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Abstract: The problem of finite-time static output feedback H∞ control for a class of discrete-time sin-
gular Markov jump systems is studied in this paper. With the consideration of network transmission
delay and event-triggered schemes, a closed-loop model of a discrete-time singular Markov jump
system is established under the static output feedback control law, and the corresponding sufficient
condition is given to guarantee this system will be regular, causal, finite-time bounded and satisfy the
given H∞ performance. Based on the matrix decomposition algorithm, the output feedback controller
can be reduced to a feasible solution of a set of strict matrix inequalities. A numerical example is
presented to show the effectiveness of the presented method.

Keywords: discrete-time Markov jump system; event-triggered scheme; finite-time stability; static
output feedback

1. Introduction

Over the past few years, a lot of attention has been attracted to the research of Markov
jump systems due to the fact that those systems can effectively describe the stochastic
dynamics of physical systems suffering from some structural and parametric changes,
random abrupt variations and unexpected environment disturbances. The Markov jump
systems can better model a class of engineering systems, such as mechanical systems,
biological systems, economic systems, electric systems and networked systems. Since it
was presented in 1961, some fundamental concepts and theories, including stability analysis,
controller synthesis and observer design, have been studied. By analyzing the relation
among transition rates, the problem of stability and stabilization of Markov jump systems
with generally uncertain transition rates was studied in [1], where a sufficient stability
criterion was given. The concept of mean-square stability was also introduced in [2], where
an adaptive control algorithm was presented to study the problem of a class of Markov
jump systems with Lévy noise. This concept was also applied to study the stabilization
problem of positive Markov jump systems in both continuous-time and discrete-time
contexts [3]. When the system state was unavailable, the observer-based asynchronous
control problem was studied for Markov jump systems with external disturbance and
time delay [4]. By using the average dwell time method, the state observer was also
designed for a class of homogeneous Markov jump systems with random communication
delays, stochastic nonlinearity, and piecewise-constant transition probabilities in [5], where
a passive control algorithm was given.

Singular systems, also called generalized state-space systems, algebraic-differential
systems, implicit systems and semi-state space systems, are complex systems described
as both dynamic systems and algebraic systems [6–8]. It is well known that the regularity
and absence of impulse problems should be considered simultaneously when the stabil-
ity problem of singular systems is studied, which are not required to be considered in
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state-space systems. Via an observer-based technique, the sliding mode control problem
was investigated for discrete-time Takagi–Sugeno fuzzy networked singularly perturbed
systems [9]. By using the slow-state feedback control method, the discrete-time singularly
perturbed switched systems with persistent dwell-time switching law were studied in [10].
With the development of singular systems, the singular Markov systems have been put
forward in the past few years. The bounded real lemma was presented for discrete-time
Markov jump linear singular systems in [11], and the robust fault tolerant control problem
was studied when the mixed time delays appeared in the system state. When the system
input also involves time delay, the H∞ control problem was considered for singular Markov
systems with both input delay and state delay [12]. When saturation nonlinearity was
contained in the system input, the robust stochastic stability problem was considered for a
class of uncertain singular Markov jump systems with actuator saturation nonlinearity [13].
The discontinuity problem introduced by the mode-dependent singular matrix and Markov
jump was studied in [14], where a new Lyapunov functional was designed to present the
switching characteristics, and the corresponding stability criterion was given. By using
dynamics decomposition and Weierstrass decomposition, respectively, the stochastic stabil-
ity problem was also studied for discrete-time Markov jump linear singular systems with
partially known transition probabilities [15]. The H∞ control problem was also considered
for singular Markov jump neural networks with mode-dependent time-varying delays by
using singular value decomposition and hidden Markov model [16].

