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Abstract: The primary objective of this article is to present an adaptive parameter VAR-KF technique
(APVAR-KF) to forecast stock market performance and macroeconomic factors. The method exploits
a vector autoregressive model as a system identification technique, and the Kalman filter is served as
a recursive state parameter estimation tool. A further development was designed by incorporating
the GARCH model to quantify an automatic observation covariance matrix in the Kalman filter step.
To verify the efficiency of our proposed method, we conducted an experimental simulation applied
to the main stock exchange index, real effective exchange rate and consumer price index of Thailand
and Indonesia from January 1997 to May 2021. The APVAR-KF method is generally shown to have
a superior performance relative to the conventional VAR(1) model and the VAR-KF model with
constant parameters.

Keywords: Kalman filter; VAR; GARCH

1. Introduction
1.1. Motivation and Related Work

Due to an unprecedented increase in the uncertainty of economic and financial market
activities, independent investors and policy makers require effective forecasting tools in or-
der to facilitate more accurate decision plans. Numerous forecasting methods, ranging from
univariate to multivariate time series models, have been developed to forecast stock market
pricing and macroeconomic variables. Some of the most notable univariate techniques
include autoregressive integrated moving average (ARIMA) models [1,2], artificial neural
networks (ANNs) [3,4] and support vector machines (SVMs) [5,6]. In practice, economics
and finance are correlated disciplines in which a change in one activity can cause uncer-
tainty in the other. Macroeconomic fundamentals reflect the general economic environment
and can influence the degree of variation in future cash flow in a stock market. Conversely,
stock prices are often used as leading indicators that aggregate information about the
economy’s direction. The existence of an association between macroeconomic indicators
and stock prices has been extensively verified by several research studies [7–9]. Therefore,
instead of using univariate time series forecasting techniques, multivariate time-series
models are more suitable approaches for the predictability of macroeconomic variables, as
well as stock indices.

Vector autoregressive (VAR) [10] models are multivariate time series techniques in
which the dynamics of state variables can be expressed as a linear combination of past
realizations. They are predominantly utilized for structural analysis and macroeconomic
forecasting purposes because of their implementation’s simplicity and flexibility. Some
studies that used VAR models for time series prediction include Suhasono et al. [11], who
compared the forecasting performance between vector error correction modeling (VECM)
and VAR models for ASEAN stock price indices. Öğünç [12] forecasted the inflation,
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nominal exchange rate and interest rate in Turkey through VAR variants. However, despite
all of their advantages, the linearity assumption underlying VAR models can potentially
lead to biased estimates, especially for a highly volatile time series. Several improvements
for VAR models have been put forward to handle the inherent nonlinearity structure in data.
One extensively used technique is to introduce drifting autoregressive coefficients to capture
the presence of nonlinear effects in lagged dependent models. A time-varying parameter
vector autoregression (TVP-VAR) model with stochastic volatility is a VAR-based approach
in which the parameter estimation is calculated via the Markov chain Monte Carlo (MCMC)
sampling algorithm [13]. D’Agostino et al. [14] compared the forecasting accuracy of nine
time series methods in US inflation, unemployment and interest rates over the period of
1970–2007. They concluded that the TVP-VAR is the only method that can forecast all three
variables accurately. Bekiros et al. [15] reported that using the TVP-VAR technique leads
to a better forecasting ability than benchmark autoregression and random walk models
when predicting the oil price movement with economic policy uncertainty being included.
Kumar [16] examined the forecast ability of the ARIMA, VAR and TVP-VAR methods to
predict the daily exchange rates of the Indian rupee against the U.S. dollar. The empirical
results show that the TVP-VAR model outperforms other competing approaches. However,
in the process of computing the posterior distribution of parameters of the traditional
TVP-VAR model, the MCMC sampling algorithm requires a heavy computational burden
in high-dimensional cases. To attenuate the curse of dimensionality, Korobilis [17] adopted
a stochastic search algorithm using the Gibbs sampler to select potential variables that have
a larger contribution to the forecasting accuracy. Many researchers make use of Bayesian
data assimilation techniques, preferably the Kalman filtering (KF) [18], for the parameter
estimation problem. Bekiros [19] exploited the KF algorithm and an extension of the
univariate methodology framework for the parameter estimation in the TVP-VAR model to
predict the monthly macroeconomic factors of the EU economy. Koop and Korobilis [20]
introduced forgetting factors in the TVP-VAR model with parameters being recursively
updated through the KF approach. Their purposed method leads to the scalability of the
state-space estimator, and ultimately aids in a dimensionality reduction.

