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Abstract: It has been argued in Arnold and Manjunath (2021) that the bivariate pseudo-Poisson
distribution will be the model of choice for bivariate data with one equidispersed marginal and
the other marginal over-dispersed. This is due to its simple structure, straightforward parameter
estimation and fast computation. In the current note, we introduce the effects of concomitant variables
on the bivariate pseudo-Poisson parameters and explore the distributional and inferential aspects of
the augmented models. We also include a small simulation study and an example of application to
real-life data.
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1. Introduction

The classical “one-dimensional” Poisson distribution has historically been found to be
useful in modeling a wide variety of “integer-valued” phenomena, such as the number of
accidents and associated fatalities, disease advances, rate of rare event occurrences and so
on. With regard to the Poisson model with concomitants, i.e., Poisson regression or count
regression, its best known applications are in (i) modeling counts of bacteria exposed to
various environmental conditions and dilutions; (ii) modeling counts of infant mortality
among groups with different demographics. All these examples are typically modeled
under the assumption of equi-dispersion. However, count data also exhibits over and
under dispersion. In this context, the one-dimensional Conway–Maxwell–Poisson model
or its regression version fills the bill precisely by allowing us to model over, equi- and
under-dispersion data.

In general, bivariate count data, along with having marginal over-, under- or equi-
dispersion, will also exhibit a variety of dependence structures. In particular, for linear
dependence, the possible relations are positive or negative correlation. The classical bivari-
ate Poisson model is appropriate for data having equi-dispersed marginals with positive
correlation. Here again, the bivariate Conway–Maxwell–Poisson is more flexible in that it
can adapt to both under and over dispersed data, see Sellers et al. [1]. Concerning bivariate
Poisson regression models, the first version involving explanatory variables acting on the
marginal means was introduced in Kocherlakota and Kocherlakota [2] based on the classical
bivariate Poisson model. In addition, the derivation of Wald, score and likelihood ratio test
statistics for testing a single coefficient parameter vector are discussed in Riggs et al. [3].
Zamani et al. [4] proposed a bivariate Poisson model which can be fitted to both positive
and negatively correlated data. Recently, Chowdhury et al. [5] considered the Poisson–
Poisson regression model (which is the particular case of the bivariate pseudo-Poisson
model) to analyze the impact of covariates on the daily new cases and fatalities associated
with the COVID-19 pandemic. Finally, we refer to Karlis and Ntzoufras [6] and the R
package bivpois for maximum likelihood estimation, using an Expectation-Maximization
(EM) algorithm, for diagonally inflated bivariate Poisson regression models.
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In recent work, Arnold and Manjunath [7] recommended the bivariate pseudo-Poisson
model to fit data which have one marginal and other conditional of the Poisson form. Due
to its straightforward structure with no restrictions on the conditional mean function, it
allows us to include a variety of dependence structures, including positive and negative cor-
relation. In the following, we introduce explanatory variables acting on the pseudo-Poisson
parameters. Thanks to the simple structure, the concomitant effects can be introduced into
each of the parameters to generate a family of models with a variety of dependence struc-
tures. We refer to Arnold et al. [8] and Veeranna et al. [9] on Bayesian and goodness-of-fit
tests for the bivariate pseudo-Poisson model, respectively, which can also be adapted to
accommodate the presence of concomitant variables. We refer to Arnold et al. [10] and
Filus et al. [11] for further reading on conditional specified models and the triangular
transformations, respectively. Finally, we refer Ghosh et al. [12] on the recent results on
bivariate count model which has both conditionals with a Poisson structure.

We next review the concept of multivariate pseudo-Poisson distributions, as discussed
in Arnold and Manjunath [7].

Definition 1. A k-dimensional random variable X = (X1, X2, . . . , Xk) is said to have a k-
dimensional pseudo-Poisson distribution if there exists a positive constant λ1 such that

X1 ∼P(λ1)

and k − 1 functions {λ` : ` = 2, 3, . . . , k} where, for each `, λ` : {0, 1, 2, . . . }(`−1) → (0, ∞)
such that

X`|X(`−1) = x(`−1) ∼P(λ`(x(`−1))),

where X(`−1) = (X1, . . . , Xl−1)
>. Note that there are no constraints on the forms of the functions

λ`, ` = 2, 3, . . . , k that appear in the definition, save for measurability. In applications, it would
typically be the case that the λ`’s would be chosen to be relatively simple functions depending on a
limited number of parameters.

