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Abstract: Particle filters, also known as sequential Monte Carlo (SMC) methods, constitute a class
of importance sampling and resampling techniques designed to use simulations to perform on-line
filtering. Recently, particle filters have been extended for optimization by utilizing the ability to
track a sequence of distributions. In this work, we incorporate transfer learning capabilities into
the optimizer by using particle filters. To achieve this, we propose a novel particle-filter-based
multi-objective optimization algorithm (PF-MOA) by transferring knowledge acquired from the
search experience. The key insight adopted here is that, if we can construct a sequence of target
distributions that can balance the multiple objectives and make the degree of the balance controllable,
we can approximate the Pareto optimal solutions by simulating each target distribution via particle
filters. As the importance weight updating step takes the previous target distribution as the proposal
distribution and takes the current target distribution as the target distribution, the knowledge
acquired from the previous run can be utilized in the current run by carefully designing the set
of target distributions. The experimental results on the DTLZ and WFG test suites show that the
proposed PF-MOA achieves competitive performance compared with state-of-the-art multi-objective
evolutionary algorithms on most test instances.

Keywords: particle filter; multi-objective optimization; transfer learning

1. Introduction

Many real-world applications in economics, mechanics and engineering can be formu-
lated as multi-objective optimization problems (MOPs) that simultaneously optimize two
or more objective functions [1]. The basic statement of an MOP for a minimization task can
be formulated as

min F(x) = { f1(x), f2(x), · · · , fm(x)}
x ⊆ Ω

(1)

where Ω ⊆ RD is the decision space of decision variables, x = (x1, x2, · · · xD) is a decision
vector with D denoting the number of decision variables, F(x) consists of m objective
functions, and m is the number of objectives.

Usually, different objectives are conflicting with each other, which means that a de-
cision vector that decreases the values of fm may increases that of fn. As a result, it is
impossible to find only one solution that can optimize all the objectives simultaneously;
however, a set of optimal solutions that trade off between different objectives are known as
Pareto optimal solutions. The whole set of Pareto optimal solutions in the decision space is
called the Pareto set (PS), and the projection of PS in the objective space is called the Pareto
front. Various types of algorithms have been proposed for solving MOPs.

For example, the scalarization technique is one of the most popular methods and is
used to convert an MOP into a single optimization problem. Scalarization can be achieved
by the global criterion method [2], the weighted min-max method [3,4], the ε-constraint
method [5] and reference point methods [6].
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Another popular approach is based on evolutionary algorithms (EAs), which have
been applied successfully to many real-world complex optimization problems [7,8]. Over
the past decades, a large number of multi-objective evolutionary algorithms (MOEAs) have
been proposed, such as nondominated sorting genetic algorithm II (NSGA-II) [9], multi-
objective evolutionary algorithm based on decomposition (MOEA/D) [10], reference vector
guided evolutionary algorithm (RVEA) [11] and strength Pareto evolutionary algorithm
2 (SPEA2) [12]. More recently, many variants have been proposed to further enhance the
optimization performance of MOEAs and extend them to many-objective optimization
problems, such as NSGA-III [13], θ-DEA [14] and MOEA/DD [15].

Particle filter (PF), also known as sequential Monte Carlo (SMC), is a class of im-
portance sampling and resampling techniques designed to simulate from a sequence of
probability distributions, and this has gained popularity over the last decade to solve
sequential Bayesian inference problems. With the notable exception of linear-Gaussian
signal-observation models, the PF theory has become the dominated approach to solving
the state filtering problem in dynamic systems. Applications of particle filter theory have
expanded to diverse fields, such as object tracking [16], navigation and guidance [17] and
fault diagnosis [18].

Recently, particle filters have been extended for optimization [19,20] by utilizing the
ability to track a sequence of distributions. In order to deal with a global optimization
problem, generally, a sequence of artificial dynamic distribution is designed to employ the
particle filter algorithm [21,22]. The crucial element in particle filter optimization (PFO) is
how to design the system dynamic function by formulating the optimization problem as
a filtering problem, which forces the set of particles to move toward the promising area
containing optima.

Although PFO has shown promising performance in certain applications, current
PFO methods only work for single-objective optimization problems [23]. As many real-
world problems involve multiple objectives to be optimized simultaneously, it is interesting
to extend PFO to MOPs. To fill this gap, we make an effort to extend the scope of the
application of PFO to multi-objective cases. To achieve this, we propose a novel particle-
filter-based multi-objective optimization algorithm (PF-MOA) by transferring knowledge
acquired from the search experience.

The key insight adopted here is that, if we can construct a sequence of target dis-
tributions that can balance the multiple objectives and make the degree of the balance
controllable, we can approximate the Pareto optimal solutions by simulating each target
distribution via particle filters. Inspired by the ability of SMC samplers to sample sequen-
tially from a sequence of probability distributions [24], we design a particle filter to perform
the optimization. The method of importance updating in particle filters makes it possible
to leverage the knowledge readily available for the previous subproblem to optimize the
current subproblem, guiding the new particles to concentrate on the more promising area
found thus far. As a result, PF-MOA offers an efficient solution to optimize MOPs by
tracking the Pareto optimal solutions on the Pareto front via a particle filter.

The rest of this paper is organized as follows. Section 2 presents a brief introduction to
particle filters and the application to single-objective optimization. In Section 3, a particle-
filter-based multi-objective optimization method is proposed. Numerical simulations
are conducted in Section 4, where the results are presented and discussed. Finally, our
conclusions are drawn in Section 5.