As far as the relationship between stock prices and macroeconomic fundamentals
is concerned, it is accordingly plausible to include financial factors in macroeconomic
forecasting and vice versa. Nevertheless, researchers tend to not forecast these variables
simultaneously via multivariate time series models due to their different observed fre-
quencies. In this work, we will present the hybrid VAR and KF method for the economic
and financial trend prediction based on the monthly data. Motivated by Bekiros [19] and
Koop and Korobilis [20], the model coefficients were sequentially updated through the joint
state-parameter KF procedure rather than employing the filtering technique, particularly
for the parameter estimation. The use of the KF model also involves the predetermination
of noise covariances, where they are mostly constructed in an ad hoc manner that cannot ac-
curately quantify model uncertainties under complex circumstances. Meanwhile, economic
and financial time series are typically characterized by volatility clustering properties, or
heteroscedasticity. We therefore enhanced our model with heteroscedastic noise by using a
statistical technique to model an observation error covariance matrix and an average of
sample covariances for a process error covariance matrix.

1.2. Contribution

The objectives of this paper are:

1. We present a forecasting technique, the adaptive parameter VAR-KF (APVAR-KF)
method, in which the state-space equations are constructed through the VAR model
and the optimal state and parameter estimates are achieved using the KF approach.

2. A generalized autoregressive conditional heteroskedasticity (GARCH) model was
used to generate a measurement noise covariance matrix in the KF step in case of the
presence of heteroscedasticity.
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3. The estimation and prediction performance of the APVAR-KF method was conducted
and compared with VAR-based models with time-invariant parameters for the main
stock exchange index and macroeconomic indicators in two selected emerging market
economies: Thailand and Indonesia.

1.3. Article Structure

The remainder of this paper is organized as follows. Section 2 presents a detailed
description of the proposed model, the APVAR-KF method, where a measurement noise
covariance matrix was constructed through the multivariate GARCH with BEKK specifi-
cation. Section 3 provides a comparative investigation of the estimation and prediction
performances of the APVAR-KF and benchmark models for stock exchange index, real
effective exchange rate and consumer price index of Thailand and Indonesia. Conclusions
and discussion are drawn in Section 4.

2. Methodology
The Adaptive Parameter VAR-KF Model (APVAR-KF)

Consider the vector autoregressive (VAR) model for a stationary n-dimensional state
vector at time instant k, x(k) ∈ Rn. The VAR model of order p, denoted by VAR(p), has the
form [10]

x(k) = c + B1x(k− 1) + B2x(k− 2) + · · ·+ Bpx(k− p) + η(k) (1)

where c ∈ Rn is an intercept vector, Bi for i = 1, 2, . . . , p is an n× n matrix of autoregressive
coefficients and η is an n-dimensional error vector.

Specifically, we assume the VAR model of order one, VAR(1), which can be expressed as

x(k) = c + Bx(k− 1) + η(k) (2)

Equation (2) is treated as a state-space dynamical system in the KF method. This
equation also signifies the validity of the linearity assumption of the KF through the VAR
process. Let y(k) be the q-dimensional observation vector, which is related to the model
state by the following equation:

y(k) = Hx(k) + µ(k) (3)

where H ∈ Rq×n is an observation operator and µ ∈ Rq is an observational error vector.
To introduce time-variation parameters into the state Equation (2), we assume that the
parameter transition equations follow a random walk process; therefore, for i, j = 1, 2, . . . , n,

ci(k) = ci(k− 1) + δi(k− 1), bij(k) = bij(k− 1) + εij(k− 1) (4)

where ci and bij for i, j = 1, 2, . . . , n are coefficient components of matrices c and B, re-
spectively, and δi and εij represent random noises, which are assumed to have the same
distribution as ηi.

