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Abstract: Recently, the Hypervolume Newton Method (HVN) has been proposed as a fast and
precise indicator-based method for solving unconstrained bi-objective optimization problems with
objective functions. The HVN is defined on the space of (vectorized) fixed cardinality sets of decision
space vectors for a given multi-objective optimization problem (MOP) and seeks to maximize the
hypervolume indicator adopting the Newton–Raphson method for deterministic numerical optimiza-
tion. To extend its scope to non-convex optimization problems, the HVN method was hybridized
with a multi-objective evolutionary algorithm (MOEA), which resulted in a competitive solver for
continuous unconstrained bi-objective optimization problems. In this paper, we extend the HVN to
constrained MOPs with in principle any number of objectives. Similar to the original variant, the
first- and second-order derivatives of the involved functions have to be given either analytically or
numerically. We demonstrate the applicability of the extended HVN on a set of challenging bench-
mark problems and show that the new method can be readily applied to solve equality constraints
with high precision and to some extent also inequalities. We finally use HVN as a local search engine
within an MOEA and show the benefit of this hybrid method on several benchmark problems.

Keywords: multi-objective optimization; hypervolume indicator; newton method; evolutionary
algorithms; constraint handling; hypervolume scalarization

1. Introduction

Multi-objective optimization problems (MOPs)—i.e., problems where several objec-
tives have to be optimized concurrently –naturally arise in many applications (e.g., [1–4]).
As an example, in many portfolio problems, one is interested in maximizing the expected
return and social responsibility or sustainability while minimizing the risk to a financial
portfolio ([5,6]). In multi-objective optimization, we distinguish between the decision space,
which contains the vectors of decision variables, and the objective space, which is the k di-
mensional real vectors and comprises the images of the vector-valued objective function. A
typical approach to the solution of MOPs is to compute or approximate the non-dominated
(or efficient) set with respect to the Pareto dominance order (the image of which in the
objective space is called the Pareto front). One important characteristic of (continuous)
MOPs is that in regular cases, the Pareto front is a manifold of k− 1 dimensions, where k
denotes the number of objective functions. In general, it is possible that parts of the Pareto
front are of lower dimension, but the Pareto front is never more than k− 1 dimensions.
Since, in the continuous case, the non-dominated set and the Pareto front can contain
infinitely many points, it is usually approximated by a finite set of points. In particular, in
the area of evolutionary multi-objective optimization (EMO), many performance indicators
have been proposed that propagate optimal approximations of the Pareto front (e.g., [7–10]).
While their definitions slightly differ, most have in mind to obtain (more or less) evenly
spread solutions along the Pareto front.
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Interestingly, with the hypervolume indicator [10], there exists an indicator that does
not require the knowledge of the location of the true Pareto front. Still, its maximization
leads to well-distributed approximation sets consisting of only non-dominated solutions.
In this work, by “well-distributed”, we mean the objective points have good coverage of
the Pareto front and are gap-free when the population size is large. At the maximum of
the hypervolume indicator, the density of objective points is inversely proportional to the
local curvature of the Pareto front [11]. Here is where the idea of set-scalarization comes
into play. In set-scalarization methods, rather than focusing on the improvement of single
points of the approximation set, the focus is on the optimization of a fixed cardinality set as
an entity concerning a set-based indicator, e.g., the hypervolume indicator. The objective
function of the set-scalarization method, in our case, the hypervolume indicator, provides a
mapping from the set of fixed cardinality sets in the decision space to a scalar that has to
be maximized. Due to the properties mentioned above of the hypervolume indicator, the
resulting set will provide a well-distributed set of points on the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) have long since adopted the idea
of set-scalarization. The so-called indicator-based MOEAs (e.g., [12–14]) use performance
indicators to guide the search, e.g., by indicator-based selection. In numerical methods, the
set scalarization approach was first addressed in gradient-based hypervolume maximiza-
tion [15–19] and in the maximization of the Averaged Hausdorff Metric [14]). More recently,
the approach was generalized to second-order methods with the Hypervolume Newton
Method (HVN), a set scalarization-based Newton–Raphson method for the maximization
of the hypervolume indicator value of a given MOP (e.g., [20,21]). However, this method
has only been discussed for unconstrained and bi-objective optimization problems, which
limits its application.

In this paper, we extend the HVN for constrained MOPs with a general number of
objectives. To this end, we present the HVN for equality-constrained problems and further
discuss a straightforward active set method to handle inequalities. Since the HVN is highly
local, we also discuss the hybridization of this method with an MOEA. Finally, we present
numerical results indicating the strength of the novel approaches.

The remainder of this paper is organized as follows: in Section 2, we present the
necessary background required for understanding the sequel, and we review the related
work. In Section 3, we present the HVN for constrained multi-objective optimization
problems. Section 4 presents the numerical results of the constrained HVN as a standalone
algorithm and a local search strategy within a hybrid evolutionary algorithm. Finally, we
conclude and give possible paths for future research in Section 5.

2. Background and Related Work
2.1. Notations

We will always denote a finite Pareto approximate set by X = {x(1), x(2), . . . , x(µ)} ⊆
Rn. When differentiating a set function, e.g., the hypervolume, over the input set, we often

concatenate the points in X into a much longer vector, i.e., X = [x(1)
>

, x(2)
>

, . . . , x(µ)
>
]> ∈

Rµn. To make our discussion less cumbersome, we abuse the notation X slightly such
that it can be interpreted as a finite set in Rn or an Rµn-vector, depending on the context.
(See [16] for a detailed formal discussion of the mapping between fixed cardinality sets
and vectors.) We will explain the meaning of X on the spot whenever it is unclear from the
text. We will always denote by ∇ and ∇2 the gradient/Jacobian and Hessian operators
on real-valued functions, respectively, when the domain of such a function is clear from
the text. Otherwise, we take the derivative operator ∂/∂X. When expressing the Hessian
matrix, we will use the numerator layout for matrix calculus notations [22].

2.2. Multi-Objective Optimization

A real-valued multi-objective optimization problem (MOP) involves minimizing mul-
tiple objective functions simultaneously, i.e., F = ( f1, . . . , fk), fi : X → R, X ⊆ Rn, i ∈
{1, . . . , k}. For every y(1) and y(2) ∈ Rk, we say y(1) weakly dominates y(2) (written as
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y(1) � y(2)) iff y(1)i ≤ y(2)i , i ∈ [1 . . . k]. The Pareto order ≺ on Rk is defined: y(1) ≺ y(2)

iff. y(1) � y(2) and y(1) 6= y(2). A point x ∈ X is called efficient or (Pareto) optimal iff.
@x′ ∈ X (F(x′) ≺ F(x)). The set PQ of all Pareto optimal solutions of a MOP is called
the Pareto set, and its image F(PQ) is called the Pareto front. Typically, i.e., under certain
(mild) assumptions on the model, one can assume that the Pareto set and front of a given
continuous MOP form at least locally an object of dimension k− 1 ([23]).

