.1. Used Robot and Devices

In the experiments, a six-axis robot (DENSO VP-6242), a tablet computer (Microsoft
Surface Pro 7), a tablet pen (Surface Pen), and an RGB-D camera (Intel SR300) were used.
The positional repeatability of the robot was ±0.02 mm [20]. The resolution of the tablet
was 267 ppi.

4.2. Data Creation

For the two-stage optimization, positions of the nine (m ∈ [0, 8]) displayed black
dots in Σi ((um, vm)) and the corresponding positions of the robot hand in Σb ((xr

m, yr
m))

are necessary. To create both data, first, nine black dots were displayed with one pixel
(Figure 8a). Second, the tablet display was captured by the attached RGB-D camera. Third,
the captured image was binarized, as shown in Figure 8b. Because one blob with a few
pixels was obtained for each dot, the averaged coordinates are used as (um, vm). Moreover,
the corresponding depth data (zc

m) of (um, vm) were acquired from the RGB-D camera.
Subsequently, the robot hand was operated such that the tip of the pen touched the

displayed dots to create data (xr
m, yr

m) as the ground truth. At this time, the touching error
(∆xr

m, ∆yr
m) was obtained from the tablet computer to compensate for the error, as described

in Section 3.6.1. Table 2 provides the created data.
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(a)

0 1 2

345

6 7 8

(b)

Figure 8. (a) Captured image of the tablet display by RGB-D camera; (b) binarized image to detect
displayed black dots.

Table 2. Created data for two-stage optimization.

m (um, vm) in Σi [px] zc
m in Σc [mm] (xr

m, yr
m) in Σb [mm] (∆xr

m, ∆yr
m) in Σt [px]

0 (119, 105) 168.2 (289, 1) (−3, 1)
1 (339, 108) 168.6 (347, 8) (−2, 3)
2 (558, 109) 167.7 (403, 14) (−1, 5)
3 (556, 246) 167.5 (395, −20) (−1, 4)
4 (338, 244) 169.2 (327, −17) (−3, −1)
5 (119, 242) 168.7 (257, −16) (3, 3)
6 (118, 379) 168.6 (249, −59) (2, 0)
7 (337, 379) 170.2 (305, −67) (−1, 3)
8 (554, 381) 168.9 (363, −77) (1, 2)

4.3. Set Values for Known Parameters

Table 3 presents the set values for the known parameters. (xh, yh, zh) represent the
initial position of the robot hand to capture the tablet display. This position was determined
by the author. fx, fy, cx, and cy were acquired from the SDK of the RGB-D camera [19]. θh
is the rotation angle of the z-axis in Σh to touch each displayed dot.

Table 3. Set values for known parameters.

Parameter Value

(xh, yh, zh) (320, −70, 290)
( fx, fy) (617.7, 617.7)
(cx, cy) (316.5, 242.3)

θh 22.5×m

4.4. Setup for DE

Table 4 provides the set values for the hyperparameters of the DE. Let N and G be
the population and the generation sizes, respectively. To avoid premature convergence, a
sufficiently large size was set. As the crossover probability (CR) and the scaling factor (F),
0.9 and 0.5 were set, respectively. The binomial crossover and DE/rand/1 were adopted for
the crossover and mutation strategies, respectively. Because the DE performance depended
on a random seed, five different random seeds were used and compared in the two-stage
optimization. Tables 5 and 6 present the search ranges of the 12 optimized parameters for
the 6-DoF HTMs and the DH method.
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Table 4. Set values for DE.

Hyperparameter Value

N 10,000
G 10,000

CR 0.9
F 0.5

Crossover strategy Binomial crossover
Mutation strategy DE/rand/1

Table 5. Search ranges of optimized parameters for six-DoF HTMs.

Parameter xc yc αc βc γc

Search range [−20, 20] [20, 50] [−30, 30] [−30, 30] [−30, 30]

Parameter xp yp αt βt γt xt yt

Search range [−20, 20] [−40, −10] [−30, 30] [−30, 30] [−30, 30] [100, 200] [0, 100]

Table 6. Search ranges for the DH method.