By treating the parameters as additional state variables, they are concatenated to
the model state vector in order to form a single vector z(k) = [x(k), c(k), β(k)], where
c(k) = [c1(k), c2(k), . . . , cn(k)] and β(k) = [b11(k), b12(k), . . . , bnn(k)]. The modified state
propagation equation becomes

z(k) = B̃(k)z(k− 1) + η̃(k) (5)

where η̃(k) is the zero-mean white noise with covariance matrix Q. The model coefficient
matrix is formulated as

B̃(k) =

 B(k− 1) In 0
0 In 0
0 0 In2
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where Ij denotes the j× j identity matrix and 0 is a zero matrix of appropriate size. The
elements of B(k− 1) are the parameter estimates from the previous time step, where the
elements of B(1) are computed by the least square method.

The observation equation is subsequently modified as

y(k) = H̃z(k) + µ(k) (6)

where the observation operator H̃ = [H 0] ∈ Rn×(n2+2n) and the observation noise term
µ(k) ∈ Rn is assumed to be an independent and identically distributed observational
Gaussian noise with associated error covariance matrix R. Since a volatility persistence is
usually detected in financial and macroeconomic time series, we therefore incorporated
a volatility feature through the observational covariance matrix R, which was modeled
by the generalized autoregressive conditional heteroscedasticity (GARCH) process [21].
In particular, the multivariate BEKK [22] representation was selected to parametrize the
GARCH model as the matrix R is guaranteed to be positive definite with unrestricted
parameterizations. The BEKK(1,1) specification is written as

R(k) = D′D + A′µ(k− 1)µ′(k− 1)A + M′R(k− 1)M (7)

where D is restricted to be a lower triangular matrix representing constant components
and A denotes an ARCH coefficient matrix that describes the effects of both own and
cross fluctuations. The coefficient matrix M characterizes the GARCH effects reflecting
the degree of its own and cross volatility persistence. To estimate the elements of these
parameter matrices, we made use of the quasi-maximum likelihood [23] estimation, in
which the likelihood function is given by

L(θ) =
T

∑
k=1

(
−n

2
ln(2π)− 1

2

(
ln |R(k; θ)|+ µ′(k)R−1(k; θ)µ(k)

))
(8)

where T is the number of observations and θ denotes an unknown parameter vector.
Similar to the KF process, the APVAR-KF method comprises two steps: the forecast

(prediction) and analysis (update) steps. In the forecast step, the aggregated state vector
z(k) is propagated through the governing Equation (5). The resulting estimates are subse-
quently integrated with observation information in the analysis step to produce the optimal
estimates. Superscripts f and a stand for forecast and analysis estimates, respectively, and
we assumed the initial state estimate, z f (1), to be a Gaussian vector of zero mean with
corresponding error covariance matrix P f (1). A description of how the error covariance
matrices P f (1) and Q in the KF step are attained is given in Section 3.

The Forecast Step
Given that the analysis mean za(k − 1) and its corresponding analysis covariance

matrix Pa(k− 1) are available, the forecast state z f (k) can be obtained through

z f (k) = B̃(k)za(k− 1) (9)

and the forecast covariance matrix

P f (k) = B̃(k)Pa(k− 1)B̃′(k) + Q. (10)

The Analysis Step
The analysis state za(k) and analysis covariance Pa(k) are expressed as

za(k) = z f (k) + G(y(k)− H̃z f (k)), (11)

Pa(k) = (I − GH̃)P f (k), (12)
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where the Kalman gain matrix, G, determines the weight attributed to recent measurements,
and is given by

G = P f (k)H̃′(H̃P f (k)H̃′ + R(k))−1. (13)

3. Data and Simulation Results

To evaluate the efficiency of our proposed method, the monthly historical data used in
this study include the stock market index, real effective exchange rate (REER) and consumer
price index (CPI) of Thailand and Indonesia spanning from January 1997 to May 2021. The
stock exchange of Thailand (SET) index data were collected from the Stock Exchange of
Thailand website [24] and the REER and CPI data were acquired from the Bank of Thailand
website [25], whereas the Jakarta stock exchange (JKSE) composite index was obtained from
the investing.com database [26] and its REER and CPI data were taken from the Federal
Reserve Economic Data (FRED) statistics [27]. The dataset is divided into two groups: the
data from January 1997 to March 2021 were utilized for the training phase and data from
April 2021 to May 2021 were treated as the testing phase. These raw data were transformed
into monthly returns by taking the first logarithm difference. A z-score normalization [28]
was subsequently applied to these return time series in order to adjust the range variation
to comparable scales. The normalized returns were constructed by extracting the average
from attribute values and dividing by the corresponding standard deviation.