The Pareto order can also be extended to the family of sets [10], i.e., we say A ≺ B iff.
∀y ∈ B∃y′ ∈ A(y′ ≺ y). The set of all efficient points of X is called the efficient set. The
image of the efficient set under F is called the Pareto front. Multi-objective optimization
algorithms (MOAs) often employ a finite multiset X = {x(1), . . . , x(µ)} to approximate
the efficient set, whose image under F is denoted by Y. Multi-objective optimization is
an active research field that has produced many algorithms for the approximation of the
entire Pareto set/front of a given MOP. There exist, for instance, scalarization methods,
and mathematical programming techniques that transform the given MOP into an auxil-
iary scalar optimization problem (SOP) (e.g., [24]). Via solving a clever sequence of such
SOPs, one can obtain in many cases suitable Pareto front approximations (e.g., [25–28]).
In [29], a Newton method is proposed for multi-objective optimization. Next to these
point-wise iterative local search strategies there exist global set-based algorithms such as
cell-to-cell mapping techniques and subdivision techniques ([30–32]) as well as specialized
evolutionary algorithms ([33–36]). There exist in particular indicator-based evolutionary
algorithms (IBEAs) that aim for Pareto front approximations of a given performance in-
dicator (e.g., [12–14]). Widely used performance indicators are the Generational Distance
(GD [7]), the Inverted Generational Distance and variants ([8,37,38]), the averaged Haus-
dorff distance ∆p ([9,39,40]), and the Hypervolume indicator, which we will use in this
work and briefly review in the next section.

Finally, there exist multi-objective continuation methods that make use of the fact that
the solution set forms at least locally a manifold (e.g., [23,41–46]).

2.3. Hypervolume Indicator and Its First-Order Derivatives

The hypervolume indicator (HV) [10,47] is defined as the Lebesgue measure of the
compact set dominated by a Pareto approximation set Y ⊂ Rk and cut from above by a
reference point r:

HV(Y; r) = λk({p : ∃y ∈ Y(y ≺ p) ∧ p ≺ r}),
where λk denotes the Lebesgue measure in Rk. HV is Pareto compliant, i.e., for all Y ≺ Y′,
HV(Y; r) > HV(Y′; r), and is extensively used to assess the quality of approximation sets
to the Pareto front, e.g., in SMS-MOEA [12] and multi-objective Bayesian optimization [48].
Being a set function, it is cumbersome to define the derivative of HV. (The derivative of
a set function is not defined for an arbitrary family of sets. For some special cases, it can
be defined directly, e.g., on Jordan-measurable sets [49].) Therefore, we follow the generic
set-based approach for MOPs [16], which considers a finite approximation sets of size µ

vectors as a point in Rµn, i.e., X = [x(1)
>

, x(2)
>

, . . . , x(µ)
>
]> ∈ Rµn. Similarly, the image of

X under F can also be represented by a Rµk-vector: Y = [F(x(1))>, F(x(2))>, . . . , F(x(µ))>]>.
In this sense, the objective function F is also extended as follows:

F : X µ → Rµk, X 7→ [F(X1, . . . , Xn), F(Xn+1, . . . , X2n), . . . , F(X(µ−1)n+1, . . . , Xµn)]
>.

Taking F, we can express the hypervolume indicator as a function on Rµn:

HF : Rµn → R≥0, X 7→ HV(F(X); r).
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We will henceforth omit the reference point r inHF for simplicity. It is straightforward
to express the gradient of HF with respect to X using the chain rule as reported in our
previous works [16,19]:∇HF(X) = (∂HF/∂F)(∂F/∂X), in which we also discussed the time
complexity of computing the hypervolume gradient. It is noted here that an alternative to
the computation of the gradient of the entire set, it was also suggested to compute only
the gradient of a single point with respect to the hypervolume indicator; this approach is
referred to as hypervolume scalarization [50].

2.4. Hypervolume Hessian and Hypervolume Newton Method

Here, we assume F is at least twice continuously differentiable. In general, the Hessian
matrix of the hypervolume indicator can be expressed as follows:

∇2HF =
∂

∂X

(
∂HF

∂F
∂F
∂X

)
=

[
∂

∂X

(
∂HF

∂F

)]> ∂F
∂X

+
∂HF

∂F
∂2F

∂X∂X>

= ∇F>
∂2HF

∂F∂F>
∇F +

∂HF

∂F
∂2F

∂X∂X>
. (1)

Note that in the above expression, ∂2HF/∂F∂F> and ∂2F/∂X∂X> denote the Hessian
matrix of the hypervolume indicator with respect to objective points and of the objective
function F, respectively. In our previous work [21], we derived the analytical expression of
∇2HF for bi-objective cases and analyzed the structure and properties of the hypervolume
Hessian matrix. In addition, we implemented a standalone hypervolume Newton (HVN)
algorithm for unconstrained MOPs. Moreover, we have shown that the Hessian ∇2HF is a
tridiagonal block matrix in bi-objective cases and provided the non-singularity condition
thereof, which states the Hessian is only singular on a null subset of Rµn [21], thereby
ascertaining the safety of applying the HVN method.

The analytical expression of the Hessian matrix for higher dimensions contains the
derivatives ∂HF/∂x(`)i ∂x(m)

j , m = 1, . . . , µ, ` = 1, . . . , µ, i = 1, . . . , n, j = 1, . . . , n. To com-
pute these derivatives analytically, the chain rule can be applied (see [21]). In [21]. How-
ever, the Hessian matrix of the second mapping—from the points in the objective space
(y(1), . . . , y(k)) to the hypervolume indicator—was only given analytically for two dimen-
sions. The Hessian matrix of this second mapping can be generalized to k dimensional
objective spaces, and it is continuous in regular cases. Here, we will only sketch the con-
struction of this matrix and leave the detailed analysis for future research. It is known
that in the N-dimensional case, the first derivatives ∂ HV /∂yi are given by the (k − 1)-
dimensional Lebesgue measure of the k− 1 dimensional faces of the attainment surface that
separates the dominated space from the non-dominated space (see Figure 1, ∂ HV /∂y(1)3 ).
These faces themselves have a derivative that is given by the (k− 2)-dimensional Lebesgue
measure of the k− 2-dimensional segments (or patches) at the boundary of these faces,
which are also changing continuously with yi (see Figure 1, examples ∂ HV /∂y(1)1 ∂y(1)3 and

∂ HV /∂y(2)2 ∂y(1)3 ). Note that points in the objective space need to be in a general position
to guarantee differentiability; otherwise, one-sided differentiability applies and one of the
two derivatives, i.e., when the derivative with perturbed coordinate falls to the dominated
subspace, it is always zero [16].