On the other research area, the networked control systems had been widely used
in intelligent transportation systems, mobile robots and other fields since this class of
systems has the characteristics of flexible structure, low cost, convenient expansion and
maintenance [17,18]. However, in practical applications, the factors such as network
delays, packet loss and packet disorders might result in declined system performance
or system instability. For this case, the event-triggered strategy has been proposed in
recent years and has received much attention by scholars. Compared with the traditional
time-triggered strategy, the sampled data are not released to the network until the event-
triggered condition is violated. In recent years, much research has been done based on
event-triggered schemes. For example, Wang et al. [19] studied reliable controller design
for singular Markov jump systems with partly known transition probabilities based on
event-triggered schemes, where two event-triggered schemes were introduced. The event-
triggered H∞ controller problem of networked control systems with network channel delay
was also studied where the network channel delay is modeled as a distributed delay with
a probability density function [20]. By applying the distributed delay system method,
the weighted memory-event-triggered H∞ static output control problem was investigated
for Takagi–Sugeno fuzzy wind turbine systems with uncertainty [21]. When the system
information was transmitted through networks, the event-triggered asynchronous H∞
filtering for singular Markov jump systems with redundant channels [22]. The event-
triggered dissipative filtering problem of discrete singular neural networks with time-
varying time delay and Markov jump parameters was also investigated in [23]. By using
the delay partitioning technology, the H∞ filtering problem was studied for a discrete-time
singular Markov jump system with an event-triggered scheme [24].

All the above contributions considered the Lyapunov stability problem, while the
dynamic performance may be preferred in some special application cases. In those cases,
the attention is focused on whether the system trajectory exceeds a certain value in a finite
time interval, and thus the Lyapunov functional method, where the focus is placed on the
system performance in infinite-time interval, is not applicable. To resolve this problem,
the finite-time stabilization problem was studied for discrete-time singular Markov jump
systems using event-triggered and quantification mechanisms [25]. Via an optimization
algorithm, the finite-time H∞ control problem was also considered for stochastic singular
systems with partly known transition rates [26]. The robust finite-time H∞ control problem
was also considered for discrete-time singular Markovian jump systems with time-varying
delay and actuator saturation [27]. When the transition was time-varying, the finite-time
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stabilization problem was considered for nonlinear discrete-time singular Markov jump
systems subject to average dwell time [28]. The finite-time event-triggered stabilization was
introduced, where a mode-dependent event-triggered scheme was constructed to study
the problem for discrete-time nonlinear Markov jump singularly perturbed models with
partially unknown transition probabilities [29].

This paper considers the finite-time static output-feedback H∞ control problem for
discrete-time singular Markov jump systems based on an event-triggered scheme, where
the transition probabilities are exactly known while the external disturbance is amplitude-
bounded. Considering the merits of network transmission such as low cost, high flexibility,
and the merit of event-trigger schemes such as saving network resources, we consider
both the network transmission and event-trigger scheme, build the closed-loop discrete-
time singular Markov system model, give a sufficient criterion guaranteeing the closed-
loop system to be regular, causal, bounded and satisfy H∞ performance in a finite-time
interval based on a new Lyapunov–Krasovskii functional. Based on matrix decomposition,
the corresponding static output feedback controller synthesis algorithm is given explicitly.
A DC-motor is used finally to demonstrate the effectiveness of the presented method.

The main contributions can be organized as

1. According to the event-triggered strategy, a sufficient criterion is deduced such that
the closed-loop discrete-time singular Markov systems are finite-time bounded and
satisfy H∞ performance based on a new Lyapunov–Krasovskii functional. By utilizing
the augmented matrix methods, the system is also verified to be regular and causal.

2. Based on martrix decomposition techniques, the corresponding event-triggered static
output feedback controller synthesis algorithm is given explicitly in terms of a group
of feasible linear matrix inequalities.

3. The presented approach is capable to the event-triggered finite-time controller and
filter analysis and design for discrete-time singular systems. Finally, an application to
DC-motor is used to demonstrate the effectiveness of the presented method.

Notation: Throughout this paper, Rn represents the n-dimensional Euclidean space,
Rn×m is the sets of all n×m real matrices. XT denotes the transpose of X; X > 0 means X
is real symmetric and positive definite. He[X] means that X + XT ; λmin(X) represents the
minimum eigenvalue of X; Pr{x} represents the occurrence probability of x, and E{·} rep-
resents mathematical expectation operator. l2[0, ∞) refers to the space of square-integrable
vector functions over [0, ∞); ‖x‖ is the standard l2 norm of x; (∗) in LMIs represents the
symmetric term of the matrix; and diag{· · · } denotes a block diagonal matrix.