3.1. Granger Causality Analysis

This section demonstrates an assessment of the interactions between different pairs
of time series using the bivariate Granger causality test [29]. This analysis helps us to
determine whether lagged values of one variable are linearly informative in forecasting
another variable. Given two stationary variables x1(k) and x2(k) at time instant k, the
bivariate Granger causality test follows a pair of regression equations:

x1(k) =
J

∑
j=1

ajx1(k− j) +
J

∑
j=1

bjx2(k− j) + u1(k) (14)

x2(k) =
J

∑
j=1

cjx1(k− j) +
J

∑
j=1

djx2(k− j) + u2(k) (15)

where u1 and u2 are random disturbances and J is the maximum lag order. From the
equations above, a unidirectional causality from the variable x2 to variable x1 is indicated
if ∑k

j=1 bj in Equation (14) is significantly different to zero by F-statistics whereas ∑k
j=1 cj in

the Equation (15) is not significant.
Table 1 presents the results of the Granger causality test for the direction of causality

(F-statistics and p-value in parenthesis) among the normalized returns of the SET index,
REER and CPI. The results show that the CPI does Granger-cause the SET index and REER
at a 1% level of significance. Although the null hypothesis, which states that REER does
not Granger-cause the CPI and SET index, is accepted, the null hypothesis in the opposite
direction is rejected with a significance level of 1%. In the case of Indonesia, Table 2 reveals
a two-way directional relationship between the CPI and JKSE index, and also between CPI
and REER at a 5% level of significance. In addition, there is a unidirection causality running
from the JKSE index to REER. With regard to the causality direction, the sufficient condition
for the cointegration between two variables is that the Granger causality must exist in at
least one direction [30]. Since our results indicate unidirectional causality between each
pair of variables, it therefore suggests that all factors can be included in the model.

Table 3 presents some descriptive statistics of the monthly normalized return series.
All normalized return series for both Thailand and Indonesia are highly leptokurtic and
skewed with respect to the normal distribution, as indicated by the kurtosis and skewness
measures. These results can be further confirmed by the Jarque–Bera test in which the
normality hypothesis is rejected at a 1% significant level for all three variables. Similarly, the
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ARCH test rejects the null hypothesis of homoscedasticity at a 1% level of significance for all
variables except the JKSE index with a 5% level of significance. This suggests the validation
of the GARCH model in capturing the volatility interaction among variables, resulting in
a plausible assumption of the observational covariance matrix in Equation (7). Since the
VAR approach requires the data input to be stationary prior to the model implementation
to avoid spurious regressions, the presence of unit roots was examined by a standard
augmented Dickey–Fuller (ADF) test [31,32]. The ADF test well rejects the null hypothesis,
with a statistical significance of 1% for every variable, which provides strong evidence of
stationarity in the normalized return series for both countries.

Table 1. Pairwise Granger causality test of the normalized return series of Thailand.

Dependent Variable
F-Statistics Test

SET Index (Prob. Values) REER (Prob. Values) CPI (Prob. Values)

SET index 21.2505 1.6713
(0.0000) *** (0.1971)

REER 1.0583 0.2262
(0.3045) (0.6347)

CPI 10.6046 15.7289
(0.0013) *** (0.0000) ***

Notes: *** denotes significance at the 1%.

Table 2. Pairwise Granger causality test of the normalized return series of Indonesia.

Dependent Variable
F-Statistics Test

JKSE Index (Prob. Values) REER (Prob. Values) CPI (Prob. Values)

JKSE index 21.0083 4.3218
(0.0000) *** (0.0385) **

REER 0.5960 93.2368
(0.4408) (0.0000) ***

CPI 6.5980 5.8258
(0.0107) ** (0.0164) **

Notes: ** and *** denote significance at the 5% and 1%, respectively.

Table 3. Descriptive statistics of normalized return series.