Definition 2. A random pair of variables (X1, X2) is said to have a bivariate pseudo-Poisson
distribution if there exists a positive constant λ1 such that

X1 ∼P(λ1)

and a function λ2 : {0, 1, 2, . . . } → (0, ∞) such that, for every non-negative integer x1,

X2|X1 = x1 ∼P(λ2(x1)).

The fact that there are no constraints on the λ2(x1) allows us to adapt to a variety of
dependence structures including positive or negative correlation.

Example 1. A judicious choice of a parametric family for λ2(x1) will admit positive and negative
correlation between X1 and X2. For example, if we consider

λ2(x1; γ, δ) = 1 + (2γ− 1)(1− e−δx1). (1)

For δ > 0, the above function will be increasing if γ > 1/2, decreasing if γ < 1/2 and constant if
γ = 1/2. Consequently, X1 and X2 will have a positive correlation if γ > 1/2, negative correlation
if γ < 1/2 and will be uncorrelated if γ = 1/2. A more general model with the same properties
can be obtained by replacing 1− e−δx1 by F(x1; θ), a parameterized family of distribution functions
with support (0, ∞).

2. Incorporating Concomitant Variables

In many (perhaps, most) applications, in addition to the observed values of the
(X1,i, X2,i)’s pairs, there will be available values of arrays of concomitant variables which are
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expected to influence the stochastic behavior of the observed data points. A straightforward
manner in which to incorporate vectors of concomitant variables ui = (u1i, . . . , udi)

> into
the model is as follows:

X1 ∼P

(
λ1 exp

(
α>u

))
(2)

and

X2|X1 = x1 ∼P

(
λ2 exp

(
β>u

)
+ λ3 exp

(
γ>u

)
x1

)
(3)

where λ1 > 0, λ2 ≥ 0, λ3 > 0, α = (α1, . . . , αd)
>, β = (β1, . . . , βd)

> and γ = (γ1, . . . , γd)
>

are d-dimensional unknown parameters.
There are certainly many other manners in which one can model the influence of

concomitant variables. If there is scientific justification for alternative models that do not
introduce the concomitants via log-linear adjustments of the form specified in (2) and (3),
then one should certainly utilize the scientifically appropriate link functions.

Just as in classical multiple regression, it is worthwhile to determine whether a simple
linear dependence assumption for the effect of concomitants will be adequate to fit the data.
In the remainder of this paper, we will focus on the simple model (2) and (3).

3. Moments

In the following, we derive some population moments for the model specified in (2)
and (3).

E(X1) = Var(X1) = λ1 exp
(

α>u
)

E(X2) = λ2 exp
(

β>u
)
+ λ1λ3 exp

(
(γ + α)>u

)
V(X2) = λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

)
+λ1λ2

3 exp
(
(2γ + α)>u

)
Cov(X1, X2) = λ1λ3 exp

(
(γ + α)>u

)
.

The marginal dispersion indices are

DI(X1) =
Var(X1)

E(X1)
= 1.

DI(X2) =
Var(X2)

E(X2)
= 1 +

λ1λ2
3 exp

(
(2γ + α)>u

)
λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

) .

For λ2 = 0

DI(X2) = 1 + λ3 exp
(

γ>u
)

.

Define

E(X) = (E(X1), E(X2))
>

=

(
λ1 exp

(
α>u

)
, λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

))>
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and

Cov(X) =


λ1 exp

(
α>u

)
λ1λ3 exp

(
(γ + α)>u

)
λ1λ3 exp

(
(γ + α)>u

)
λ2 exp

(
β>u

)
+ λ1λ3 exp

(
(γ + α)>u

)
+

+λ1λ2
3 exp

(
(2γ + α)>u

)


By using the definition given in the paper by Kokonendji and Puig [13] page 183, the
bivariate Fisher index of dispersion is given by

GDI(X) =

√
E(X)>Cov(X)

√
E(X)

E(X)>E(X)

which is a case of over-disperson, cf. Arnold and Manjunath [7] page 2311 for the dispersion
index proof for the bivariate pseudo-Poisson distribution.