2. Background
2.1. Particle Filter

Consider the discrete-time nonlinear state-space models relating a hidden state xk to
the observations yk:

xk = g(xk−1, uk), k = 1, 2, . . . ,
yk = h(xk, vk), k = 0, 1, . . . ,

(2)
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where k is the sample number; xk ∈ Rnx is the state; yk ∈ Rny are the observations; uk ∈ Rnx

and vk ∈ Rny are the system and observation noise, respectively; and nx and ny are the
dimensions of xk and yk, respectively. We assume uk and vk are independent and identically
distributed (i.i.d.) sequences, independent of each other and also independent of the initial
state x0, which has the probability density function (p.d.f.) p0. Let p(xk | xk−1) denote the
transition density, and p(yk | xk−1) denote the likelihood function.

The goal of filtering is to estimate the conditional density,

bk(xk) , p(xk | y0:k), k = 0, 1, . . . (3)

where y0:k = {y0, . . . , yk}, for all the observations from time 0 to k. The conditional density
bk(xk) can be derived recursively via the Chapman–Kolmogorov equation and Bayes rule
as follows:

bk(xk) =
p(yk | xk)p(xk | y0:k−1)

p(yk | y0:k−1)

=
p(yk | xk)

∫
p(xk | xk−1)bk−1(xk−1)dxk−1∫

p(yk | xk)p(xk | y0:k−1)dxk

(4)

Since bk(xk) is unknown, we generate the particles by sampling from another known
density q(xk | y0:k) and adjust the weights of the samples to obtain an estimate of bk(xk).
This approach is known as importance sampling, and the density q(xk | y0:k) is referred to
as the importance density. Hence, it is easy to see that, in order to approximate p(xk | y0:k),
for samples

{
xi

k, i = 1, . . . , N
}

drawn i.i.d. from q(xk | y0:k), their weights should be

wi
k ∝

p
(
xi

k | y0:k
)

q
(
xi

k | y0:k
) (5)

where ∝ means proportional to, and the weights should be normalized.
To perform the estimation recursively, we used the Bayes rule to derive the following

recursive equation for the conditional density:

bk(xk) , p(xk | y0:k)

=
p(xk, yk | y0:k−1)

p(yk | y0:k−1)

∝ p(yk | xk)
∫

p(xk | xk−1)p(xk−1 | y0:k−1)dxk−1

∝
∫

p(yk | xk)p(xk | xk−1)bk−1(xk−1)dxk−1

(6)

where p(yk | y0:k−1, xk) = p(yk | xk) and p(xk | y0:k−1, xk−1) = p(xk | xk−1) both follow
from the Markovian property of model Equation (12), the denominator p(yk | y0:k−1) does
not explicitly depend on xk and k, and ∝ means that p(xk | y0:k) is the normalized version
of the right-hand side. The state transition density p(xk | xk−1) is induced from the state
equation in Equation (12) and the distribution of the system noise uk−1, and the likelihood
p(yk | xk) is induced from the observation equation in Equation (12) and the distribution of
the observation noise vk. Substituting Equation (6) into Equation (5), we find

wi
k ∝

p
(
yk | xi

k
)

p
(

xi
k | xi

k−1

)
q
(
xi

k | y0:k
) p

(
xi

k−1 | y0:k−1

)
, (7)

If the importance density q(xk | y0:k) is chosen to be factored as

q(xk | y0:k) = q(xk | xk−1, yk)q(xk−1 | y0:k−1) (8)
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Moreover, to avoid sample degeneracy, new samples are resampled i.i.d. from the
approximate conditional density p̂(xk | y0:k) at each step; hence, the weights are reset to
wi

k−1 = 1/N, and

wi
k ∝

p
(
yk | xi

k
)

p
(

xi
k | xi

k−1

)
q
(

xi
k | xi

k−1, yk

) , i = 1, . . . , N (9)

In the plain particle filter, the importance density q
(

xk | xi
k−1, yk

)
is chosen to be the

state transition density p
(

xk | xi
k−1

)
, which is independent of the current observation yk,

yielding
wi

k ∝ p
(

yk | xi
k

)
, i = 1, . . . , N (10)

The plain particle filter recursively propagates the support points and updates the
associated weights. The algorithm is as follows in Algorithm 1:

Algorithm 1 General particle filter.

1: Initialization: Sample
{

xi
0
}N

i=1 i.i.d. from an initial p.d.f. p0. Set k = 1.
2: Importance Sampling/Propagation: Sample xi

k from p
(
xk | xi

k−1

)
, i = 1, . . . , N.

3: Bayes Updating: Receive new observation yk. The conditional density is approximated by p̂(xk | y0:k) =

∑N
i=1 wi

kδ
(

x− xi
k
)
, where wi

k is computed according to Equation (10).

4: Resampling: Sample
{

xi
k
}N

i=1 i.i.d. from p̂(xk | y0:k).
5: k← k + 1 and go to step 2.

2.2. Particle Filter Optimization for Global Optimization

We consider the global optimization problem:

x∗ ∈ arg max
x∈X

H(x) (11)

where x is a vector of n decision variables, X is the search space, and the objective function
H is a bounded deterministic function. We denote the optimal function value as H∗, i.e.,
there exists an x∗ such that H(x) ≤ H∗ , H(x∗), ∀x ∈ X .