Variable Stock Index REER CPI

Thailand
Skewness −0.4037 −1.7799 −0.8021
Kurtosis 6.1646 25.6633 11.7886
Maximum 3.5321 5.5006 4.6552
Minimum −4.5314 −7.9811 −5.8710
Jarque–Bera 128.8900 *** 6359.4434 *** 964.3984 ***
ARCH test 8.1017 *** 37.2224 *** 29.8895 ***
ADF −11.2860 *** −11.1884 *** −9.4615 ***

Indonesia
Skewness −1.2042 −3.5107 4.7035
Kurtosis 8.6444 39.2024 31.6584
Maximum 3.1898 3.6852 8.6086
Minimum −5.0722 −9.8602 −1.3426
Jarque–Bera 455.0480 *** 16432.3347 *** 10993.3566 ***
ARCH test 5.7372 ** 20.9877 *** 47.8145 ***
ADF −12.2780 *** −12.8950 *** −7.2100 ***

Notes: ** and *** denote significance at the 5% and 1%, respectively.
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3.2. Results

A prior requirement for a Kalman-filter-based recursive algorithm is the specifica-
tion of an initial state vector, as well as its error covariance matrix. At the initial time
instant k = 1, we used the actual initial data during our sample period along with the
coefficients estimated from the ordinary least square method to be the elements of the
initial state vector, z f (1). The corresponding error covariance matrix P f (1) is assumed to
be equal to the process noise covariance matrix Q, which is often assigned to be arbitrarily
constant. We estimated the matrix Q through an average of sample covariances of the
state prediction errors. The reference state vector at time instant k, zref(k), corresponds
to a collection of the actual data and parameters evaluated from the VAR(1) model, and
this gives zref(k) = [xref(k), cref(k), βref(k)]. The noisy state-parameter vector z(k) was sam-
pled from a Gaussian distribution with mean equal to zref(k), and the standard deviation
was set to 25% of the reference values. The matrix Q was thus constructed using the
following estimation:

Q =
1
m

m

∑
k=1

(zref(k)− B̃(k)z(k− 1)(zref(k)− B̃(k)z(k− 1))T (16)

where m is the number of time instants. There are three sample periods used to approximate
the matrix Q, ranging from the first 12 months up to 60 months: January 1997–December
1997, January 1997–December 1999 and January 1997–December 2001. The resulting matrix
Q applied to the APVAR-KF method was calculated on a statistical basis through the use
of Monte Carlo simulations; that is, the matrix Q was determined by taking an average of
over 50 experiments for each time instant. The results presented for the APVAR-KF method
were obtained from the best-tuned values of the matrices P f (1) and Q, which relied on the
optimal achievable values of MAPE in the training period.

To demonstrate the performance of the APVAR-KF method in estimation and pre-
diction, the classical vector autoregressive model of order one, VAR(1), was taken as a
benchmark scheme. Meanwhile, an augmentation between the VAR model and KF with
fixed model coefficients in Equation (2), the VAR-KF method, was additionally computed
to illustrate the effects of a two-step procedure with and without time-variant model pa-
rameters upon the forecasting accuracy. The mean absolute percentage error (MAPE) and
root mean square error (RMSE) were used as the performance evaluation indicators. They
are formulated as follows:

MAPE =
1
T

T

∑
k=1

(∣∣∣∣ z̃(k)− ẑ(k)
z̃(k)

∣∣∣∣× 100
)

and

RMSE =

√√√√ 1
T

T

∑
k=1

(z̃(k)− ẑ(k))2

where T is the total number of simulations, z̃(k) represents the actual measured data and
ẑ(k) denotes the estimated value.

Table 4 displays the estimation efficiency during the training period through the MAPE
and RMSE statistics. According to MAPE and RMSE measures, both hybrid models have a
superior estimation performance to the single model with lower MAPE and RMSE values
for all variables of both countries. In the case of Thailand, the average MAPE values of
VAR(1), VAR-KF and APVAR-KF models are 2.3460%, 2.0556% and 1.4089%, respectively.
The VAR-KF approach reduces MAPE and RMSE values by over 10% compared to the
benchmark model, whereas those of APVAR-KF by up to 40%. The same estimation pattern
can be seen for Indonesia, where the overall improvement when using hybrid models
is above 40%. These findings suggest that, by augmenting the Kalman filter in the VAR
model, a significant improvement in the estimation accuracy is attained. When comparing
among hybrid models, the APVAR-KF model exhibits better MAPE and RMSE values
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for all variables. The APVAR-KF model improves the quality of the overall estimation
by approximately 30% for Thailand and approximately 6% for Indonesia regarding the
MAPE values.

Table 4. Mean absolute percentage errors and root mean square errors during the training phase
(January 1997–March 2021).