In this work, however, rather than investigating in detail the analytical and compu-
tational properties of the Hessian for more than two objective functions, we compute the
second-order derivative ∂2HF/∂F∂F> with the automatic differentiation (AD) method [51]
and focus on solving equality-constrained MOPs using the Hessian matrix of the hypervol-
ume indicator.
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Figure 1. Example of a hypervolume indicator Hessian computation in three-dimensional objective
space with a collection of points {y(1), y(2), y(3)} and reference point r.

3. Hypervolume Newton Method for Constrained MOPs

In this section, we first describe the base method of HVN for the treatment of equality
constrained MOPs and will then discuss how to deal with inequalities and with dominated
points that may be computed during the run of the Newton method.

3.1. Handling Equalities

Consider a continuous equality-constrained MOP of the form

min
x∈X

F(x),

s.t. h(x) = 0,
(2)

where h(x) = (h1(x), . . . , hp(x))>, and hi : Rn → R, i = 1, . . . , p, being the i-th equality
constraint. The objective map is defined by F : X ⊂ Rn → Rk, where fi : X ⊂ Rn → R is
the i-the individual objective to be considered in the MOP. The feasible set is given by:

Q = {x ∈ X : h(x) = 0}. (3)

The set (population) based hypervolume optimization problem we are considering in
this work is the following one:

max
X⊂Q
|X|=µ

HV(F(X)), (4)

where HV(F(X)) denotes the value of the hypervolume for a given set X = {x(1), . . . , x(µ)}
of magnitude µ ∈ N, where each x(i) ∈ Rn. Note that the set X ⊂ Q can be interpreted
as a point in Rµn (via considering X = (x(1)1 , . . . , x(1)n , x(2)1 , . . . , x(2)n , . . . , x(µ)1 , . . . , x(µ)n )), and
hence, problem (4) can be identified by a scalar objective optimization problem of dimen-
sion µn.

The feasibility of X (i.e., X ⊂ Q) is identical to

hi(x(j)) = 0, i = 1, . . . , p, j = 1, . . . , µ. (5)

For the related set-based equality constraints, we define for i ∈ {1, . . . , p} and j ∈
{1, . . . , µ}

hi,j : Rµn → R, hi,j(X) = hi(x(j)). (6)
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For checking the feasibility of all decision points, we define h̄ : Rµn → Rpn via

h̄(X) =



h1,1(X)
h2,1(X)

...
hp,1(X)
h1,2(X)
h2,2(X)

...
hp,2(X)

...
hp,n(X)



=:



h̄1(X)
h̄2(X)

...
h̄p(X)

h̄p+1(X)
h̄p+2(X)

...
h̄2p(X)

...
h̄pn(X)



, (7)

then its Jacobian is given by

H̄ := ∇h̄(X) = diag
(

H(x(1)), . . . , H(x(µ))
)
∈ Rµp×µn, (8)

where

H(x(i)) =

∇h1(x(i))>
...

∇hp(x(i))>

 ∈ Rp×n. (9)

The Karush-Kuhn-Tucker (KKT) equations of the problem (4) hence read as

∇HF(X) + H̄>λ = 0

h̄(X) = 0,
(10)

for a Lagrange multiplier (or the dual variable) λ ∈ Rµp which directly leads to the root
finding problem

G : Rn(µ+p) → Rn(µ+p)

G(X, λ) =

(∇HF(X) + H̄>λ
h̄(X)

)
= 0,

(11)

where λ ∈ Rµn. The Jacobian of G at (X, λ)T is given by

DG(X, λ) =

(∇2HF(X) + M H̄>

H̄ 0

)
∈ Rµ(n+p)×µ(n+p), (12)

where

M =
µp

∑
j=1

λi∇2h̄j(X) ∈ Rµn×µn. (13)

Denoting by Xt ∈ Rµn and λt ∈ Rµp, the variables in iteration t, a Newton step for
problem (11) is given by(

Xt+1
λt+1

)
=

(
Xt
λt

)
− DG(Xt, λt)

−1G(Xt, λt). (14)

In our computations, we have omitted M in DG. A Newton step is hence obtained by
solving (∇2HF(Xt) H̄>

H̄ 0

)(
Xt+1 − Xt
λt+1 − λt

)
= −

(∇HF(Xt) + H̄>λt
h̄(Xt)

)
. (15)
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3.2. Handling Inequalities

In order to handle inequalities, we have chosen an active set approach which we will
discuss in the following. This approach is straightforward; however, it has led to satisfying
results in our computations, in particular when the initial candidate set was computed by
the evolutionary algorithm.

Assume problem (2) contains inequalities of the form

g(x) ≤ 0, (16)

where g(x) = (g1(x), . . . , gm(x))> and gi : Rn → R, i = 1, . . . , m, is the i-th inequal-
ity constraint. Analogous to the equality-constrained case, we define the feasibility of
X = (x(1)1 , . . . , x(1)n , x(2)1 , . . . , x(2)n , . . . , x(µ)1 , . . . , x(µ)n ) by

gi(x(j)) ≤ 0, i = 1, . . . , m, j = 1, . . . , µ. (17)

Define for i ∈ {1, . . . , m} and j ∈ {1, . . . , µ}

gi,j : Rµn → R, gi,j(X) = gi(x(j)) (18)

and ḡ : Rµn → Rmn by

ḡ(X) =



g1,1(X)
h2,1(X)

...
hm,1(X)
h1,2(X)
h2,2(X)

...
hm,2(X)

...
hm,n(X)



=:



ḡ1(X)
ḡ2(X)

...
ḡm(X)

ḡm+1(X)
ḡm+2(X)

...
ḡ2m(X)

...
ḡmn(X)



. (19)

The active set we have used is as follows: if for an inequality constraint it holds

ḡl(X) > −tol (20)

for a given tolerance tol > 0 at X, then we impose the equality

ḡl(X) = 0, (21)

(i.e., it will be added to the set of equalities) while all other inequalities are disregarded
at X.

3.3. Handling Dominated Points

Since Newton’s method tends to realize relatively longer steps, it often occurs that
some decision points are dominated after a Newton step/iteration. Therefore, it is necessary
to discuss how the equality-constrained HVN method behaves in this case. For the reason
that will become clear during our discussion, we will investigate two scenarios: (1) infeasible
and dominated points and (2) feasible but dominated points.

For the first scenario, we consider the simplest case, where p = 1 and there is only
one dominated point. Without loss of generality, we can assume that for an approximation
set X = {x(1), x(2), . . . , x(µ)} ⊆ X , x(1) is dominated by at least one of the remaining µ− 1
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points (as the indices are assigned to X arbitrarily). Denoting by X(−1) the approximation
set after removing x(1), we can express the constraint function on X(−1) as:

h̄∗(X(−1)) : R(µ−1)n → Rµ−1, X(−1) 7→
(

h̄∗2(X
(−1)), h̄∗3(X

(−1)), . . . , h̄∗µ(X
(−1))

)>
,

h̄∗j (X
(−1)) : R(µ−1)n → R, X(−1) 7→ h(x(j)), j ∈ [2 . . . µ].