Many of the simulation-based global optimization methods, such as the estimation
of distribution algorithms (EDAs) [25,26], covariance matrix adaptation evolution strat-
egy [27], cross-entropy (CE) method [28], model reference adaptive search (MRAS) method
[29] and particle filter optimization (PFO), fall into the category of model-based methods.
They share the similarities of iteratively repeating the following two steps: let gk be a
probability distribution on x at the k-th iteration of an algorithm:

• Randomly generate a set/population of candidate solutions X(k) from an intermediate
distribution gk over the solution space.

• Update the intermediate distribution gk using the candidate solutions to obtain a new
distribution gk+1; increase k by 1 and reiterate from step 1.

The underlying idea is to construct a sequence of iterates (probability distributions) gk with
the hope that gk → g∗ as k→ ∞, where g∗ is a limiting distribution that assigns most of its
probability mass to the set of optimal solutions. Thus, it is the probability distribution (as
opposed to candidate solutions as in instance-based algorithms) that is propagated from
one iteration to the next [30].

The main idea of PFO is to formulate the optimization problem as a filtering problem,
then particle filter construction appears as a natural candidate for the reformulation of
the global optimization problem as a filtering problem. More specifically, the optimiza-
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tion problem Equation (11) can be formulated as a filtering problem by constructing an
appropriate state-space model. Let the state-space model be

xk = xk−1, k = 1, 2, . . . ,
yk = H(xk)− vk, k = 0, 1, . . . ,

(12)

where the optimal solution is a static state to be estimated, xk is the unobserved state, yk is
the observation, vk is the observation noise that is an i.i.d. sequence, and the conditional
density of the state approaches a delta function concentrated on the optimal solution as the
system evolves.

We assume that vk has a p.d.f. ϕ(·), and then the transition density is

p(xk | xk−1) = δ(xk − xk−1) (13)

where δ denotes the Dirac delta function. The likelihood function is

p(yk | xk) = ϕ(H(xk)− yk)

= ϕ(H(xk−1)− yk)
(14)

Substituting Equations (13) and (14) into the recursive equation of conditional density
Equation (6), we obtain

bk(xk) =
ϕ(H(xk)− yk)bk−1(xk)∫

ϕ(H(xk)− yk)bk−1(xk)dxk
(15)

The intuition of model Equation (12) is that the optimal solution x∗ is an unobserved
static state, while we can only observe the optimal function values y∗ = H(x∗) with some
noise. Equation (15) implies that, at each iteration, the conditional density (i.e., bk−1) is
tuned by the performance of solutions to yield a new conditional density (i.e., bk) for
drawing candidate solutions at the next iteration.

It should be expected that, if yk increases with k, the conditional density bk will
come closer to the density of xk, i.e., a Dirac delta function concentrated on x∗. From the
viewpoint of filtering, bk is the posterior density of xk that approaches the density of xk.
From the optimization viewpoint, bk is a density defined on the solution space that becomes
increasingly concentrated on the optimal solution as k increases. The framework of general
particle filter optimization is given in Algorithm 2.

Algorithm 2 General particle filter optimization framework.

1: Initialization: Sample
{

xi
0
}N

i=1 i.i.d. from an initial p.d.f. p0. Set k = 1.
2: Importance Sampling/Propagation: Sample xi

k from p
(
xk | xi

k−1

)
, i = 1, . . . , N.

3: Bayes Updating: Take yk to be the sample function value of H
(
xi

k
)

according to a certain rule. Compute the
weight wi

k for sample xi
k according to wi

k ∝ ϕ
(

H
(
xi

k
)
− yk

)
, i = 1, 2, . . . , Nk and normalize the weights such

that they sum up to 1.

4: Resampling: Sample
{

xi
k
}N

i=1 i.i.d. from p̂(xk | y0:k).
5: k← k + 1 and go to step 2.

Generally, the PFO algorithms can be differentiated from each other by the definitions
of the target p.d.f. and of the proposal p.d.f. A specific definition of the target and proposal
p.d.f. determines how the objective function is implanted in the sampling process and how
the random samples (i.e., candidate solutions) are generated, respectively. For example,
while a uniform distribution is adopted as the likelihood function p(yk | xk−1) in [22,31],
the Boltzmann distribution is another choice in defining the target distribution for PFO
methods [21].
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3. Proposed Algorithm
3.1. Algorithm Framework

As mentioned above, particle filter optimization methods have been applied to single-
objective optimization problems by reformulating an optimization problem into a filtering
problem. In this work, we make an effort to extend the scope of application of PFO to
multi-objective cases. It is well-known that a Pareto optimal solution to a MOP, under mild
conditions, could be an optimal solution of a scalar optimization problem in which the
objective is an aggregation of all the objectives [10]. That is to say, MOPs can be formulated
as a task of searching a set of Pareto optimal solutions, each of which corresponds to a
scalar optimization subproblem with a certain degree of tradeoff among the objectives in
an MOP.

With the insight into the decomposition strategy in the context of MOPs, it makes
sense to construct a series of target distributions corresponding to a number of scalar
objective optimization subproblems, and then the particle filter is adopted to simulate these
distributions so that the Pareto optimal solutions can be obtained based on the samples
yielded from simulations. There are two main issues: (1) how to design a series of proxy
target pdfs for MOPs and (2) how to effectively simulate these p.d.fs via SMC. In the
following, we seek answers to these problems and propose a particle filter optimization
method for solving multiobjective optimization problems, which will be elaborated in the
following. The framework of the proposed PF-MOA is outlined in Algorithm 3.