2. Problem Formulation

Consider a class of discrete-time singular Markov jump system described by

Ex(k + 1) = A(rk)x(k) + B(rk)u(k) + D(rk)ω(k),

y(k) = C(rk)x(k),

z(k) = F(rk)x(k) + G(rk)ω(k),

(1)

where x(k) ∈ Rn is the system state vector, u(k) ∈ Rm is the control input vector, y(k) ∈ Rq1

is the system output vector, z(k) ∈q2 is the measured output vector, ω(k) ∈ Rq3 is
the disturbance input vector. r(k) is a Markov chain taking values in the finite space
I = {1, 2, 3, . . . , M}, which is governed by the following probability transitions:

Pr{rk+1 = j|rk = i} = πij, (2)

where 0 ≤ πij ≤ 1, ∑M
j=1 πij = 1, and ∀i, j ∈ I . The matrix E is singular and satisfies

rank(E) = r ≤ n. A(rk), B(rk), C(rk), D(rk), F(rk), and G(rk) are known matrices with
compatible dimensions, which depend on r(k). For arbitrary given r(k) = i, A(rk), B(rk),
C(rk), D(rk), F(rk), and G(rk) can be simplified as Ai, Bi, Ci, Di, Fi, and Gi.
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The event-triggered scheme adopted in this paper can be described by

[y(k)− y(kl)]
TΩi[y(k)− y(kl)] > δiyT(k)Ωiy(k), (3)

where Ωi > 0 and δi are weighting matrix and threshold constant, respectively, y(k) is
the current sampled signal and kl describes the release time constant, and kl+1 − kl is
the transmission interval of the event trigger. For the existence of delay introduced by
signal transmission, those signals will arrive at the controller at time k0 + dk0 , k1 + dk1 , . . ..
When kl+1 + dkl+1

≤ kl + d̃ + 1, it can be shown that d(k) = k− dkl
satisfies dkl

≤ d(k) ≤
(dk+1 − dk) + dkl+1

− 1 for k ∈ [kl + dkl
, kl+1 + dkl+1

− 1]. When kl+1 + dkl+1
< kl + d̃ + 1,

we split this interval into two subintervals, that is, [kl + dkl
, kl+1 + d̃] and [kl + d̃ + q, kl+1 +

d̃ + q + 1], where q ∈ Z+. It can be easily verified that there exists a scalar p > 0 such that
kl + d̃ + p < kl+1 + dkl+1

≤ kl + d̃ + p + 1, and

[y(kl + q)− y(kl)]
TΩi[y(kl + q)− y(kl)] ≤ δiyT(kl + q)Ωiy(kl + q), (4)

where q = 1, 2, . . . , p.
Then, we can divide the interval [kl + dkl

, kl+1 + dkl+1
− 1] into some subintervals:

[kl + dkl
, kl+1 + dkl+1

− 1] = Ξ0 ∪
{ p−1
∪

q=1
Ξq

}
∪ Ξp, (5)

where Ξ0 = [kl + dk, k1 + d̃ + 1), Ξq = [kl + d̃ + q, kl + d̃ + q + 1), Ξp = [kl + d̃ + p, kl+1 +
dkl+1

− 1). Now, we can define d(k) as

d(k) =


k− kl , k ∈ Ξ0,
k− kl − q, k ∈ Ξq,
k− kl − p, k ∈ Ξp,

(6)

and e(k) as

e(k) =


0, k ∈ Ξ0,
y(kl)− y(kl + q), k ∈ Ξq,
y(kl)− y(kl + p), k ∈ Ξp,

(7)

and then, it follows d1 ≤ d(k) ≤ d2 for any k ∈ [kl + dkl
, kl+1 + dkl+1

− 1], where d1 =

max{dkl
}, d2 = d̃ + 1, d̃ = max{dkl

}. With this observation, it can be obtained that

eT(k)Ωie(k) ≤ δiyT(k− d(k))Ωiy(k− d(k)), (8)

for any k ∈ [kl + dkl
, kl+1 + dkl+1

− 1], and the following static output feedback control law
can be designed:

u(k) = Kiy(kl) = KiCi(x(k− d(k)) + e(k)), (9)

and then we obtain the following closed-loop system:

Ex(k + 1) = Aix(k) + Adix(k− d(k)) + Ayie(k) + Diω(k),

z(k) = Fix(k) + Giω(k),

x(θ) = ϕ(θ), θ ∈ [−d2, 0],

(10)

where Adi = BiKiCi, Ayi = BiKi, the time delay d(k) satisfies d1 ≤ d(k) ≤ d2 with
d12 = d2 − d1. ϕ(θ) is the initial state condition of x(k) specified in the interval [−d2, 0].
Denote ȳ(θ) = x(θ + 1)− x(θ) and ȳT(θ)ȳ(θ) ≤ σ with σ > 0.
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It is also assumed that the disturbance input ω(k) satisfies the following amplitude-
bounded condition

ωT(i)ω(i) ≤ ρ, (11)

for any i ∈ I or i ∈ [−d2, 0] and ρ > 0.
To facilitate the following discussion, some definitions and lemmas are required.