4. Statistical Inference

In this section, we obtain maximum likelihood estimators (m.l.e.) of parameters λ1, λ2,
λ3, α, β and γ. In addition, we construct the likelihood ratio test for the possible parallelism,
coincidence and significance of each of the regression coefficients.

4.1. Estimation

Let (X1i, X2i)
>, i = 1, 2, . . . , n be a bivariate count sample from the pseudo-Poisson

distribution (in Section 2) and let u1, . . . , un be d-dimensional known covariates. Then, the
log-likelihood function is

log L = −λ1

n

∑
i=1

exp
(

α>ui

)
+

n

∑
i=1

x1i log
(

λ1 exp
(

α>ui

))
−

n

∑
i=1

(
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

)
+

n

∑
i=1

x2i log

(
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

)

−
n

∑
i=1

log(x1i!x2i!). (4)

Partial differentiation with respect to each parameters λ1, λ2 and λ3 and equating to
zero gives

−
n

∑
i=1

exp
(

α>ui

)
+

n

∑
i=1

x1i

exp
(

α>ui

)
λ1 exp

(
α>ui

) = 0 (5)

−
n

∑
i=1

exp
(

β>ui

)
+

n

∑
i=1

x2i

exp
(

β>ui

)
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0 (6)

−
n

∑
i=1

x1i exp
(

γ>ui

)
+

n

∑
i=1

x1ix2i

exp
(

γ>ui

)
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0. (7)
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Now, taking partial derivatives of log L with respect to αj, β j and γj for j ∈ {1, . . . , d}
and equating to zero yields

−λ1

n

∑
i=1

uji exp
(

α>ui

)
+

n

∑
i=1

x1iuji = 0 (8)

−
n

∑
i=1

uji exp
(

β>ui

)
+

n

∑
i=1

x2iuji

exp
(

β>ui

)
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0 (9)

−
n

∑
i=1

x1iuji exp
(

γ>ui

)
+

n

∑
i=1

x1ix2iuji

exp
(

γ>ui

)
λ2 exp

(
β>ui

)
+ λ3 exp

(
γ>ui

)
x1i

= 0. (10)

In particular, consider d = 1 and let u1, . . . , un be the observed covariates. The
likelihood equations from (5) to (10) simplify to become (with notation α1 = α, β1 = β and
γ1 = γ)

λ1

n

∑
i=1

exp(αui) =
n

∑
i=1

x1i (11)

n

∑
i=1

exp(uiβ) =
n

∑
i=1

x2i
1

λ2 + λ3 exp(ui(γ− β))x1i
(12)

n

∑
i=1

x1i exp(uiγ) =
n

∑
i=1

x1ix2i
1

λ2 exp(ui(β− γ)) + λ3x1i
. (13)

In the same way,

λ1

n

∑
i=1

ui exp
(

αui

)
=

n

∑
i=1

x1iui (14)

n

∑
i=1

ui exp
(

βui

)
=

n

∑
i=1

x2iui
1

λ2 + λ3x1i exp(ui(γ− β))
(15)

n

∑
i=1

x1iui exp
(

γui

)
=

n

∑
i=1

x1ix2iui
1

λ2 exp(ui(β− γ)) + λ3x1i
. (16)

Note that the equations from (11) to (16) do not yield explicit expressions for the maximum
likelihood estimates. However, one can use numerical methods to solve the system of six
equations with six unknown parameters.

4.2. Likelihood Ratio Test

The general form of a generalized likelihood ratio test statistic is of the form

Λ =
supθ∈Θ0

L(θ)
supθ∈Θ L(θ)

(17)

Here, Θ0 is a subset of Θ and we envision testing H0 : θ ∈ Θ0. We reject the null hypothesis
for small values of Λ.

Now, for the bivariate pseudo-Poisson model, the natural parameter space under
the full model is Θ = {(λ1, λ2, λ3, α, β, γ)> : λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β ∈ Rd,
γ ∈ Rd}. The m.l.e.’s under the complete parameter space are obtained by taking partial
differentiation of Equation (4) with respect to λ1, λ2, λ3, α, β, γ and equating to zero. We
denote the obtained numerical solution m.l.e.’s by λ̂1, λ̂2, λ̂3 and α̂, β̂, γ̂.
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Remark 1. We used the “maxLik” optimization function in R (in the package “maxLik”) to ob-
tain the m.l.e.’s by numerical solution. This function also allows us to use a different methods
of optimization using algorithms such as Newton–Raphson, Broyden–Fletcher–Goldfarb–Shanno,
Berndt–Hall–Hall–Hausman, Berndt–Hall–Hall–Hausman, Simulated Annealing, Conjugate Gra-
dients and Nelder–Mead methods. In the current paper, we use the Newton–Raphson method to
estimate parameters and to compute their standard errors.