Algorithm 3 Particle filter multiobjective optimization.
Input: N: the number of particles; K: the number of subproblems; set the maximum number of fitness evaluation

FEmax = N ∗ K;
Output: particles in the archive D;
1: Initialization: Generate a uniform spread of K weight vectors λ for the Tchebycheff approach; optimize the

first subproblem and obtain N particles
{

xi
0
}N

i=1 to be evaluated on objective functions; save the particles in D;
set z∗ = (z∗1 , ..., z∗K) with z∗i = min fi(x); set k = 1 and FE = N;

2: while FE 6 FEmax do
3: for k = 1, . . . , K do
4: //Computing the k-th subproblem//
5: Calculate the subproblem with the k-th weight vector according to Equation (16): gtch(x | λk, z∗

)
=

max1≤i≤m
{

λk
i
(

fi(x)− z∗i
)}

.
6: Update the reference point z∗.
7: //Computing the target pdf associated with the k-th subproblem//
8: Calculate the corresponding k-th target pdf according to Equation (17): π̃k(x) , πk(x)

Ck
and

πk(x) = exp
{
−gtch}.

9: for i = 1, . . . , N do
10: //Importance Updating//
11: Compute the weight ω̂i

k for each sample xi
k according to Equation (18), ω̂i

k ={
π̃k
(
xi

k
)
, if k = 1

π̃k
(
xi

k
)
/π̃k−1

(
xi

k
)
, otherwise.

12: end for
13: Normalize the weights such that they sum up to 1;
14: Resampling: Generate N i.i.d. samples by setting x̃i = xj

k with probability ω̂
j
k, j = 1, . . . , N. Then, set

xi
k = x̃i , ω̂i

k = 1/N, for ∀i.
15: Calculate the mean of particles x̄k and the best particle x?k obtained thus far.
16: Particle move: Generate new particles x′ using genetic operators on x̄k and x?k , shown in Algorithm 4.
17: Update the reference point z∗.
18: Save the particles

{
xi

k
}N

i=1 to D.
19: end for
20: Update k = k + 1, FE = FE + N;
21: end while
22: Return the particles in D;

3.2. The Design of Target Distribution

Based on the theoretical foundation of sequential Monte Carlo samplers [24], SMC
allows us to perform global optimization and sequential Bayesian estimation by sequentially
sampling from a sequence of probability distributions that are defined on a common space.
Specifically, similar to simulated annealing [32], we can move from a tractable distribution
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to a distribution of interest through a sequence of artificial intermediate distributions.
Consequently, the convergence results are available for SMC samplers [33]. As two or more
conflicting objectives are involved in an MOP in Equation (1), the design of the target p.d.f.
is different from that in single-objective optimization problems.

To approach to the Pareto optimal set, a set of proxy target pdfs are needed, each
of which corresponding to a specific amount of balance among the objectives. To this
end, we adopted a decomposition strategy to decompose an MOP into a number of scalar
optimization subproblems, followed by designing a target p.d.f. for each single-objective
subproblem. More specifically, let λ1, ..., λK be a set of even spread weight vectors, and let
z∗ be the reference point. An MOP with m objectives, i.e., Equation (1), can be decomposed
into K scalar/single-objective optimization subproblems using the Tchebycheff (TCH)
decomposition [10], and the objective function of the jth subproblem is

min
x∈Ω

gtch
(

x | λj, z∗
)
= max

1≤i≤m

{
λ

j
i( fi(x)− z∗i )

}
(16)

where m is the number of objectives, z∗ = (z∗1 , ..., z∗m) with z∗i = min fi(x|x ∈ Ω) is the

reference point, λj =
(

λ
j
1, . . . , λ

j
m

)
with ∑m

i=1 λi = 1 and λi ≥ 0 is the weight vector, and fi

and x are the objective function and decision vector, respectively.
In this way, for each Pareto optimal solution x∗ of an MOP, there exists a weight

vector λ such that x∗ is the optimal solution of a subproblem (Equation (16)), and each
optimal solution of the subproblem is Pareto optimal to the MOP. As a result, to obtain a
set of different Pareto optimal solutions of an MOP, one can solve a set of single-objective
optimization problems with different weight vectors defined by Equation (16) or any other
decomposition approaches. Note that gtch is continuous of λ, the optimal solution of
gtch(x | λi, z∗

)
should be close to that of gtch(x | λj, z∗

)
if λi and λj are close to each other.

Therefore, any information about these gtch with weight vectors close to λi should be
helpful for optimizing gtch(x | λi, z∗

)
.

Obtaining a set of single-objective subproblems, a set of target p.d.fs π̃1(x), π̃2(x), . . . ,
π̃K(x) corresponding to the subproblems are constructed as follows,

π̃k(x) ,
πk(x)

Ck
, k = 1, 2, . . . , K

πk(x) = exp
{
−gtch

} (17)

where K is the number of target p.d.fs (in our case, K equals to the number of the weight
vector), Ck is a normalizing constant which ensures π̃k(x) to be a qualified pdf whose
integral equals 1. According to Equations (16) and (17), each p.d.f. corresponds to a specific
degree of balance between each objective using the weight vectors.