Note that we are only considering the special case of one constraint, i.e., p = 1. The
root finding problem G can re-expressed in the following form, equivalent to Equation (11):

G(X, λ) =


λ1∇h(x(1))

∇HF

(
X(−1)

)
+ ∑

µ
i=2 λj∇h̄∗j (X

(−1))

h(x(1))
h̄∗(X(−1))

.

Let µ′ = µ− 1 and H
(

X(−1)
)
= [∇h̄∗2(X

(−1)), . . . ,∇h̄∗µ(X(−1))] ∈ Rµ′n×µ′ , we express
the derivative of G as a block matrix:

DG(X, λ) =



λ1∇2h(x(1)) 0n×µ′n ∇h(x(1)) 0n×µ′

0µ′n×n ∇2HF

(
X(−1)

)
+ ∑

µ
j=2∇2h̄∗j

(
X(−1)

)
0µ′n×1 H

(
X(−1)

)
∇h(x(1))> 01×µ′n 0 01×µ′

0µ′×n H
(

X(−1)
)>

0µ′×1 0µ′×µ′


.

Note that the upper left 2× 2 block equals ∇2HF(X) + ∑
µ
i=1∇2h−i (X). The inverse

of DG can be obtained by applying the Schur complement recursively (first consider the
block partition indicated above and then apply it again to each partition), provided that
both ∇2h(x(1)) and ∇2HF

(
X(−1)

)
are non-singular.

After simplification, the inverse of DG admits the following form:

[DG(X, λ)]−1 =



(
In×n −

(
g>Ag

)−1
Agg>

)
A 0n×µ′n

(
g>Ag

)−1
Ag 0n×µ′

0µ′n×n B
(
I−H(H>BH)−1H>B

)
0µ′n×1 0µ′n×µ′(

g>Ag
)−1

(Ag)> 01×µ′n −
(
g>Ag

)−1
01×µ′

0µ′n×n 0µ′×µ′n 0µ′×1 −(H>BH)−1

,

where g = ∇h(x(1)), A = [λ1∇2h(x(1))]−1, H = H(X(−1)), and

B =

[
∇2HF

(
X(−1)

)
+

µ

∑
j=2
∇2h̄∗j

(
X(−1)

)]−1

.

The first row of blocks is of particular interest to us since it determines the search step
of x(1). It is obvious that

∆x(1) = −
(
[DG(X, λ)]−1

)
[1:n,1:µ(n+1)]

G(X, λ)

= −
(

λ1

(
In×n −

(
g>Ag

)−1
Agg>

)
Ag + h(x(1))

(
g>Ag

)−1
Ag
)

(22)

= − h(x(1))
∇h(x(1))>[∇2h(x(1))]−1∇h(x(1))

[∇2h(x(1))]−1∇h(x(1)),
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where notation (M)[1:n,1:µ(n+1)] takes rows from 1 to n and columns from 1 to µ(n + 1) in
matrix M. Similarly, the search step of the dual variable is:

∆λ1 = −
(
[DG(X, λ)]−1

)
[µn+1,1:µ(n+1)]

G(X, λ)

= −λ1

(
g>Ag

)−1
(Ag)>g +

(
g>Ag

)−1
h(x(1)) (23)

= λ1

(
h(x(1))

∇h(x(1))>[∇2h(x(1))]−1∇h(x(1))
− 1

)
.

Now, consider the function ĥ(x) = h2(x)/2, whose first- and second-order deriva-
tives are:

∇ĥ(x) = h(x)∇h(x), ∇2ĥ(x) = h(x)∇2h(x) +∇h(x)∇h(x)>.

The global minimum/maximum of ĥ corresponds to the feasible set, i.e., h(x) = 0.
Hence, Newton iterations that optimize ĥ will equivalently find the feasible set. Computing
the Newton direction of ĥ, we have:

−
[
∇2ĥ(x)

]−1
ĥ(x)

= −[h(x)∇2h(x)]−1

(
In×n −

∇h(x)∇h(x)>[h(x)∇2h(x)]−1

1 +∇h(x)>[h(x)∇2h(x)]−1∇h(x)

)
h(x)∇h(x) (24)

= − h(x)
h(x) +∇h(x)>[∇2h(x)]−1∇h(x)

[∇2h(x)]−1∇h(x).

Setting x = x(1) in the above equation and comparing it to Equation (22), we notice
that the Newton direction of ĥ and the hypervolume Newton step ∆x(1) only differ by a
scalar, which can be neglected in practice since we implement a step-size control to re-scale
the search step (see the following sub-section). Therefore, we conclude that for infeasible
and dominated points, our HVN method (Equation (15)) only considers the constraint
function and moves such decision points to the feasible set rapidly (ideally at quadratic
speed when the point is close to the feasible set). This satisfactory property allows for
handling infeasible and dominated points without modifying our HVN method.

In addition, due to this nice property, an infeasible point will eventually lie on the
feasible set, where it can still be dominated if other feasible points exist. This is precisely
the second scenario of our discussion, in which the hypervolume of feasible but dominated
points will be zero. To move such points, we propose to employ the famous non-dominated
sorting [36] procedure, where we partition all feasible points into “layers” of mutually non-
dominated ones (formally, anti-chains of Pareto order) and compute the Newton direction
for each layer (using Equation (15)) regardless of other dominating layers. In this manner,
the HVN method can move all feasible points along the feasible set for achieving a good
distribution.

3.4. The HVN Method for Constrained MOPs

Taking the above considerations regarding the HVN method, in this section, we aim to
devise and implement a standalone HVN algorithm, which is outlined in Algorithm 1. First,
we check if any decision point is feasible (i.e., h(x) = 0 for some x), where the feasibility can
be tested numerically with a pre-defined small threshold (e.g., 10−4 used in this work) for
the equality constraints. Then, we employ the non-dominated sorting point procedure [36]
to partition the feasible points Xf into “layers” of mutually non-dominated ones, where
the Newton direction (Equation (15)) is calculated separately on each layer. Taking L for
the indices of points in a layer and Xf[L] for the subset indexed by L, we express this
partitioning as Xf[L1] ≺ Xf[L2] ≺ · · · ≺ Xf[Lq], ∀i 6= j(Li ∩ Lj = ∅),∪iLi ⊆ [1 . . . µ]. Note
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that the dominance relation for the remaining infeasible and dominated points is not well-
defined, considering the equality constraints since they are incomparable to the feasible
ones (also among themselves). In this case, we simply merge them into the first layer L1
and compute the Newton direction thereof, which can be justified by the observation in
Equations (22) and (24). The resulting search direction of the infeasible and dominated
points is a Newton direction of the function h2/2. In this treatment, a special case arises
when there are no feasible points, usually in the first several iterations of the algorithm.