4.2.1. Testing H0 : α = β = γ = 0

In the following, we will construct a likelihood ratio test for testing whether the
observed concomitant does not affect the distribution of (X1, X2). Under the null hypoth-
esis, the natural parameter space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0,
α = 0, β = 0, γ = 0}. Now, taking partial derivatives of Equation (4) with respect to each
parameters λ1, λ2, λ3 and equating to zero yields

−n +
1

λ1

n

∑
i=1

X1i = 0 (18)

−n +
n

∑
i=1

X2i
λ2 + λ3X1i

= 0 (19)

−
n

∑
i=1

X1i +
n

∑
i=1

X1iX2i
λ2 + λ3X1i

= 0. (20)

Equation (18) is readily solved, to obtain the m.l.e. for λ1, namely, λ̂∗1 = X1. The remaining
two Equations (19) and (20) must be solved numerically to obtain λ̂∗2 , λ̂∗3 .

Now let λ̂1, λ̂2, λ̂3 and α̂, β̂, γ̂ be the m.l.e. estimates on unrestricted space. Then, the
likelihood (as defined in Equation (4)) ratio test statistic is

Λ1 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , 0, 0, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
. (21)

If n is large, then −2 log(Λ1) may be compared with a suitable χ2
3d percentile in order

to decide whether H0 should be rejected or not.

4.2.2. Testing H0 : α = 0

Here, we are testing that the observed concomitant does not affect the marginal
distribution of X1. Note that under the null hypothesis, the natural parameter space is
Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α = 0, β ∈ Rd, γ ∈ Rd}. Now, again
taking partial derivatives of Equation (4) with respect to parameters λ1,λ2, λ3 & β, γ and

equating to zero gives m.l.e.’s, denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , β̂
∗

and γ̂∗, respectively. The likelihood
ratio test statistic is

Λ2 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , 0, β̂

∗
γ̂∗)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(22)

If n is large, then −2 log(Λ2) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.

4.2.3. Testing H0 : β = γ = 0

In this case, we are testing whether the observed concomitant does not affect the
conditional distribution of X2 given X1. Under the null hypothesis, the natural parameter
space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β = 0, γ = 0}. Again,
taking partial derivatives of Equation (4) with respect to each parameters λ1, λ2, λ3 & α
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and equating to zero gives to m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗. The likelihood ratio test
statistic is

Λ3 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, 0, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(23)

If n is large, then −2 log(Λ3) may be compared with a suitable χ2
2d percentile in order

to decide whether H0 should be rejected or not.

4.2.4. Testing H0 : β = 0

Here, we are interested in testing whether the observed concomitant does not affect the
intercept term of the pseudo-Poisson model. Now, under the null hypothesis, the natural
parameter space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β = 0,
γ ∈ Rd}. Again, taking partial derivatives of Equation (4) with respect to each parameters
λ1,λ2, λ3 & α, γ and equating to zero gives to m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, γ̂∗. The
likelihood ratio test statistic is

Λ4 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, 0, γ̂∗)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(24)

If n is large, then −2 log(Λ4) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.

4.2.5. Testing H0 : γ = 0

In this case, we wish to determine whether the concomitant does not affect the depen-
dence structure of the pseudo-Poisson model. Thus, under the null hypothesis, parameter
space is Θ0 = {(λ1, λ2, λ3, α, β, γ)> : λ1 > 0, λ2 ≥ 0, λ3 ≥ 0, α ∈ Rd, β ∈ Rd, γ = 0}. Now,
taking partial derivatives of Equation (4) with respect to the parameters λ1,λ2, λ3 & α, β

and equating to zero gives, m.l.e.’s denoted by λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, β̂
∗
. The likelihood ratio test

statistic is

Λ5 =
L(λ̂∗1 , λ̂∗2 , λ̂∗3 , α̂∗, β̂

∗
, 0)