Definition 1 ([30]).
(1) The matrix pair (E, A) is said to be regular, if det(zE− A) 6≡ 0 for any i ∈ I .
(2) The matrix pair (E, A) is said to be causal, if deg(det(zE− A)) = rank(E) for any i ∈ I .
(3) The system (10) is said to be regular and causal when ω(k) = 0, if the matrix pair (E, A)

is regular and causal for any i ∈ I .

Definition 2 ([31]). The discrete-time singular Markov system (10) is said to be finite-time bounded
with respect to (c1, c2, N, R, ρ), if for any given scalars c2 > c1 > 0, and symmetric positive-definite
matrix R, this system is regular, causal and

E{xT(k1)ET Rx(k1), ‖E‖2xT(k1)Rx(k1)} ≤ c2
1 ⇒ E{xT(k2)ET REx(k2)} ≤ c2

2. (12)

where k1 ∈ {−d2,−d2 + 1, . . . , 0}, k2 ∈ {1, 2, . . . , N}.

Remark 1. When ω(k) = 0, the definition of finite-time bounded can be reduced to finite-time
stability with respect to (c1, c2, N, R, ρ).

Definition 3. The discrete-time singular Markov system (10) is said to be H∞ finite-time bounded
with respect to (c1, c2, N, R, ρ), if for any given scalars c2 > c1 > 0 and symmetric positive-definite
matrix R, this system is finite-time bounded respect to (c1, c2, N, R, ρ), and the condition

E
{

N

∑
k=0

zT(k)z(k)

}
< γ2E

{
N

∑
k=0

ωT(k)ω(k)

}
(13)

under zero initial condition of x(k).

Lemma 1 ([32]). For given integers a2 > a1 > 0 and symmetric positive-definite matrix W,
the following inequality holds:(

a2

∑
i=a1

x(i)

)T

W

(
a2

∑
i=a1

x(i)

)
≤ (a2 − a1 + 1)

a2

∑
i=a1

xT(i)Wx(i). (14)

Lemma 2 ([33]). Let B ∈ Rn×m to be a full column rank matrix with singular value decomposition
B = UBVT , where U and V are orthogonal matrices and B ∈ Rn×m is an rectangular diagonal
matrix with positive real numbers on the diagonal. For matrix Z ∈ Rn×n, there exists a matrix
L ∈ Rm×m such that ZB = BL, if and only if the matrix Z is of the form of

Z = U
[

Z1 Z3
0 Z2

]
UT

with Z1 ∈ Rm×m, Z2 ∈ R(n−m)×(n−m) and Z3 ∈ Rn×(n−m).

3. Results

In this section, the stochastic finite-time boundedness analysis is given for the discrete-
time singular Markov system (10) under the event-triggerd scheme, where sufficient criteria
are first established.
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3.1. Stochastic Finite-Time Boundedness

Theorem 1. For given scalars c2 > c1 > 0, N > 0, σ > 0, δi ∈ [0, 1), and symmetric positive-
definite matrix R, the closed-loop discrete-time singular Markov system (10) is finite-time bounded
with respect to (c1, c2, N, R, ρ), if there exist scalars τki, (k = 1, 2), µ > 1, ε j > 0, (j = 1, 2),
symmetric positive-definite matrices Pi, Q1, Q2, Q3, M1, M2, Ωi, and matrices Hi, Vi and Ki such
that the following matrix inequalities hold:

Φ =

Φ1 Φ2 Φ3
∗ Φ4 Φ5
∗ ∗ Φ6

 < 0, (15a)

ε1R < Pi < ε2R, (15b)

0 < Qj < θjR(j = 1, 2, 3), (15c)

0 < M1 < θ4R, (15d)

0 < M2 < θ5R, (15e)