3.3. The Sampling Procedure

Given the target p.d.fs, the particle filter appears as a natural candidate for the sim-
ulation of these target distributions. The first subproblem is optimized, and then the
particle filter is used to track the sequence of target distributions that correspond to a set
of scalar subproblems. This has three main steps: importance updating, resampling and
particle move. The importance updating step takes the current distribution π̃k (correspond-
ing to a subproblem) as the target distribution and takes the previous distribution π̃k−1
(corresponding to the previous subproblem) as the proposal distribution.

Thus, given that the previous samples are updated in proportion to π̃k(·)/π̃k−1(·),
the new empirical distribution formed by samples is already distributed approximately
according to π̃k−1, and the weights of these weighted samples will closely follow π̃k. The
resampling step redistributes the samples such that they all have equal weights. The
particle move step is performed on each particle to update their locations towards the
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promising region so that we can follow the target distribution of each subproblem as closely
as possible.

Note that, instead of updating particles according to a transition equation as in
Equation (12), a Metropolis sampling method associated with genetic operators is adopted
to sample new particles as the transition equation in the MOPs is unknown.

From the perspective of multi-objective optimization, the advantage of the proposed
PF-MOA can be explained by tracking the Pareto optimal solutions on the Pareto front and
making the search more efficient. The reason is that the importance weight of particles
in the proposed PF-MOA is updated according to the difference between the current
and the previous distributions (which correspond to two related subproblems). As we
mentioned in Section 3.2, any information about these gtch with weight vectors close to
λi should be helpful for optimizing gtch(x | λi, z∗

)
. The method of importance updating

makes it possible to leverage the knowledge readily available for the previous subproblem
to optimize the next subproblem, guiding the new particles to concentrate on the more
promising area found thus far.

More specifically, while the normalization of the weights and the resampling of the
particles are the typical operations in Algorithm 2, the calculation of the importance weight
for the i-th particle according to the set of target distributions is as follows,

ω̂i
k =

{
π̃k
(
xi), if k = 1

π̃k
(
xi)/π̃k−1

(
xi), otherwise.

(18)

Through the resampling step, we eliminate/duplicate samples with low/high impor-
tance weights, respectively, avoiding the issue of particle degeneracy.

3.4. Particle Move

After the resampling step, a Metropolis sampling method based on genetic operators
is proposed to promote the divergence of particles as summarized in Algorithm 4. As we
demonstrate in Section 2.2, the state transition as function is assumed xk = xk−1 in the state
space model when solving global optimization problems. If a particle filter is applied to
this model directly, with no particle move, the resulting algorithm would be equivalent to
importance sampling from the initial sampling distribution directly to the posterior in a
single step. This would be problematic if the initial sampling distribution was located in a
different region of parameter space entirely, particularly in the context of MOPs. Hence, a
Metropolis sampling method for generating new particles is proposed to assist the particle
filter to simulate these target pdfs by exploiting the promising region.

The resampling step together with the Metropolis sampling step prevents sample
degeneracy or, in other words, maintains the sample diversity and, thus, the exploration
of the solution space. To make use of the search information obtained by the particle
filter, the mean of particles x̄k and the best particle x?k obtained thus far are identified and
assumed to be close to the optimum. The new/displacement particles x′ will hence be
generated around the promising region using genetic operators, i.e., the typical mutation
and crossover operators. Subsequently, the displacement will be either accepted or rejected
according to a dynamically calculated probability, called the acceptance probability. In the
proposed PF-MOA, the acceptance probability for the displacement of the i-th particle

(
xi)

is calculated by
ρ = min

{
π̃k
(
x′
)
/π̃k

(
xi
)

, 1
}

. (19)
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Algorithm 4 A Metropolis sampling method based on genetic operators.

Input: The current particles
{

xi
k
}N

i=1 and the current target pdf π̃k , the mean of particles x̄k and the best particle
x?k obtained thus far.

Output: the new particles;
1: for i = 1 : N do
2: Perform the genetic operator on x̄k and x?k and generate a new particle x′.
3: Calculate acceptance probability via Equation (19) and replace xi

k by x′ with

xi
k =

{
x′, with probability ρ
xi

k , with probability 1− ρ
(20)

4: Update x?k = x′, if π̃k(x′) > π̃k
(
x?k
)
.

5: end for
6: Return updated particles;

4. Comparative Studies

In this section, numerical experiments are conducted on nine three-objective bench-
mark problems taken from the DTLZ test suite. To examine the efficiency of the proposed
strategies, the proposed PF-MOA is compared with state-of-the-art multi-objective evolu-
tionary algorithms, NSGA-II [9], RVEA [11], MOEA/D [10], NSGA-III [13], MOEA/DD [15]
and θ-DEA [14]. Our code is available at https://github.com/xw00616/PF-MOA (accessed
on 1 November 2022).

In the following section, we begin with briefly introducing the test problems and
performance metrics adopted in our paper. Afterwards, the details of the experimental
settings concerning the four compared algorithms are described. Lastly, the experimental
results together with the Wilcoxon rank sum test are presented and discussed.

4.1. Test Problems

In our experiments, the proposed algorithm is compared with three state-of-the-
art multi-objective optimization algorithms on DTLZ [34] and WFG [35] test suites with
three objectives. The number of decision variables for the DTLZ test instances is set to
D = M + K− 1, where K = 5 is adopted for DTLZ1, K = 10 is used for DTLZ2 to DTLZ6,
and K = 20 is employed in DTLZ7. The number of decision variables for the WFG test
instances is set to 12. M represents the number of objectives; here, we set M = 3.