L(λ̂1, λ̂2, λ̂3, α̂, β̂, γ̂)
(25)

If n is large, then −2 log(Λ5) may be compared with a suitable χ2
d percentile in order

to decide whether H0 should be rejected or not.
In the next examples, we are interested in testing some hypotheses concerning the re-

lationship between the explanatory and response variables. In particular, we are interested
in testing whether the regression planes are parallel or if they are coincident. We illustrate
the testing procedure using the simple sub-model given by

X1 ∼P

(
exp

( d

∑
j=1

uijαj

))
(26)

and

X2|X1 = x1 ∼P

(
exp

( d

∑
j=1

uijγj

)
x1

)
. (27)
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4.2.6. Testing for Parallelism

In the following, we are interested in testing whether the planes on which the means
lie are parallel. If we set u1i = 1 for i ∈ {1, . . . , n} then the two marginal means are

log(E(X1)) = α1 +
d

∑
j=2

uijαj (28)

log(E(X2)) = α1 + γ1 +
d

∑
j=2

uij(αj + γj). (29)

For the bivariate pseudo-Poisson regression model specified in (26) and (27), now it is
interesting to examine the hypothesis that the planes on which the mean lies are parallel.
This is equivalent to testing for the hypothesis H0 : γj = 0, for j ∈ {1, . . . , d}. Under the
null hypothesis, the pseudo-Poisson regression model will be

X1 ∼P

(
exp

(
α1 +

d

∑
j=2

uijαj

))
(30)

and

X2|X1 = x1 ∼P

(
exp(γ1)x1

)
. (31)

The log-likelihood is

log(LPH) = −
n

∑
i=1

exp
(

α1 +
d

∑
j=2

uijαj

)
+

n

∑
i=1

x1i log
(

exp
(

α1 +
d

∑
j=2

uijαj

))

−
n

∑
i=1

exp(γ1)x1i +
n

∑
i=1

x2i log

(
exp(γ1)x1i

)
−

n

∑
i=1

log(x1i!x2i!).

(32)

Note that testing for parallelism for the model specified in (30) and (31) is equivalent
to testing for the observed concomitant and has no effect on the conditional distribution
of X2 given X1. Now, partial differentiation with respect to γ1 and αj, j ∈ {1, . . . , d} and
equating to zero gives us

log(X̄1) = α1 +
d

∑
j=2

uijαj

n

∑
i=1

x1iuij =
n

∑
i=1

exp
(

α1 +
d

∑
j=2

αjuij

)
, j ∈ {2, . . . , d} (33)

Solving the above d equations leads us to the m.l.e. of αi denoted by ˆα∗Pj, j ∈ {1, . . . , d}
and the m.l.e. of γ1 is

ˆγ∗P1 = log
( n

∑
i=1

x2i log(x1i)−
n

∑
i=1

x1i

)
. (34)

Now, we denote the obtained m.l.e.’s under the complete parameter space by α̂Pj and
γ̂Pj, j ∈ {1, . . . , d}. The likelihood ratio test statistic is

ΛP =
LPH(α̂

∗
P, 0)

LP(α̂P, γ̂P)
,
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where LP(., .) is the likelihood of the model in (26) & (27) and (30) & (31). If n is large, then
−2log(ΛP) may be compared with a suitable χ2

d−1 percentile in order to decide whether
H0 should be rejected or not.

4.2.7. Testing for Coincidence

Here, we assume that the regression relationship does not change from time 1 to time
2 which will occur if the planes on which means lies are coincident. Now, for the given
model in (26) and (27), the two marginal means are

log(E(X1)) =
d

∑
j=1

uijαj (35)

log(E(X2)) =
d

∑
j=1

uij(αj + γj). (36)

The assumption of coincidence leads us to test H0 : γj = 0, for j ∈ {1, . . . , d}. Denote
by α̂∗Cj for j ∈ {1, . . . , d} are m.l.e.’s under the null hypothesis and by α̂Cj and γ̂Cj for
j ∈ {1, . . . , d} are m.l.e.’s under complete parameter space, for . Now, the likelihood ratio
test statistic is

ΛC =
LCH(α̂

∗
P, 0)

LC(α̂P, γ̂P)
,

where LCH(., ) and LC(., .) are likelihood under null and complete parameter space, re-
spectively. If n is large, then −2log(ΛC) may be compared with a suitable χ2

d percentile to
decide whether H0 should be rejected or not.