µN((α1 + ε2)c2
1 + α2σ) + λmax(Wi)ρ̄ < ε1c2

2, (15f)

where S ∈ Rn×n fulfills ETS = 0 with rank(S) = n− r, and

Φ1 =

Φ11 0 τ1i HiBiKiCi
∗ Φ12 µd1+1ET M2E
∗ ∗ Φ13

,

Φ11 = ET(P̄i − µPi − µM1)E + Q1 + Q2 + (d12 + 1)Q3 + He{τ1i Hi(Ai − E)},
Φ12 = −µd1 Q1 − µd1+1ET M2E,
Φ13 = −µd2 Q3 − 2µd1+1ET M2E + δiCT

i ΩiC,

Φ2 =

0 τ1i HiBiKi
0 0
0 0

, Φ3 =

τ1i HiDi Φ32
0 0
0 τ2iCT

i KT
i BT

i HT
i

,

Φ32 = −τ1iZi + τ2i(Ai − E)T HT
i + ET P̄i + VT

i ST ,

Φ4 =

[
−µd2 Q2 − µET M1E− µd1+1ET M2E 0

0 −Ωi

]
,

Φ5 =

[
0 0
0 τ2iKT

i BT
i HT

i

]
, Φ6 =

[
−Wi τ2iDT

i HT
i

0 P̄i + d2
2M1 + d2

12M2 −He{τ2i Hi}

]
,

T1 =
[
τ1i In 0 0 0 0 0 τ2i In

]
,

T2 =
[
Ai − E 0 BiKiCi 0 BiKi Di −In

]
,

P̄i = ∑M
j=1 πijPj, ρ̄ =

µN − 1
µ− 1

ρ, α1 =
θ1η1 + θ2η2 + θ3η2 + θ3η3

‖E‖2 , α2 = θ4η4 + θ5η5.

P̃i = R−
1
2 PiR−

1
2 , θj = λmax{R−

1
2 QjR−

1
2 }, j = 1, 2, 3, 4, 5,

η1 =
µd1 − 1
µ− 1

, η2 =
µd2 − 1
µ− 1

, η3 =
µd2 − µd1 − d12µ + d12

(µ− 1)2 ,

η4 =
µd2+1 − (d2 + 1)µ + d2

(µ− 1)2 , η5 =
µd2+1 − µd1+1 − d12µ + d12

(µ− 1)2

Proof of Theorem 1. We first prove the regularity and casuality of this system. From (15)
and the Schur complement lemma, it gives

Πi =

[
Πi11 Πi12
∗ Πi22

]
< 0, (16)

where
Πi11 = ET(P̄i − µPi − µM1)E + Q1 + Q2 + (d12 + 1)Q3 + He{τ1i Hi(Ai − E)},
Πi12 = ET P̄T

i + ViST + τ2i(Ai − E)T Hi − τ1i Hi,
Πi22 = P̄i −He{τ2i Hi}+ d2

2M1 + d2
12M2.
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Noting Qj > 0, (j = 1, 2, 3), M1 > 0 and M2 > 0, we can obtain

Π̄i =

[
Π̄i11 Π̄i12
∗ Π̄i22

]
< 0, (17)

where
Π̄i11 = ET(P̄i − µPi − µM1)E + He{τ1i Hi(Ai − E)},
Π̄i22 = P̄i −He{τ2i Hi}.
Let

Ãi =

[
E In

Ai − E In

]
, Ṽi =

[
Vi τ1i Hi

0n×n τ2i Hi

]
,

Ẽ = diag{E, 0n×n}, S̃ = diag{S, In}, P̃0 = diag{P̄i, 0n×n}, P̃i = diag{Pi + µM1, 0n×n},

and Π̄i < 0 can be decomposed as

He{ÃT
i S̃ṼT

i } − ẼT P̃i Ẽ + ÃT
i P̃0 Ãi < 0. (18)

From Pi ≥ 0, it follows ÃT
i P̃0 Ãi ≥ 0, and then

He{ÃT
i S̃ṼT

i } − ẼT P̃i Ẽ < 0. (19)

Since rank(E) = r ≤ n, there must exist two nonsingular matrices M̄, N̄ such that

M̄ẼN̄ =

[
Ir 0
0 0

]
, M̄Ãi N̄ =

[
Āi11 Āi12
Āi21 Āi22

]
,

and accordingly

M̄−T P̃i M̄−1 =

[
P̄i11 P̄i12
P̄i21 P̄i22

]
, N̄TṼi =

[
V̄i1
V̄i2

]
, M̄−T S̃ =

[
0

S̄21

]
.