Algorithm 1: Standalone hypervolume Newton algorithm for equality-
constrained MOPs
1 Input: F: multi-objective function, h: equality constraints, X0: initial

approximation set, B: maximal iterations;
2 if X0 is not given then
3 sample X =

{
x(1), x(2), . . . , x(µ)

}
⊆ X uniformly at random

4 else
5 X← X0

6 Y←
{

F(x(1)), F(x(2)), . . . , F(x(µ))
}

;

7 H←
{

h(x(1)), h(x(2)), . . . , h(x(µ))
}

;

8 λ←
{

11×p/µ, . . . , 11×p/µ
}

and |λ| = µ ; . initialize dual variables
9 ε← 10−4;

10 for c = 1, 2, . . . , B do
11 S← ∅ ; . indices for the feasible subset
12 for i ∈ [1 . . . µ] do . check the feasibility

13 if max
{
|h1(x(i))|, . . . , |hp(x(i))|

}
≤ ε then S← S ∪ {i} ;

14 L1, L2, . . . , Lq ← NON-DOMINATED-SORTING(X[S]); . Xf = X[S]
15 L1 ← L1 ∪ ([1..µ] \ S);
16 for L ∈ {L1, L2, . . . , Lq} do
17 ∇2HF(X[L])← HYPERVOLUME-HESSIAN(X[L], Y[L]) ; . Equation (1)

// Equation (15)
18 ∆L ← NEWTON-STEP

(
∇2HF(X[L]),∇2h(X[L]),∇h(X[L]), H[L], λ[L]

)
;

// See Section 3.4
19 Determine the step-size σL with Armijo’s backtracking line search;

// Apply Newton step to the primal-dual pair
20 (X[L], λ[L])← (X[L], λ[L]) + σL∆L

21 Y←
{

F(x(1)), F(x(2)), . . . , F(x(µ))
}

;

22 H←
{

h(x(1)), h(x(2)), . . . , h(x(µ))
}

;

23 return X;

Finally, another important aspect is the step-size control for each Newton step. We
propose maintaining individual step-sizes for each partition, which is determined using the
well-known Armijo’s backtracking line search [52]. In detail, this method starts with an ini-
tial step-size σ0 and tests whether the Euclidean norm of G(X, λ) has sufficiently decreased
after applying the Newton step to the primal-dual pair (X, λ). Since Newton’s direction
for equality-constrained problems (Equation (15)) is not necessarily an ascent direction
for the hypervolume, we take the Euclidean norm ||G(X, λ)|| as the convergence measure
since (1) the optimality condition is G(X, λ) = 0 (Equation (11)) and (2) the Newton step is
always a descent direction of ||G(X, λ)||. Let Z = (X>, λ>)> be the primal-dual variable
and ∆Z = −[DG(Z)]−1G(Z), then we have ( d

dσ ||G(Z + σ∆Z)||)|σ=0 = −||G(Z)|| ≤ 0. If
the test fails, then we halve the step-size and repeat the test. Notably, for infeasible and
dominated points, the test checks if the value of the squared constraint value is sufficiently
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decreased as the HVN method computes the Newton direction of h2/2 for those points. In
our implementation, we use maximally six iterations of such tests, resulting in a minimal
step-size of σ0/64. As for the initial step-size σ0, the commonly used value σ0 = 1 often
leads to Newton steps that jump out of the decision space when the Newton direction is
large or the point is in the vicinity of the decision boundary. Therefore, we set it to the
minimum of one and the maximal step-size that the primal vector X can take without
leaving the decision space, i.e., σ0 = min{1, σmax}. The value of σmax can be calculated in a
straightforward way when the decision space is a convex and compact subset of Rn, e.g.,
a hyperbox.

3.5. Computational Cost

The above method requires the knowledge of the Jacobian and the Hessian of both ob-
jective and constraint functions. In this work, we have used automatic differentiation (AD)
techniques [53]. Note that finite differences can also be utilized when the AD-computation
is not applicable. The AD-computation takes maximally four times the used multiply–add
operations taken in evaluating the function value [54]. Hence, to make a fair compari-
son between HVN and MOEA methods, we will take 4 function evaluations (FEs) and
4 + 6n FEs to quantify the computational cost of each AD-computed Jacobian and Hessian,
respectively. In total, the number of FEs consumed in each iteration comprises:

#FEs : µ︸︷︷︸
F

+ µ︸︷︷︸
h

+ 4µ︸︷︷︸
∇F

+ 4µ︸︷︷︸
∇h

+ (4 + 6n)µ︸ ︷︷ ︸
∇2F

+ (4 + 6n)µ︸ ︷︷ ︸
∇2h

+ 6(4µ + 4µ)︸ ︷︷ ︸
step-size control

= (69 + 12n)µ,

which amounts to computations of function evaluation, constraint evaluation, Jacobian
of the objective function and the constraint, Hessian of the objective function and the
constraint, and the backtracking line search of the step-size. Computing the hypervol-
ume Hessian takes Θ((µn)3) time in addition to the AD-computation of derivatives in
Equation (1). For solving Equation (15), we use Cholesky decomposition, which has a com-
putational complexity of O((µ(n + p))3). It is certainly desired either to have an analytic
expression of the HV Hessian or to exploit the block diagonal structure this matrix will
certainly have for AD, which we, however, have to leave for future research.

We have implemented the standalone algorithm in Python, which is accessible at
https://github.com/wangronin/HypervolumeDerivatives (accessed on 1 November 2022).

4. Numerical Results

In this section, we present some numerical results of the HVN both as standalone
algorithms as well as a local search engine within the NSGA-III algorithm.

4.1. HVN as Standalone Algorithm

We showcase the behavior of the proposed Newton method as a standalone method
on three example problems:

(P1) : F(x) =
[
(x− 1)2, (x + 1)2

]>
,

h(x) = x2 − 1, X = [−2, 2]2, r = [20, 20]>.

(P2) : F(x) =
[
(x− (1, 1, 0)>)2, (x− (1,−1, 0)>)2, (x− (−1, 1, 0)>)2

]>
,

h(x) =

x−
(

2
√

3
3
− 1, 0,−1.5

)>2

− 1, X = [−2, 2]3, r = [38, 38, 38]>.

(P3) : F(x) =
[
(x + (1, 1, 1)>)2, (x + (1, 0, 0)>)2, (x + (2, 2,−4)>)2

]>
,

g(x) = −x0, X = [−4, 4]3, r = [90, 90, 90]>.

https://github.com/wangronin/HypervolumeDerivatives
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Importantly, we will use different initializations of the decision points that are specific
to each problem in order to investigate the behavior of the standalone HVN with respect
to the characteristic of each problem; We do not aim to provide a unified and systematic
initialization method for the standalone HVN in this section. Note that problem P3 defines
an inequality constraint on the first component x0 of the decision point, where the feasible
set is {x ∈ X : x0 ≥ 0}, and the optimum lies on the active set of g, i.e., x0 = 0. This
problem is meant to test if the proposed HVN algorithm can manage to solve inequality-
constrained problems where the optimum is on the active set of the constraint. To measure
the empirical performance of the HVN algorithm, we take the Euclidean norm ||G(X, λ)||
since the Newton direction is not necessarily an ascent direction for the hypervolume.