Parameter θc
1 ac

1 αt βt γt

Search range [−30, 30] [20, 100] [−30, 30] [−30, 30] [−30, 30]

Parameter θt
1 at

1 αt βt γt xp yp

Search range [0, 90] [80, 200] [−45,45] [−30, 30] [−30, 30] [−20, 20] [−40, −10]

5. Results and Consideration
5.1. First-Stage Optimization

Table 7 summarizes the optimization results of the six-DoF HTMs using the five
different random seeds. There are signed and unsigned values in αt and βt although all
F1st are the same. Hence, this optimization problem is multimodal. Because DE can exhibit
good performance in a multimodal problem [22], using this algorithm is reasonable. All
f 1st
1 and f 1st

2 were 0.64 and 1.04 mm, respectively. The absence of any error is attributed
to the poor representation of the developed mathematical model or the inclusion of the
measurement error in the depth information (zc

m).
Table 8 describes the optimization results of the DH method. Similar to the result of

the six-DoF HTMs, all F1st were the same. However, the values of some parameters were
not identical. Thus, this optimization problem was also multimodal. The acquired values of
F1st were larger than the results of the six-DoF HTMs because the DH parameters were ill-
conditioned. According to reference [21], adjacent joint axes of a real robot and end-effector
are not perfectly parallel in practice owing to manufacturing tolerances and various types
of errors. Therefore, the link length (an−1) can become extremely large. However, owing
to the difficulty of precise prediction, the adjacent joint axes were assumed to be perfectly
parallel in this experiment. This could cause F1st values that are larger than those of the
six-DoF HTMs.
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Table 7. Optimization results of the six-DoF HTMs after first-stage optimization.

Seed Number
1 2 3 4 5

F1st 1.68 1.68 1.68 1.68 1.68
f 1st
1 0.64 0.64 0.64 0.64 0.64

f 1st
2 1.04 1.04 1.04 1.04 1.04
xc −2.09 −2.09 −2.09 −2.09 −2.09
yc 33.99 33.99 33.99 33.99 33.99
αc −0.46 −0.46 −0.46 −0.46 −0.46
βc 0.50 0.50 0.50 0.50 0.50
γc 0.72 0.72 0.72 0.72 0.72
xp 193.33 193.33 193.33 193.33 193.33
yp 31.62 31.62 31.62 31.62 31.62
αt 1.51 1.51 −1.51 −1.51 −1.51
βt −11.93 −11.93 11.93 11.93 11.93
γt −1.26 −1.26 −1.26 −1.26 −1.26
xt −0.46 −0.46 −0.46 −0.46 −0.46
yt −22.27 −22.27 −22.27 −22.27 −22.27

Table 8. Optimization results of the DH method after first-stage optimization.

Seed Number
1 2 3 4 5

F1st 7.10 7.10 7.10 7.10 7.10
f 1st
1 4.86 4.86 4.86 4.86 4.86

f 1st
2 2.24 2.24 2.24 2.24 2.24
θc

1 11.79 5.67 1.99 2.45 13.22
ac

1 91.02 91.02 91.02 91.02 91.02
αc 10.25 10.25 10.25 10.25 10.25
βc −0.51 −0.51 −0.51 −0.51 −0.51
γc −13.07 −6.95 −3.27 −3.73 −14.50
θt

1 20.18 2.57 3.34 6.11 0.45
at

1 94.79 94.79 94.79 94.79 94.79
αt 35.09 35.09 35.09 35.09 −35.09
βt −5.33 −5.33 −5.33 −5.33 5.33
γt −26.08 −8.48 −9.28 −12.01 −6.36
xp −0.86 −0.86 −0.86 −0.86 −0.86
yp −24.49 −24.49 −24.49 −24.49 −24.49

Using the optimized values of seed 1 of the 6-DoF HTMs, the mean touching error
was measured by making the robot hand touch all displayed dots. Table 9 presents the
result. Equation (9) with s = 2 and PPI = 267 was used to convert the px to mm because
Microsoft Surface Pro 7 was used. A mean touching error of 1.25 mm was achieved.
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Table 9. Demonstration result after first-stage optimization.

Trial Number
Mean Touching Error 1 2 3 4 5 Average

in px 6.47 6.80 6.62 6.38 6.64 6.58
in mm 1.23 1.29 1.26 1.21 1.26 1.25

5.2. Second-Stage Optimization

Using the optimized parameters of seed 1 in the first-stage optimization, parameters
for the two affine transformation matrices are optimized in the second-stage optimiza-
tion. Table 10 summarizes the results for the six-DoF HTMs. Because the F2nd decreased
compared to F1st, the second optimization contributes to reducing the error. Although
different random seeds are set, all results are identical. Hence, the possibility of premature
convergence is low, showing that these optimization results are reliable.

Table 10. Optimization results in second-stage optimization for the six-DoF HTMs.