Multiplying (19) by N̄T and N̄, on the left and on the right, respectively, gives[
� �
� ĀT

i22S̄21V̄T
i2 + V̄i2S̄T

21 Āi22

]
< 0, (20)

where � represents the matrix element irrelevant to the following and thus neglected here.
It follows from (19) that Āi22 is nonsingular and thus

det(zE− A) = det(zẼ− Ãi) = det(M̄−1(zĒ− Āi)N̄−1), (21)

and thus the system (10) is regular and causal.
We are now in the position to prove the finite-time boundedness of this system. We

construct the following functional:

V(k, x(k), rk) =
4

∑
i=1

Vi(k, x(k), rk), (22)

where
V1(k, x(k), rk) = xT(k)ET PiEx(k),

V2(k, x(k), rk) =
k−1
∑

i=k−d1

µk−i−1xT(i)Q1x(i) +
k−1
∑

i=k−d2

µk−i−1xT(i)Q2x(i),

V3(k, x(k), rk) =
−d1+1

∑
m=−d2+2

k−1
∑

i=k+m−1
µk−i−1xT(i)Q3x(i) +

k−1
∑

i=k−d(k)
µk−i−1xT(i)Q3x(i),
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V4(k, x(k), rk) = d2
0
∑

m=−d2+1

k−1
∑

i=k+m−1
µk−i−1ȳT(i)ET M1Eȳ(i)

+ d12
−d1
∑

m=−d2+1

k−1
∑

i=k+m−1
µk−i−1ȳT(i)ET M2Eȳ(i).

Let
E{∆V(k)} = E{V(x(k + 1), rk+1 = j, |rk = i)} −V{x(k), rk = i}, (23)

and obtain

E{∆V1(k)} − (µ− 1)V1(k) = xT(k + 1)ET P̃iEx(k + 1)− µxT(k)ET PiEx(k)

= (Eȳ(k) + Ex(k))T P̃i(Eȳ(k) + Ex(k))− µxT(k)ET PiEx(k)

= xT(k)(ET P̃iE− µET PiE)x(k) + 2ȳT(k)ET P̃iETx(k)

− µxT(k)ET PiEx(k)

(24)

E{∆V2(k)} − (µ− 1)V2(k) ≤ xT(k)(Q1 + Q2)x(k)

− µd1 xT(k− d1)Q1x(k− d1)

− µd2 xT(k− d2)Q2x(k− d2),

(25)

E{∆V3(k)} − (µ− 1)V3(k) ≤ (d12 + 1)xT(k)Q3x(k)

− µd1 xT(k− d(k))Q3x(k− d(k)),
(26)

E{∆V4k)} − (µ− 1)V4(k) = ȳT(k)ET(d2
2M1 + d2

12M2)Eȳ(k)

− d2

k−1

∑
i=k−d2

µk−i ȳT(k)ET M1Eȳ(k)

− d12

k−d1−1

∑
i=k−d2

µk−i ȳT(k)ET M2Eȳ(k),

(27)

and

−d2

k−1

∑
i=k−d2

µk−i ȳT(k)ET M1Eȳ(k) ≤ −µd2

k−1

∑
i=k−d2

ȳT(k)ET M1Eȳ(k), (28)

−d12

k−d1−1

∑
i=k−d2

µk−i ȳT(k)ET M2Eȳ(k) ≤ −µd1+1d12

k−d1−1

∑
i=k−d2

ȳT(k)ET M2Eȳ(k)

= −µd1+1d12

k−d1−1

∑
i=k−d(k)

ȳT(k)ET M2Eȳ(k)

− µd1+1d12

k−d(k)−1

∑
i=k−d2

ȳT(k)ET M2Eȳ(k).