5. Applications

In the following two subsections, we illustrate a simulation study and give examples
of real-life applications of the bivariate pseudo-Poisson regression model.

5.1. Simulation

We have simulated 2000 data sets of sample size n = 20, 30, 50, 100, 200, 500, 1000 for
the parameter values λ1 = 1, λ2 = 1, λ3 = 4, α1 = 1, α2 = 0, α3 = −1, β1 = 0, β2 = 1,
β3 = 1, γ1 = 0, γ2 = 0 and γ3 = 1 from the pseudo-Poisson regression model. We refer
to Figures 1–4 for the bootstrapped distribution of each of the parameters. The numerical
evidence suggests that as sample size increases, m.l.e.’s approach the true parameter values
with standard errors that are decreasing as the sample size increases.

(a) α1 = 1 (b) α2 = 0 (c) α3 = −1

Figure 1. Boostrapped distribution of α = (α1, α2, α3)
>.
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(a) β1 = 0 (b) β2 = 1 (c) β3 = 1

Figure 2. Boostrapped distribution of β = (β1, β2, β3)
>.

(a) γ1 = 0 (b) γ2 = 0 (c) γ3 = 1

Figure 3. Boostrapped distribution of γ = (γ1, γ2, γ3)
>.

(a) λ1 = 1 (b) λ2 = 1 (c) λ3 = 4

Figure 4. Boostrapped distribution of (λ1, λ2, λ3).

5.2. Real-Life Data
5.2.1. Australian Health Service Utilization Data: 1977–1978

We consider a data set which is mentioned in Islam and Chowdhury [14] that is part of
the Health and Retirement Study (HRS). The data represent the number of conditions ever
had (X1) as mentioned by the doctors and utilization of healthcare services (say, hospital,
nursing home, doctor and home care) (X2). The concomitant variables are Gender, Age,
Hispanic, and Veteran.

The marginal estimated dispersion indices are 0.779 and 1.029. The sample Pearson
correlation coefficient between X1 and X2 is 0.063. We can conclude that marginal X1 is
approximately equi-dispersed and marginal X2 is slightly over-dispersed. Further, the data
were also tested for independence and it was concluded that the assumption was rejected,
cf. Arnold and Manjunath [7] pages 2321–2322.
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We refer to the Table 1 for the log-likelihood values for the following models:

Full Model: The parameters are λ1, λ2, λ3, α = (α1, α2, α3, α4)
>,

β = (β1, β2, β3, β4)
>, γ = (γ1, γ2, γ3, γ4)

>

Mirrored, Model (in which X1 and X2 are interchanged): The parameters are λ1, λ2, λ3,
α = (α1, α2, α3, α4)

>, β = (β1, β2, β3, β4)
>, γ = (γ1, γ2, γ3, γ4)

>

Sub-Model I (λ2 = 0): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>

Sub-Model II (λ2 = λ3): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>

Sub-Model II (Mirrored): The parameters are λ1,λ3, α = (α1, α2, α3, α4)
>,

γ = (γ1, γ2, γ3, γ4)
>.

Table 1. Models for the Australian Health Service Utilization Data.

Models No. Parameters Log-Likelihood

Full Model 15 −52,654.13
Mirrored, Full Model 15 −16,229.24
Sub-Model I (λ2 = 0) 11 −16,586.07

Sub-Model II (λ2 = λ3) 11 −16,371.95
Mirrored Sub-Model II

(λ2 = λ3) 11 −17,585.37

The mirrored Full Model fits the data best. For the detailed discussion on the mirrored
model, see Arnold and Manjunath [7] page 2323. In Islam and Chowdhury [14], page 122,
the authors fitted the Poisson–Poisson regression model for the same data set. Note that the
Poisson–Poisson regression model is a sub-model of the pseudo-Poisson regression model
when λ2 = 0. Hence, we conclude that our generalized pseudo-Poisson mirrored model
fits the data better than the Poisson–Poisson regression model. The parameter estimates for
the pseudo-Poisson mirrored model and their standard errors are displayed in Table 2.