Moreover, since it is well-known that the Newton-like method can be affected by choice
of initial solutions, we investigate the performance of the HVN algorithm on problem P1
with three different initializations. Specifically, in the two-dimensional decision space,
we create µ = 50 initial decision points on the line segment x2 = x1 − 2, x1 ∈ [0, 2],
where we determine the value of x1 by (i) taking evenly spaced points (linear), (ii) logistic-
transformed evenly spaced points (which makes the points denser around the tails of the
line segment), or (iii) logit-transformed evenly spaced points (higher density of points
in the middle). The results are illustrated in Figure 2 and Table 1, which shows a set of
well-distributed points on the feasible set in the objective space (the red dashed sphere) for
all three initializations. In addition, the empirical convergence rate is quadratic regardless
of the choice of initialization methods, as reported in Table 1.

Table 1. The evolution of ‖G(X, λ)‖ on problems P1 with three different initialization strategies.

Linear Logistic Logit

1 4.23 × 101 4.55 × 101 4.20 × 101

2 2.33 × 101 2.54 × 101 2.27 × 101

3 8.81 × 100 1.01 × 101 8.52 × 100

4 8.19 × 100 7.82 × 100 8.30 × 100

5 2.29 × 100 2.17 × 100 2.29 × 100

6 1.06 × 10−1 8.77 × 10−2 1.11 × 10−1

7 1.91 × 10−4 3.48 × 10−4 1.93 × 10−3

8 7.38 × 10−10 7.05 × 10−7 1.03 × 10−5

9 1.76 × 10−14 1.06 × 10−12 1.55 × 10−10

10 1.62 × 10−14 1.79 × 10−14 2.33 × 10−14

The results on problem P2 are depicted in Figure 3 and Table 2 for three different sizes
µ ∈ {20, 40, 60} of the approximation set. The initial decision points are sampled uniformly
at random in the convex hull of three points (1, 1, 0)>, (1,−1, 0)>, and (−1, 0, 0)>. Whereas
the final approximation set is well-distributed in the objective space, we observe that
empirical convergence of ||G(X, λ)|| is considerably rugged in the first 20–25 iterations,
after which quadratic convergence appears. This is indeed attributed to the fact that
decision points often become dominated in the first couple of iterations on this problem,
resulting in zero hypervolume gradient thereof and hence quite a large norm of ||G(X, λ)||.
Nevertheless, the proposed treatment of those dominated points (Algorithm 1), which
is based on the non-dominated sorting procedure, is capable of bringing the dominated
points to the active set with a quadratic speed. Similarly, the same ruggedness is seen in the
convergence chart of problem P3 (shown in Figure 4). On this problem, we again take the
setting µ ∈ {20, 40, 60}, and the initial decision points are sampled uniformly at random
in the feasible space of [0, 4]× [−4, 4]2. We extend the HVN algorithm slightly for this
inequality-constrained problem in the following way: whenever the decision points are
feasible, i.e., g(x) ≤ 0, and quite distant from the active set (g(x) = 0, shown as the red
plane in Figure 4), we ignore the constraint function when computing the Newton step.
When the feasible decision points are sufficiently close to the active set (the distance is
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less than 10−4 in our implementation), we consider g(x) an equality constraint and utilize
Equation (15) to compute the Newton step.
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Figure 2. On problem P1, the convergence of the HVN method is shown for three different initial-
izations of the starting approximation set (µ = 50)—linear (top row), logistic (middle), and logit
spacing (bottom). We depict the final approximation set (left column; green stars), the corresponding
objective points (middle column; green stars), and the evolution of the HV value and ‖G(X, λ)‖
(right column).

Moreover, we test the standalone HVN method on large-scale, complicated MOPs.
We choose the well-known DTLZ problems with one spherical constraint [55,56] with
µ = 200 decision points, resulting in a relatively large Hessian matrix (for an 11-dimensional
decision space and one constraint, the DG(X, λ) object is of size 2400× 2400). In this case,
we use sparse matrix operations for computation efficiency, exploiting the sparsity of the
Hessian. Since the DTLZ problems are highly multi-modal, the initial approximation set is
generated in a local vicinity of the Pareto set, i.e., X∗ + 0.02U (0, 1), where X∗ is sampled
uniformly at random on the Pareto set. We execute the standalone HVN method for
15 iterations and illustrate the result in Figure 5. In the plot, we observe well-distributed
final points (green dots) in contrast to non-uniform initial ones (black crosses), showing the
standalone HVN works properly as a local method for large-scale problems.
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Figure 3. On problem P2 with a spherical constraint, we depict for three sizes of the approximation
set (µ ∈ {20, 40, 60}; from top to bottom), the final approximation set (left column; green stars), the
corresponding objective points (middle column; green stars), and the evolution of the HV value and
‖G(X, λ)‖ (right column). The initial points are sampled uniformly at random in the convex hull of
three points (1, 1, 0)>, (1,−1, 0)>, and (−1, 0, 0)>.

Table 2. The evolution of ‖G(X, λ)‖ on problems P2 and P3.

Problem P2 Problem P3

µ = 20 µ = 40 µ = 60 µ = 20 µ = 40 µ = 60

1 1.365 × 101 1.055 × 101 18.036836 1.433 × 103 569.121097 438.983791
2 9.454 × 100 9.259 × 100 16.083916 9.368 × 102 541.523806 434.703270
3 1.247 × 101 8.977 × 100 16.403643 1.197 × 103 444.774066 365.952443
4 1.589 × 101 8.628 × 100 18.052126 9.522 × 102 261.636562 362.014326
5 9.791 × 100 6.888 × 100 12.364802 6.194 × 102 212.841570 341.897644
6 8.618 × 100 1.123 × 101 3.899254 5.232 × 102 145.076665 254.253017
7 8.024 × 100 8.779 × 100 11.323440 3.557 × 102 103.986300 240.719767
8 4.737 × 100 7.632 × 100 13.320606 2.419 × 102 57.592159 165.603954
9 9.037 × 10−1 7.090 × 100 2.543622 1.511 × 102 12.628821 109.411195

10 7.393 × 10−2 1.816 × 100 5.984437 8.527 × 101 0.104307 70.516402
11 1.182 × 10−1 2.660 × 10−1 5.749496 3.732 × 101 0.097777 41.699152
12 4.399 × 10−2 2.877 × 10−1 0.702964 3.248 × 100 0.097013 19.525977
13 1.535 × 10−1 3.232 × 10−2 2.240449 2.008 × 100 0.096634 0.447690
14 2.299 × 10−1 3.694 × 10−3 13.274468 1.829 × 100 0.096256 0.257345
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Table 2. Cont.