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 5.5705 5.0223 3.4655 54.8660 50.5360 34.8130
REER 1.1547 0.8920 0.5892 2.0094 1.5422 1.1419
CPI 0.3129 0.2525 0.1721 0.4243 0.3529 0.2415

Average error 2.3460 2.0556 1.4089 31.6991 29.1913 20.1106

Indonesia
JKSE index 5.2524 2.8055 2.7349 158.7900 70.9540 69.4390
REER 2.7593 1.6239 1.4992 3.3597 2.3697 2.2680
CPI 0.5095 0.3356 0.2279 0.4702 0.2827 0.1906

Average error 2.8404 1.5883 1.4873 91.6984 40.9885 40.1122

To assess the predictability using initial states acquired from three models, the state
estimates in March 2021 were treated as the initial state vector for the underlying dy-
namical Equation (2) to forecast the state values of April 2021 and May 2021 (the testing
phase). There are two different scenarios with respect to the model coefficients. The coeffi-
cients remain unchanged from the training phase for the VAR(1) and VAR-KF approaches,
whereas those that relied on the APVAR-KF method are based on the parameter estimates
in March 2021.

Table 5 demonstrates the forecasting performance in April 2021 of three models in
terms of MAPE and RMSE criteria. The hybrid models in comparison with the VAR(1)
model for Thailand yield a higher forecasting accuracy for all factors, with the average
MAPE being 0.8303% and 0.6213%. These are, respectively, equivalent to a 18.8695%
and 39.2900% improvement for the VAR-KF and APVAR-KF models, with the SET index
being best improved. Similarly, both VAR-KF and APVAR-KF models achieve a better
performance than the benchmark method for Indonesia, with a considerable improvement
in the REER variable. Most errors attained from the APVAR-KF model are less than those
of the VAR-KF method, except the REER variable of Indonesia, where the errors of using
time-variant parameters are slightly greater than using fixed parameters. This indicates that
the first time step prediction can predominantly be improved by exploiting the adjustable
model parameters.

Table 5. Mean absolute percentage errors and root mean square errors of April 2021.

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 1.0765 0.6936 0.1845 17.0420 10.9800 2.9212
REER 0.6606 0.6199 0.5341 0.7087 0.6650 0.5730
CPI 1.3333 1.1776 1.1454 1.3397 1.1832 1.1509

Average error 1.0235 0.8303 0.6213 9.8780 6.3876 1.8427

Indonesia
JKSE index 0.9919 0.5629 0.4873 59.4720 33.7510 29.2170
REER 0.9884 0.0666 0.0844 0.8703 0.0586 0.0743
CPI 0.3198 0.3065 0.2595 0.3773 0.3616 0.3062

Average error 0.7667 0.3120 0.2771 34.3405 19.4873 16.8694
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Table 6 reports the prediction efficiency of May 2021 forecasts. The VAR-KF and
APVAR-KF models continue to outperform the traditional VAR(1) method for Thailand,
with lower errors for all variables. By comparing among different hybrid algorithms, the
APVAR-KF model provides better results for the REER and CPI, with a lower average
MAPE of 0.8725%. Nevertheless, a different result arises for Indonesia, where the REER
forecasts of the two-step methods are worse than the VAR(1) model despite the fact that the
JKSE index and CPI errors achieved by the APVAR-KF technique are lowest among all of
the individual algorithms. The predicted values for June 2021 are not shown in this report,
considering that the error trends are similar to those in May 2021. The APVAR-KF model
remains providing superior predictions for all variables of Thailand and for the main stock
market price index of Indonesia.

Table 6. Mean absolute percentage errors and root mean square errors of May 2021.

Variable
MAPE RMSE

VAR(1) VAR-KF APVAR-KF VAR(1) VAR-KF APVAR-KF

Thailand
SET index 0.8830 0.2855 0.3552 14.0720 4.5503 5.6597
REER 2.4384 2.3650 2.2208 2.5718 2.4943 2.3423
CPI 0.2959 0.0811 0.0415 0.2946 0.0807 0.0413

Average error 1.2058 0.9105 0.8725 8.2608 2.9963 3.5365

Indonesia
JKSE index 2.8246 2.3965 2.2698 167.9900 142.5300 135.0000
REER 0.0547 1.2434 1.4632 0.0486 1.1049 1.3002
CPI 0.5235 0.5752 0.5049 0.6197 0.6809 0.5977