Seed Number 1 2 3 4 5

F2nd 1.00 1.00 1.00 1.00 1.00
f 2nd
1 0.19 0.19 0.19 0.19 0.19

f 2nd
2 0.82 0.82 0.82 0.82 0.82
X1 −0.11 −0.11 −0.11 −0.11 −0.11
Y1 0 0 0 0 0
Sx

1 1.00 1.00 1.00 1.00 1.00
Sy

1 1.02 1.02 1.02 1.02 1.02
θn 0.03 0.03 0.03 0.03 0.03
X2 0.06 0.06 0.06 0.06 0.06
Y2 −0.11 −0.11 −0.11 −0.11 −0.11
Sx

2 1.02 1.02 1.02 1.02 1.02
Sy

2 0.99 0.99 0.99 0.99 0.99
θ2 −0.03 −0.03 −0.03 −0.03 −0.03

Table 11 presents the results of the DH method. Similar to the six-DoF HTMs, all
values are the same. Because the result of the first-stage optimization is worse, the result of
the second-stage optimization was also worse.

DH method represents a relationship of reference frames using four parameters,
whereas HTM, which is often used in hand–eye calibration, uses six. Thus, the lower
computational cost of the DH method is among its notable advantages. However, it does
involve a few disadvantages as mentioned in the reference [21]. As described above, DH
parameters have ill-conditioned behavior because the link length becomes extremely large
when adjacent joint axes are not perfectly parallel. Moreover, link frames must be assigned
such that valid DH parameters exist and arbitrary assignment is impossible. In contrast,
six-DoF HTMs can be assigned. Thus, they are easy to use. As shown in the results of the
two-stage optimizations, six-DoF HTMs achieve better results. Thus, this representation is
suitable for hand–eye calibration.
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Table 11. Optimization results after second-stage optimization for the DH method.

Seed Number 1 2 3 4 5

F2nd 4.27 4.27 4.27 4.27 4.27
f 2nd
1 1.73 1.73 1.73 1.73 1.73

f 2nd
2 2.54 2.54 2.54 2.54 2.54
X1 −0.18 −0.18 −0.18 −0.18 −0.18
Y1 −0.28 −0.28 −0.28 −0.28 −0.28
Sx

1 1.03 1.03 1.03 1.03 1.03
Sy

1 0.89 0.89 0.89 0.89 0.89
θn 3.77 3.77 3.77 3.77 3.77
X2 0.41 0.41 0.41 0.41 0.41
Y2 2.58 2.58 2.58 2.58 2.58
Sx

2 0.98 0.98 0.98 0.98 0.98
Sy

2 1.14 1.14 1.14 1.14 1.14
θ2 −4.51 −4.51 −4.51 −4.51 −4.51

Using all optimized parameters for the six-DoF HTMs, the mean touching error is
measured. Hand positions to touch are calculated using the below equations.[

xbi′
m

ybi′
m

]
=

[
A2(A1(xbi

m)− x′)
A2(A1(ybi

m)− y′)

]
. (25)

Because the robot hand always touches the tablet display, the calculation of xbi′
m is unneces-

sary. Table 12 presents the results. Compared to the previous result, the mean touching
error decreases. Thus, the affine transformation-based error minimization is effective.
Because the mean touching errors in all trial numbers decrease, this method is stable.

Table 12. Demonstration results after second-stage optimization.

Trial Number
Mean Touching Error 1 2 3 4 5 Average

in px 5.14 5.37 5.18 5.39 5.39 5.30
in mm 0.98 1.02 0.99 1.03 1.03 1.01

6. Conclusions

In this study, a method that has the advantages of a traditional hand–eye calibration
approach and a neural network-based approach is proposed. Simple mathematical models
of six-DoF HTMs and the DH method were developed and optimized using the data,
which were created using the attached end-effector. Therefore, the proposed method can
provide numerical and quantitative results to users and researchers. Additional calibration
for the end-effector can be avoided, although there is no CAD model because the data
are created using the attached end-effector. Two-stage optimization was introduced to
optimize the mathematical models. In the first-stage optimization, 12 parameters of the
transformation matrices, which converted a position in the image coordinate system to
that in the robot-based coordinate system to touch, were optimized. To further minimize
the error, ten parameters of the two affine transformation matrices were optimized in the
second-stage optimization. Using these optimized parameters, a mean touching error of
1.0 mm was achieved by the six-DoF HTMs. Because the proposed method can optimize
the mathematical model using the data generated by the attached end-effector without
detailed information, such as CAD diagrams, this method incorporates the advantages of
both approaches, in contrast to conventional systems.
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For smaller errors, developing a new method will be a future research direction. Addi-
tionally, similar to existing calibration methods, the proposed method requires recalibration
if a different end-effector with different dimensions is attached. As this is a tedious process,
a method that utilizes the first calibration result must be developed in future research to
reduce the efforts required to perform the recalibration procedure.
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