4.2. Performance Metrics

The inverted generational distance (IGD) [36] metric and hypervolume (HV) [37]
metric are adopted to assess the performance of the algorithms. IGD and HV provide a
combined information of the convergence and diversity of the obtained set of solutions.
The PlatEMO toolbox [38] is used to calculate values of the performance metric in our
experiments. Let P∗ be a set of uniformly distributed solutions sampled from objective
space along the theoretical Pareto front. Let P be an obtained approximation to the Pareto
front. Let P∗ be a set of uniformly distributed solutions sampled from objective space along
the theoretical Pareto front. IGD measures the inverted generational distance from P∗ to P,
defined as

IGD(P∗, P) = ∑υ∈P∗ d(υ, P)
|P∗| (21)

where d(υ, P) is the minimum Euclidean distance between υ and all points in P. The smaller
IGD value, the better the achieved solution set is.

HV calculates the volume of the objective space dominated by an approximation set P
and dominates P∗ sampled from the PF.

HV = volume
(
∪j

i=1ϑi

)
(22)

https://github.com/xw00616/PF-MOA
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where ϑi represents the hypervolume contribution of the i-th solutions relative to the
reference points. All HV values presented in this paper are normalized to [0, 1]. Algorithms
achieving a larger HV value are better.

4.3. Experimental Settings

We ran each algorithm on each benchmark problem 20 independent times, and the
Wilcoxon rank sum test was calculated to compare the mean of 20 running results obtained
by PF-MOA and by the compared algorithms at a significance level of 0.05. Symbols “(–)”,
“(+)” and “(≈))” indicate that the proposed algorithm shows significantly better, worse
and similar performance than the compared algorithm, respectively.

The PF-MOA was implemented in MATLAB R2019a on an Intel Core i7 with 2.21
GHz CPU, and the compared algorithms were implemented in PlatEMO toolbox [38]. The
general parameter settings in the experiments are given as follows: (1) The maximum
number of function evaluations FEmax = 10, 000. (2) For PF-MOA: the population size
was set to 100 and the maximum number of generations was set to 100. (3) For the
three multiobjective evolutionary algorithms: the population size was set to 100 and the
maximum number of generations was set to 100. The specific parameter settings for each
compared algorithm were the same as recommended in their original papers.

4.4. Experimental Results

The statistical results in terms of IGD and HV values obtained by the four algorithms
are summarized in Table 1 and Table 2, respectively. For the DTLZ test problems, it is
apparent that the proposed PF-MOA achieved the best approximate Pareto front on all
test problems except for DTLZ6 and DTLZ7 (NSGA-II obtained the best IGD values).
The reason behind this may be that DTLZ6 has a plenty of disconnected Pareto optimal
regions in the decision space, and DTLZ7 has a discontinuous Pareto front. Hence, it
is challenging to design proper target distributions in PF-MOA, which further degrades
PF-MOA’s performance.

According to the Wilcoxon rank sum test, the proposed algorithm significantly outper-
formed the compared algorithms on most of the test problems. For the WFG test instances,
PF-MOA showed significantly better performance than the algorithms under comparison
on six out of nine test instances, confirming the promising performance of the proposed
PF-MOA. More specifically, taking WFG5 as an example, the objective multimodality
was combined with landscape deception, and the proposed PF-MOA showed the worst
performance compared with the other algorithms.

A possible explanation for this is that the deceptive objectives may impact the design
of the target distributions, and the information form the previous subproblem does not
provide sufficient information to help the algorithm generate good tradeoff solutions for
the current subproblem. Moreover, similar observations can be made from Table 2.

To further illustrate the performance of the proposed algorithm, the obtained Pareto
front for each algorithm is illustrated in Figure 1. We observed that the proposed method
can find a set of well-converged and diverse Pareto optimal solutions, thereby, confirming
the effectiveness of the particle filter in the PF-MOA.
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Table 1. Statistical results of the IGD values obtained by NSGA-II, RVEA, MOEA/D, MOEA/DD,
NSGA-III, θ-DEA and PF-MOA with the same number of real function evaluations.