(29)

From Lemma 1, it also follows



Math. Comput. Appl. 2023, 28, 1 9 of 16

−d12

k−d1−1

∑
i=k−d2

ȳT(k)ET M1ȳ(k) ≤ −
(

k−1

∑
i=k−d2

Eȳ(k)

)T

M1

(
k−1

∑
i=k−d2

Eȳ(k)

)

= ζT
1 (k)

[
−ET M1E ET M1E
ET M1E −ET M1E

]
ζ1(k),

(30)

−d12

k−d1−1

∑
i=k−d(k)

ȳT(k)ET M2Eȳ(k) ≤ − d12

d(k)− d1

(
k−d1−1

∑
i=k−d(k)

Eȳ(k)

)T

M2

(
k−d1−1

∑
i=k−d(k)

Eȳ(k)

)

≤ ζT
2 (k)

[
−ET M2E ET M2E
ET M2E −ET M2E

]
ζ2(k),

(31)

−d12

k−d(k)−1

∑
i=k−d2

ȳT(k)ET M2Eȳ(k) ≤ − d12

d2 − d(k)

(
k−d(k)−1

∑
i=k−d2

Eȳ(k)

)T

M2

(
k−d(k)−1

∑
i=k−d2

Eȳ(k)

)

≤ −ζT
3 (k)

[
−ET M2E ET M2E
ET M2E −ET M2E

]
ζ3(k),

(32)

where
ζ1 = [xT(k) xT(k− d2)]

T ,
ζ2 = [xT(k− d1) xT(k− d(k))]T ,
ζ3 = [xT(k− d(k)) xT(k− d2)]

T ,
From ETS = 0 and ȳ(k) = x(k + 1)− x(k), it follows

2xT(k + 1)ETSVix(k) ≡ 0,

2ζT(k)T T
1 HiT2ζ(k) ≡ 0,

(33)

where ζ = [xT(k) xT(k− d1) xT(k− d(k)) xT(k− d2) eT(k) ωT(k) ȳT(k)ET ]T .
From event trigger scheme (3), it also follows

E{∆V(k)− (µ− 1)V(k)−ωT(k)Wiω(k)}
≤ E{∆V(k)− (µ− 1)V(k)−ωT(k)Wiω(k)− eT(k)Ωie(k)

+ δiyT(k− d(k))Ωiy(k− d(k)) + 2xT(k + 1)ETSVix(k) + 2ζT(k)T T
1 HiT2ζ(k)}

≤ ζT(k)Φζ(k),

(34)

and then
E{∆V(k)− (µ− 1)V(k)−ωT(k)Wiω(k)} < 0. (35)

From this, it further follows

E{V(k)}
<µE{V(k− 1)}+ λmax(Wi)E{ωT(k− 1)ω(k− 1)}
<µ2E{V(k− 2)}+ µλmax(Wi)E{ωT(k− 2)ω(k− 2)}
+ λmax(Wi)E{ωT(k− 1)ω(k− 1)}

< · · ·

<µkE{V(0)}+ λmax(Wi)
k−1

∑
j=0

µk−j−1ωT(j)ω(j),

(36)

and then E{V(k)} < µkE{V(0)}+ λmax(Wi)ρ̄.
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From

E{V1(0)} = E{xT(0)ET PiEx(0)} ≤ λmax(P̃)c1, (37)

E{V2(0)} =
−1

∑
i=−d1

µ−i−1xT(i)Q1x(i) +
−1

∑
i=−d2

µ−i−1xT(i)Q2x(i)

≤ (θ1η1 + θ2η2)c1,

(38)

E{V3(0)} =
−d1+1

∑
m=−d2+2

−1

∑
i=m−1

µ−i−1xT(i)Q3x(i) +
−1

∑
i=−d(0)

µ−i−1xT(i)Q3x(i)

≤ (θ3η2 + θ3η3)c1,

(39)

E{V4(0)} = d2

0

∑
m=−d2+1

−1

∑
i=m−1

µ−i−1ȳT(i)ET M1Eȳ(i)

+ d12

−d1

∑
m=−d2+1

−1

∑
i=m−1

µ−i−1ȳT(i)ET M2Eȳ(i)

≤ (θ4η4 + θ5η5)σ,

(40)

we can obtain

E{V(0)} ≤ α1 + λmax(P̃i)c2
1 + α2σ, (41)

E{V(k)} ≤ µN((α1 + λmax(P̃i))c2
1 + α2σ) + λmax(Wi)ρ̄, (42)

Then, we can obviously obtain

E{V(k)} ≥ E{xT(k)ET PiEx(k)} ≥ λmin(P̃i)E{xT(k)ET REx(k)}, (43)

from (15f), we can obtain E{xT(k)ET REx(k)} ≤ c2
2. This shows that this system is finite-

time bounded with respect to (c1, c2, N, R, ρ), which concludes the proof.