Problem P2 Problem P3

µ = 20 µ = 40 µ = 60 µ = 20 µ = 40 µ = 60

15 7.425 × 10−2 7.159 × 10−2 15.201915 5.425 × 10−2 0.005277 2.066379
16 1.572 × 10−2 1.378 × 10−2 11.273571 1.735 × 10−1 0.002934 2.016149
17 4.216 × 10−4 1.231 × 10−3 3.318978 6.372 × 10−6 0.001602 1.019636
18 1.630 × 10−7 5.630 × 10−4 2.818340 9.702 × 10−3 0.001552 0.944297
19 1.674 × 10−13 5.454 × 10−4 0.400360 9.373 × 10−5 0.001528 4.904926
20 1.733 × 10−13 5.411 × 10−4 0.335107 2.546 × 10−8 0.001522 2.937413
21 1.803 × 10−13 4.697 × 10−4 0.074058 7.243 × 10−12 0.001516 3.118031
22 1.761 × 10−13 5.901 × 10−4 0.081798 8.897 × 10−12 0.001139 0.336917
23 1.384 × 10−13 6.140 × 10−5 0.057776 6.654 × 10−12 0.001072 0.004270
24 1.020 × 10−13 4.508 × 10−7 0.029809 7.210 × 10−12 0.001010 0.000866
25 9.765 × 10−14 2.759 × 10−11 0.001956 5.851 × 10−12 0.000994 0.000489
26 9.788 × 10−14 7.794 × 10−13 0.081949 5.851 × 10−12 0.000990 0.000477
27 1.177 × 10−13 7.767 × 10−13 0.031275 5.851 × 10−12 0.000954 0.000459
28 1.176 × 10−13 7.688 × 10−13 0.000492 5.851 × 10−12 0.128140 0.000460
29 1.052 × 10−13 5.918 × 10−13 0.000053 5.851 × 10−12 0.252721 0.000460
30 1.314 × 10−13 6.821 × 10−13 0.000002 5.851 × 10−12 0.022233 0.000460
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Figure 4. On problem P3 with a spherical constraint, we depict for three sizes of the initial approx-
imation set (µ ∈ {20, 40, 60}; from top to bottom), the final approximation set (left column; green
stars), the corresponding objective points (middle column; green stars), and the evolution of the HV
value and ‖G(X)‖ (right column). The initial decision points are sampled uniformly at random in
the feasible space of [0, 4]× [−4, 4]2.
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Figure 5. On Eq-DTLZ1-3 problems, the HVN method starts from a small local perturbation (black
crosses) of the Pareto set (sphere in the decision space), i.e., X∗ + 0.02U (0, 1), where X∗ (of size 200) is
sampled uniformly at random on the Pareto set. The final approximation set of the HVN method is
depicted as green points. Only the first three search dimensions are shown for the decision space.

4.2. HVN within NSGA-III

In this section, we investigate the empirical performance of the HVN algorithm
on more complicated, equality-constrained DTLZ (Eq-DTLZ) problems [55,56] and their
inverted counterparts (Eq-IDTLZ). As Newton-like algorithms are local methods, running
the standalone algorithm (Algorithm 1) will stagnate at local Pareto sets. Therefore, we
hybridize the HVN algorithm with an MOEA, in which we first execute the MOEA for a
pre-defined budget to overcome the local optimum and get close to the global Pareto set,
and then initialize the HVN algorithm from the final approximation set of the MOEA to
make local refinements. We summarize this hybrid approach in Algorithm 2. Notably, in
line 3, we transfer the whole approximation set (rather than only the non-dominated points)
to HVN upon the termination of MOEA since the standalone HVN method is able to move
dominated points towards the feasible set at quadratic speed, as proven in Section 3.3.

Algorithm 2: Hybridization of HVN and MOEA

1 Input: F: multi-objective function, h: equality constraints, B1: #iteration for
MOEA, B2: #iteration for HVN;

2 X← MOEA(F, µ, h, B1) ; . X is the entire approximation set
3 X′ ← HVN(F, h, X, B2); . Algorithm 1
4 return X′;

The following empirical study aims to check whether the hybridization approach
can achieve a better final approximation set/front than an MOEA alone under the same
computation budget. As for the test problem, a single spherical constraint h(x) = (x1 −
0.5)2 + (x2 − 0.5)2 − 0.16 is imposed on problems DTLZ1− 4. The decision space is [0, 1]11,
the reference point is r = (1, 1, 1)> for HVN, and the approximation set is of size 200. Here,
we choose the well-known NSGA-III algorithm [34,35], where the equality constraints are
handled using the adaptive ε-constraint handling technique. We utilize the implementation
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in the Pymoo library: https://pymoo.org/constraints/eps.html (accessed on 1 November
2022). The method considers a solution feasible subject to a small ε threshold, which
decreases linearly to zero. The initial value of ε is set to the average constraint value
of the initial population. In our experiment, we control the ε decrease to zero after 50%
of the iterations of NSGA-III. In addition, we use Das and Dennis’s approach [28] to
generate well-spaced reference directions (18 partitions which lead to 190 directions) for
NSGA-III. As for its hyperparameters, we use the default setting: η = 30 and p = 1 for
simulated binary crossover and η = 20 for polynomial mutation. Furthermore, the hybrid
algorithm first executes NSGA-III with µ = 200 for 1000 iterations and then runs the HVN
method for 10 iterations. In HVN, the total function evaluations and AD operations take
ca. 270 s CPU time on an Intel(R) Core(TM) i5-8257U CPU. Considering the CPU time of
a single function evaluation, which is on average ca. 5.6 × 10−5 s measured on the same
hardware, the total function evaluations plus the AD operations are equivalent to roughly
270/5.6 × 10−5 ≈ 4.8 × 105 FEs. Therefore, the total budget of the hybrid algorithm is
roughly 4.8 × 105/200 + 1000 ≈ 3400 iterations. We will execute the standalone NSGA-III
algorithm for the same iterations to keep the fairness of comparisons.

We first depict one example of the final approximation set (only the non-dominated
subset is shown) in Figure 6 for both methods, where we clearly observe that the hy-
bridization achieves much more non-dominated points than NSGA-III. Second, we show,
in Table 3, the hypervolume indicator value and the number of final non-dominated points
for both algorithms obtained from 15 independent runs. In addition, we compute the above
metrics for the hybrid algorithm right before the HVN phase starts (NSGA-III (1000) in the
table), showing the progress that HVN manages to make. From the results, we conclude
that the hybrid algorithm significantly improves upon the hypervolume metric and outputs
substantially more non-dominated points than NSGA-III alone. We conjecture that the
observed advantage of the hybrid algorithm is very likely attributed to HVN’s ability
to move dominated points to the feasible set with quadratic convergence (see Section 3),
which disregards the objective function and thereby its multi-modal landscape.