Problem D MOEA/D NSGA-II RVEA NSGA-III MOEA/DD θ-DEA PF-MOA
DTLZ1 7 2.41e-1 (3.56e-1) − 4.00e-1 (4.17e-1) − 4.67e-1 (2.83e-1) − 1.86e-1 (1.73e-1) ≈ 3.51e-1 (2.36e-1) − 2.22e-1 (3.58e-1) − 1.27e-1 (7.06e-2)
DTLZ2 12 5.48e-2 (2.21e-4) − 6.96e-2 (2.44e-3) − 5.59e-2 (6.45e-4) − 5.51e-2 (2.45e-4) − 5.54e-2 (1.95e-4) − 5.48e-2 (4.76e-5) − 4.11e-2 (1.01e-2)
DTLZ3 12 1.18e+1 (6.40e+0) − 1.02e+1 (6.66e+0) − 1.63e+1 (5.65e+0) – 1.04e+1 (2.75e+0) − 2.22e+1 (1.07e+1) − 1.06e+1 (1.10e+0) − 1.79e+0 (3.79e+0)
DTLZ4 12 4.89e-1 (3.50e-1) + 1.15e-1 (1.44e-1) + 5.59e-2 (5.89e-4) + 5.51e-2 (1.20e-4) + 5.55e-2 (7.39e-4) + 5.49e-2 (7.99e-5) + 6.48e-1 (2.32e-1)
DTLZ5 12 3.23e-2 (7.34e-4) − 6.10e-3 (3.36e-4) − 8.45e-2 (1.70e-2) − 1.27e-2 (2.16e-3) − 3.13e-2 (1.03e-3) − 3.01e-2 (2.18e-3) − 3.87e-3 (1.21e-3)
DTLZ6 12 2.09e-1 (3.93e-1) + 3.58e-2 (1.61e-1) + 1.46e-1 (1.42e-1) + 1.89e-2 (2.42e-3) + 1.00e-1 (1.39e-1) + 3.81e-2 (1.71e-3) + 7.63e+0 (3.62e-1)
DTLZ7 22 2.19e-1 (1.99e-1) + 1.13e-1 (6.90e-2) + 2.02e-1 (5.32e-2) + 1.61e-1 (1.39e-1) + 4.29e-1 (2.44e-1) + 9.62e-2 (5.39e-3) + 7.45e+0 (6.91e-1)
WFG1 12 6.84e-1 (1.00e-1) + 5.72e-1 (8.19e-2) + 7.62e-1 (8.89e-2) 1.03e+0 (3.60e-2) ≈ 1.51e+0 (6.12e-3) − 1.01e+0 (4.76e-2) ≈ 1.82e+0 (1.41e-1)
WFG2 12 3.33e-1 (7.77e-2) − 2.24e-1 (9.68e-3) − 2.16e-1 (1.22e-2) − 1.75e-1 (7.12e-3) − 1.91e-1 (9.10e-3) − 1.60e-1 (2.81e-3) − 2.03e-2 (2.65e-2)
WFG3 12 3.55e-1 (1.24e-1) − 1.29e-1 (2.21e-2) + 2.65e-1 (2.41e-2) − 1.65e-1 (1.40e-2) ≈ 3.79e-1 (1.12e-1) − 1.43e-1 (1.99e-2) + 2.18e-1 (1.51e-2)
WFG4 12 2.91e-1 (1.25e-2) − 2.82e-1 (1.04e-2) − 2.69e-1 (7.74e-3) − 2.32e-1 (1.67e-3) − 2.48e-1 (3.02e-3) − 2.29e-1 (1.10e-3) − 1.60e-1 (2.68e-2)
WFG5 12 2.73e-1 (9.26e-3) + 2.85e-1 (1.22e-2) + 2.61e-1 (7.34e-3) + 2.37e-1 (2.13e-3) + 2.52e-1 (1.05e-3) + 2.36e-1 (1.38e-3) + 6.87e-1 (2.43e-2)
WFG6 12 3.44e-1 (2.25e-2) − 3.29e-1 (1.92e-2) − 3.37e-1 (2.06e-2) − 2.78e-1 (2.12e-2) − 3.04e-1 (2.23e-2) − 2.67e-1 (1.35e-2) − 1.71e-1 (3.38e-2)
WFG7 12 4.17e-1 (5.34e-2) − 2.83e-1 (1.04e-2) ≈ 2.89e-1 (1.33e-2) − 2.32e-1 (1.13e-3) ≈ 2.66e-1 (1.56e-2) ≈ 2.29e-1 (8.96e-4) ≈ 2.63e-1 (5.54e-2)
WFG8 12 3.78e-1 (2.51e-2) + 3.75e-1 (1.02e-2) + 3.74e-1 (1.39e-2) + 3.20e-1 (5.91e-3) + 3.37e-1 (7.67e-3) + 3.16e-1 (6.32e-3) + 5.48e-1 (3.59e-2)
WFG9 12 3.70e-1 (6.98e-2) − 2.84e-1 (2.24e-2) − 2.78e-1 (3.30e-2) − 2.38e-1 (3.51e-3) − 2.61e-1 (1.63e-2) − 2.35e-1 (4.19e-3) − 1.21e-1 (2.11e-2)
+/−/≈ 6/10/0 7/8/1 6/10/0 5/7/4 5/10/1 6/8/2

Table 2. Statistical results of the HV values obtained by NSGA-II, RVEA, MOEA/D, MOEA/DD,
NSGA-III, θ-DEA and PF-MOA with the same number of real function evaluations.