Further, we tested for the significance of the regression coefficients. With reference to
Table 3, the computed −2 log λ and compared with χ2 table values with respective degrees
of freedom and the size of 0.05 or 0.10 and concluded that there is not enough evidence to
accept the null hypotheses.

Table 2. Final model estimates and its standard error (s.e.) for the Australian Health Service
Utilization Data.

Parameter m.l.e. s.e.

α1 0.292 0.039
α2 −0.008 0.004
α3 −0.186 0.058
α4 0.140 0.042
β1 −0.132 0.0273
β2 0.016 0.0036
β3 0.038 0.0277
β4 0.053 0.035
γ1 1.636 0.656
γ2 −0.025 0.039
γ3 −0.996 −
γ4 −0.148 0.273
λ1 1.172 0.385
λ2 0.824 0.224
λ3 0.313 1.037
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Table 3. Hypothesis testing for the Australian Health Service Utilization Data.

Hypothesis log Λ∗ − log Λ d.f.

α = β = γ = 0 −113.7227 12
α = 0 −103.483 4

β = γ = 0 −28.26604 8
β = 0 −24.26104 4
γ = 0 −6.857175 4

5.2.2. Road Safety Data

The second data set is on road safety, published by the Department for Transport,
United Kingdom. The data comprise information about personal injury road accidents in
Great Britain and the consequent casualties on public roads. The concomitant variables are
Gender of the driver (Male = 1, Female = 0), Area (Urban = 0, Rural = 1), Accident Severity
(Fatal Severity = 1 else = 0), Accident Severity ( Serious Severity = 1, else = 0), and Light
condition (Daylight = 1, Others = 0).

We refer to Table 4 for the log-likelihood values for the following:

Full Model: parameters are λ1, λ2, λ3, α = (α1, α2, α3, α4, α5)
>,

β = (β1, β2, β3, β4, β5)
>, γ = (γ1, γ2, γ3, γ4, γ5)

>

Mirrored, Model (X1 and X2 are interchanged): parameters are λ1, λ2, λ3,
α = (α1, α2, α3, α4, α5)

>, β = (β1, β2, β3, β4, β5)
>, γ = (γ1, γ2, γ3, γ4, γ5)

>

Sub-Model I (λ2 = 0): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model I (Mirrored): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model II (λ2 = λ3): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>

Sub-Model II (Mirrored): parameters are λ1,λ3, α = (α1, α2, α3, α4, α5)
>,

γ = (γ1, γ2, γ3, γ4, γ5)
>.

Table 4. Models for the Road safety data.

Models No. Parameters Log-Likelihood

Full Model 18 −223,743.3
Mirrored Full Model 18 −243,538.7
Sub-Model I(λ2 = 0) 11 −251,937.1

Mirrored Sub-Model I(λ2 = 0) 11 −37,599.63
Sub-Model II(λ2 = λ3) 11 −36,201.52
Mirrored Sub-Model

II(λ2 = λ3) 11 −36,516.22

We refer to Table 4 and conclude that the Full Model fits the road safety data and refer
to Table 5 for the estimates and their standard errors.
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Table 5. Final model estimates and its standard error (s.e.) Road safety data.

Parameter m.l.e. s.e.

α1 1.002 0.006
α2 0.999 0.005
α3 0.999 0.017
α4 0.999 0.005
β1 1.000 0.005
β2 1.004 0.005
β3 1.003 0.005
β4 1.000 0.015
γ1 0.999 0.0036
γ2 1.005 0.004
γ3 1.355 –
γ4 1.319 –
λ1 1.010 –
λ2 1.105 –
λ3 −0.078 0.007

6. Concluding Remarks

The bivariate pseudo-Poisson model with its straightforward structure with no re-
strictions on the conditional mean function allows us to model a variety of dependence
structures, including positive and negative correlation. Introducing explanatory variables
in such models will be a useful additional to the toolkit for modelers dealing with bivariate
count data which have positive or negative correlation. In the current note, we explored
distributional and inferential aspects of such models and also included a simulation and
real-life data applications. We emphasize the advantage of considering the current model
over other available count regression models in Section 5.2. The bivariate pseudo-Poisson
regression model has a simple structure, straightforward parameter estimation and fast
computation, and will deserve a place in the analysis of count data sets with concomitants.
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