Average error 1.1343 1.4050 1.4126 96.9897 82.2931 77.9467

Figures 1 and 2 depict a visual comparison between the normalized return estimates
and actual data of all three variables of Thailand and Indonesia from July 2018 to May 2021.
The plots of actual data and their corresponding estimates over the whole study period can
be seen in Figures A1 and A2. The discrepancy between the estimated values derived from
all approaches and actual data appears to be minor over the tranquil period. In the course
of the COVID-19 outbreak, when drastic changes in economic and financial situations
took place, the APVAR-KF method performs best in capturing these abrupt changes in all
variables, followed by the VAR-KF and VAR(1) models. These results may reflect that a
variation in parameters allows the model to better track the actual data, especially during
times of high uncertainty. This may be due to that fact that the coefficients of a model
system are sequentially updated using recent observations, causing the underlying model
to be able to forecast abruptly changing trends. For Indonesia, it appears that the forecasting
results derived from the hybrid models exhibit similar increasing trends to the REER actual
data, with relatively lower slopes during the testing phase, whereas the opposite trend
direction pattern is found in the VAR(1) method. Although the results in Table 6 indicate
a better REER forecasting ability when using the VAR(1) model, a further examination of
how the trend direction changes can be of importance.
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(a)

(b)

(c)

Figure 1. A comparison between the actual data and the estimated values from three methods for
Thailand during July 2018–May 2021. (a) Normalized SET index return; (b) normalized real effective
exchange rate return; (c) normalized CPI return.

(a)

Figure 2. Cont.
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(b)

(c)

Figure 2. A comparison between the actual data and the estimated values from three methods for
Indonesia during July 2018–May 2021. (a) Normalized JKSE index return; (b) normalized real effective
exchange rate return; (c) normalized CPI return.

4. Conclusions and Discussion

Forecasting economic and financial time series can have substantial implications for
the implementation of monetary policies and regulations and for an individual investor’s
investment decision. This paper is designed to model and forecast the complex interactions
between the economic factors and financial market by introducing the hybrid APVAR-KF
model for joint state parameter estimation. The method combines the Kalman filter with
the VAR model, in which, the observational error covariance matrix is implemented using
the multivariate BEKK-GARCH representation.

In addition to providing the best estimation performance, the APVAR-KF technique
tends to offer satisfactory short-term predictions and future trend patterns. As presented in
Figures A1 and A2, the coefficient of determination (R-square) values between the observed
data and the estimates of the APVAR-KF model range from 0.6109 to 0.8713, or 61.09% to
87.13%, which suggests that our proposed model has the ability to capture the dynamics of
economic and financial time series.

In this regard, the benefits of the APVAR-KF model in estimation and prediction
may be attributed to two reasons. The first reason is that this is a two-step process in
which the Kalman filter provides a mechanism that can extract discriminative information
from the training data. Another reason is that adaptive parameters can enhance the
hybrid performance, creating a plausible model structure that adjusts to a change in state
characteristics over time. This is considerably beneficial, especially when an unexpected
fluctuation caused by economic instability occurs. Despite the favorable results of this
study, the assumption of lag one in the VAR step can be a limitation of the method. The
VAR model specification with higher lag orders and an inclusion of more macro factors,
can be of particular interest. However, this is an apparent tradeoff problem between a more
elaborate model and a heavy computational burden due to a large dimension of the state
space. Ensemble-based filters that allow for the error covariance matrices to be computed
without a moment closure assumption can potentially provide computational feasibility
and efficiency. Due to the sensitivity of the process noise covariance Q to the prediction
performance of the APVAR-KF approach, another challenge concerns the selection criteria
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of the matrix Q. In this work, we used the sample covariance calculated from a particular
time period to represent the process noise statistics. Instead, other techniques, including
the adaptive Q algorithm, covariance inflation and some rigorous optimization approaches,
can be adopted, especially under some complex and dynamic circumstances.
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Appendix A

(a)
Figure A1. Cont.
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(b)

(c)

Figure A1. Plots of the actual data and the estimated values from three methods for Thailand.
(a) Normalized SET index return; (b) normalized real effective exchange rate return; (c) normalized
CPI return.

(a)

(b)

Figure A2. Cont.
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(c)

Figure A2. Plots of the actual data and the estimated values from three methods for Indonesia.
(a) Normalized SET index return; (b) normalized real effective exchange rate return; (c) normalized
CPI return.
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