Problem D MOEA/D NSGA-II RVEA NSGA-III MOEA/DD θ-DEA PF-MOA
DTLZ1 7 6.21e-1 (3.49e-1) − 3.60e-1 (4.02e-1) − 2.12e-1 (2.86e-1) − 4.57e-1 (3.40e-1) − 2.27e-1 (3.15e-1) − 5.78e-1 (3.33e-1) − 9.28e-1 (7.50e-2)
DTLZ2 12 5.55e-1 (6.99e-4) − 5.29e-1 (7.43e-3) − 5.51e-1 (2.97e-3) − 5.55e-1 (6.66e-4) − 5.54e-1 (8.13e-4) − 5.56e-1 (5.04e-4) − 6.91e-1 (1.01e-4)
DTLZ3 12 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 2.00e-2 (1.27e-2)
DTLZ4 12 2.91e-1 (1.12e-1) ≈ 4.96e-1 (8.42e-2) + 5.53e-1 (1.93e-3) + 5.56e-1 (8.24e-4) + 5.55e-1 (1.45e-3) + 5.55e-1 (4.87e-4) + 2.48e-1 (1.32e-1)
DTLZ5 12 1.82e-1 (4.00e-4) − 1.98e-1 (3.78e-4) − 1.48e-1 (4.11e-3) − 1.93e-1 (1.91e-3) − 1.82e-1 (2.29e-4) − 1.83e-1 (6.22e-4) − 4.87e-1 (2.51e-4)
DTLZ6 12 1.77e-1 (3.83e-3) + 1.99e-1 (1.59e-4) + 1.35e-1 (2.14e-2) + 1.90e-1 (1.28e-3) + 1.54e-1 (4.42e-2) + 1.81e-1 (1.71e-3) + 0.00e+0 (0.00e+0)
DTLZ7 22 2.32e-1 (9.16e-3) + 2.47e-1 (3.41e-3) + 2.06e-1 (2.69e-2) + 2.39e-1 (1.33e-2) + 2.11e-1 (1.70e-2) + 2.53e-1 (1.69e-3) + 0.00e+0 (0.00e+0)
WFG1 12 3.72e-1 (2.30e-2) − 4.91e-1 (4.72e-2) ≈ 4.58e-1 (2.91e-2) − 4.60e-1 (1.22e-2) ≈ 2.82e-1 (5.79e-3) − 4.61e-1 (1.74e-2) ≈ 4.78e-1 (1.41e-2)
WFG2 12 8.20e-1 (3.14e-2) − 9.07e-1 (6.22e-3) − 8.93e-1 (1.12e-2) − 9.09e-1 (2.33e-3) − 8.93e-1 (1.04e-2) − 9.16e-1 (4.92e-3) − 9.59e-1 (1.32e-2)
WFG3 12 2.71e-1 (2.63e-2) − 3.77e-1 (5.82e-3) − 2.97e-1 (1.68e-2) − 3.53e-1 (9.30e-3) − 2.57e-1 (4.44e-2) − 3.61e-1 (1.62e-2) − 4.78e-1 (2.11e-2)
WFG4 12 4.91e-1 (1.41e-2) − 5.01e-1 (6.63e-3) − 5.17e-1 (2.21e-3) − 5.26e-1 (2.51e-3) − 5.19e-1 (3.28e-3) − 5.32e-1 (1.82e-3) − 9.51e-1 (5.11e-3)
WFG5 12 4.77e-1 (8.04e-3) ≈ 4.81e-1 (2.91e-3) + 4.98e-1 (3.27e-3) + 5.06e-1 (4.35e-3) + 4.94e-1 (5.37e-3) + 5.05e-1 (3.61e-3) + 4.43e-1 (2.63e-2)
WFG6 12 4.45e-1 (1.90e-2) − 4.41e-1 (1.06e-2) − 4.65e-1 (7.82e-3) − 4.72e-1 (1.58e-2) − 4.55e-1 (2.01e-2) − 4.80e-1 (1.21e-2) − 6.01e-1 (1.63e-2)
WFG7 12 4.41e-1 (2.54e-2) − 5.10e-1 (4.93e-3) − 5.18e-1 (7.89e-3) − 5.31e-1 (2.05e-3) − 5.11e-1 (1.06e-2) − 5.35e-1 (1.96e-3) − 7.63e-1 (1.54e-2)
WFG8 12 4.11e-1 (1.73e-2) − 4.23e-1 (3.71e-3) − 4.31e-1 (1.01e-2) − 4.40e-1 (2.75e-3) – 4.30e-1 (7.56e-3) − 4.44e-1 (6.64e-3) − 7.33e-1 (2.24e-2)
WFG9 12 3.87e-1 (5.17e-2) − 4.84e-1 (7.56e-3) − 4.95e-1 (1.15e-2) − 5.02e-1 (4.90e-3) − 4.92e-1 (7.97e-3) − 5.07e-1 (7.91e-3) − 9.38e-1 (6.11e-3)
+/−/≈ 6/10/0 7/8/1 2/12/2 4/11/1 4/12/0 4/11/1

(a) MOEA/D (b) NSGA-II (c) RVEA (d) NSGA-III

(e) MOEA/DD (f) θ-DEA (g) PF-MOA

Figure 1. The Pareto front obtained by the compared algorithms on DTLZ5.
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5. Conclusions

In this paper, we extended the particle filter optimization method from single-objective
optimization to multiobjective optimization. The Tchebycheff decomposition was used to
decompose a multi-objective optimization into a set of single-objective problems so that a
sequence of target distribution was defined. Subsequently, the particle filter was adopted
to simulate these target distributions by using its tracking ability, and genetic operators
were employed to perform the particle move. The experimental results on the DTLZ test
suite showed the promising performance of PF-MOA compared with three state-of-the-art
multi-objective evolutionary algorithms.

However, PF-MOA cannot effectively solve certain problems with discontinuous
optimization problems, such as DTLZ6 and DTLZ7. The reason may be that PF-MOA
always searches around the best particle, thereby, reducing the diversity of all the particles;
however, the lack of diversity cannot be addressed by the resampling step, which should be
considered in future work. Moreover, for real-world multiobjective optimization problems,
uncertainty is an unavoidable issue, and it directly affects the optimization performance.
As the filtering methods have been successfully applied to noisy MOPs, the particle filter
may benefit MOEAs for solving MOPs with uncertainty.
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