Table 3. On Eq-DTLZ1-4 and Eq-IDTLZ1-4 problems, the sample mean and standard error of the
hypervolume (HV) value and the number of final non-dominated (ND) points over 15 independent
runs for each algorithm. The hypervolume values are computed with reference point (1, 1, 1)> for all
problems except Eq-DTLZ4, Eq-IDTLZ3, and Eq-IDTLZ4, which we use (1.2, 5 × 10−3, 5 × 10−4)>,
(800, 800, 700)>, and (−0.4, 0.6, 0.6)>, respectively. The initial population is µ = 200 for all algorithms.
Hybridization = NSGA-III (iter = 1000) + HVN (iter = 10), which consumes roughly the same CPU
time on function evaluations with NSGA-III for 3400 iterations (see caption of Figure 6 for the detail).

Eq-DTLZ1 Eq-DTLZ2 Eq-DTLZ3 Eq-DTLZ4

Algorithm HV #ND HV #ND HV #ND HV #ND

NSGA-III (1000) 0.867 ± 1.4 × 10−3 28.4 ± 0.7 0.297 ± 1.9 × 10−3 32.7 ± 0.9 0.292 ± 1.9 × 10−3 26.0 ± 1.0 8.4 × 10−4 ± 7.0 × 10−5 12.3 ± 0.8
Hybridization 0.876 ± 2.4 × 10−4 80.9 ± 2.0 0.324 ± 3.6 × 10−4 95.3 ± 1.9 0.321 ± 6.6 × 10−4 75.2 ± 2.4 1.1 × 10−3 ± 5.1 × 10−5 200.0 ± 0.0
NSGA-III (3400) 0.873 ± 4.5 × 10−4 38.5 ± 1.3 0.304 ± 9.2 × 10−4 32.6 ± 0.9 0.301 ± 1.1 × 10−3 30.1 ± 0.7 9.2 × 10−4 ± 5.2 × 10−5 14.5 ± 0.6

Eq-IDTLZ1 Eq-IDTLZ2 Eq-IDTLZ3 Eq-IDTLZ4

Algorithm HV #ND HV #ND HV #ND HV #ND

NSGA-III (1000) 0.517 ± 1.8 × 10−2 23.2 ± 0.5 3.224 ± 2.0 × 10−2 74.1 ± 1.2 1.5× 109 ± 8.0 × 106 81.7 ± 1.6 8.4 × 10−4 ± 7.0 × 10−5 12.3 ± 0.8
Hybridization 0.534 ± 1.5 × 10−3 112.1 ± 2.1 3.388 ± 1.7 × 10−2 198.2 ± 0.4 1.6× 109 ± 5.4 × 106 197.1 ± 0.4 1.1 × 10−3 ± 5.1 × 10−5 200.0 ± 0.0
NSGA-III (3400) 0.529 ± 2.9 × 10−4 33.4 ± 0.4 3.359 ± 4.7 × 10−3 88.3 ± 0.4 1.5× 109 ± 2.5 × 106 92.1 ± 0.8 9.2 × 10−4 ± 5.2 × 10−5 14.5 ± 0.6

https://pymoo.org/constraints/eps.html
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Figure 6. On the Eq-DTLZ2 (a) and the Eq-IDTLZ1 (b) problem, we compare the hybridization
of HVN and NSGA-III to NSGA-III with roughly the same budget: for the former, the hybrid
algorithm first executes NSGA-III with µ = 200 for 1000 iterations and then runs the HVN method
for 10 iterations. In HVN, the total function evaluations and AD takes ca. 270 s CPU time on an
Intel(R) Core(TM) i5-8257U CPU, which corresponds to ca. 4.8× 105 FEs. Hence, for the latter, we set
3400 (=4.8×105/200 + 1000) iterations in total for µ = 200. We use the same hyperparameter setting
for the standalone NSGA-III and the one used in the hybridization. The decision space is [0, 1]11, and
the reference point is (1, 1, 1)> for HVN.

5. Conclusions

In this paper, we propose a hypervolume Newton method for equality-constrained
multi-objective optimization problems (MOPs) under the assumption that both the objective
and the constraint functions are twice continuously differentiable. Based on previous works
on set-oriented hypervolume Hessian matrix and hypervolume Newton (HVN) method for
unconstrained MOPs, we propose, in this paper, the generalization of the HVN for equality-
constrained problems and also elaborate a treatment for inequality-constrained based on
an active set approach, which regards an inequality function as equality if the constraint
values are within some small tolerance. In addition, we devised and tested two resulting
algorithms: the standalone HVN method as an efficient local optimizer and a hybridization
of the HVN and an MOEA for solving complicated and multi-modal MOPs. Moreover, in
detail, we discuss the search direction for dominated points obtained from the set-oriented
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Newton step in which we prove that for dominated and infeasible points, the computed
search step is the Newton step of the squared equality constraint function. Therefore, our
HVN method can efficiently steer the non-dominated and dominated decision points.

We first illustrate the empirical behavior of the standalone algorithm on three simple
MOPs, where we observe quadratic convergence of the two-norm of the root finding
problem G. Then, on highly multi-modal DTLZ problems with one spherical constraint
(Eq-DTLZ), we tested the local convergence of the standalone HVN algorithm with a
relatively large approximation set (µ = 200) by initializing the approximation set in the
neighborhood around the Pareto set, which shows a fast convergence to well-distributed
points on the feasible set. Finally, we benchmark the hybrid algorithm against NSGA-III on
Eq-DTLZ1-4 and Eq-IDTLZ1-4 problems, in which we observe that with roughly the same
computational budget, the hybrid algorithm achieves substantially more non-dominated
points in the final population, which leads to significantly higher hypervolume values. We
conjecture that such an advantage is attributed to (1) the fast local convergence of the HVN
method and (2) HVN’s ability to move infeasible and dominated points.

For future works, we contemplate (1) testing the hybridization of the HVN method
with other EMOAs for more than three objectives, e.g., SMS-EMOA, to investigate the
benefit of the HVN method in a broader setup; (2) comparing the hybrid HVN method
to other state-of-the-art algorithms, e.g., MOEA/D (decomposition-based), EHVI-EGO
(Bayesian optimization), or the average Hausdorff distance-based Newton method (math-
ematical optimization) on complex, or even real-world MOPs with multiple non-linear
constraint functions; (3) investigating the analytical expression (as sketched in Figure 1) and
computation of the hypervolume Hessian matrix, which can reduce the computation cost of
the HVN method; (4) devising generic methodologies to handle inequality constraints for
the HVN method, which will make it more applicable in practice; (5) extending the HVN
to methods that provide non-zero sub-gradients for dominated points as in [17,18]; and
(6) incorporating a surrogate-assisted method for tackling high-dimensional and complex
problems, e.g., as in [57].
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