Remark 2. A power function µk−i has been taken into consideration in the Lyapunov function.
With the advantage of the design, we can obtain V(k) < µV(k − 1), then V(k) < µNV(0).
However, the power function is ignored in many works, such as [26], and replaced by ∆V(k) < (µ−
1)V1(k) < (µ− 1)V(k), which results in more conservatism. In Section 4, the less conservatism of
the result can be confirmed by a numerical example.

3.2. Stochastic Finite-Time Boundedness with H∞ Performance

According to Theorem 1, the stochastic finite-time boundedness with H∞ performance
analysis of the discrete-time singular Markov system (10) is easily derived.

Theorem 2. For given scalars c2 > c1 > 0, N > 0, σ > 0, δi ∈ [0, 1), γ > 0, and symmetric
positive-definite matrix R, the closed-loop discrete-time singular Markov system (10) is finite-
time bounded with respect to (c1, c2, N, R, ρ) with H∞ performance γ, if there exist scalars τki,
(k = 1, 2), µ > 1, ε j > 0, (j = 1, 2), symmetric positive-definite matrices Pi, Q1, Q2, Q3, M1,
M2, Ωi, and matrices Hi, Vi and Ki such that the matrix inequalities (15b)–(15e) and the following
inequality hold:

Φ̄ =

Φ̄1 Φ2 Φ̄3
∗ Φ4 Φ5
∗ ∗ Φ̄6

 < 0, (44a)

µN((α1 + ε2)c2
1 + α2σ) + γ2ρ < ε1c2

2, (44b)

where S ∈ Rn×n fulfills ETS = 0 with rank(S) = n− r, and
Φ̄11 = ET(P̄i − µPi − µM1)E + Q1 + Q2 + (d12 + 1)Q3 + He{τ1i Hi(Ai − E)}+ FT

i Fi,
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Φ̄3 =

τ1i HiDi + FT
i Gi Φ32

0 0
0 τ2iCT

i KT
i BT

i HT
i

,

Φ32 = −τ1iZi + τ2i(Ai − E)T HT
i + ET P̄i + VT

i ST ,

Φ̄6 =

[
−γ̄2 I + GT

i Gi τ2iDT
i HT

i
0 P̄i + d2

2M1 + d2
12M2 −He{τ2i Hi}

]
,

Wi = γ̄2 I, γ =

√
µN − 1
µ− 1

γ̄2

and other variables follow the same definition as those in Theorem 1.

Proof of Theorem 2. From inequality (44), it follows

E{∆V(k)− (µ− 1)V(k) + zT(k)z(k)− γ̄2ωT(k)ω(k)} < 0, (45)

and

E{V(k)} < µNE{V(k)} − E
{

k−1

∑
j=0

µk−j−1zT(j)z(j)

}
+ γ̄2E

{
k−1

∑
j=0

µk−j−1ωT(j)ω(j)

}
. (46)

Under zero initial condition, it follows from (46) that

E
{

k−1

∑
j=0

µk−j−1zT(j)z(j)

}
< γ̄2E

{
k−1

∑
j=0

µk−j−1ωT(j)ω(j)

}
.

Since µ > 1, the following inequalities holds,

E
{

N

∑
k=0

zT(k)z(k)

}
< E

{
k−1

∑
j=0

µk−j−1zT(j)z(j)

}
,

γ̄2E
{

k−1

∑
j=0

µk−j−1ωT(j)ω(j)

}
< γ2E

{
N

∑
k=0

ωT(k)ω(k)
}

,

and then

E
{

N

∑
k=0

zT(k)z(k)

}
< γ2E

{
N

∑
k=0

ωT(k)ω(k)

}
. (47)

This completes the proof.

3.3. Controller Synthesis

We are now in the position to give a output feedback gain design algorithm for
the discrete-time singular Markov system (10), where a variable separation approach
is adopted.

Theorem 3. For given scalars c2 > c1 > 0, N > 0, σ > 0, δi ∈ [0, 1), γ > 0, and symmetric
positive-definite matrix R, the closed-loop discrete-time singular Markov system (10) is finite-
time bounded with respect to (c1, c2, N, R, ρ) with H∞ performance γ, if there exist scalars τki,
(k = 1, 2), µ > 1, ε j > 0, (j = 1, 2), symmetric positive-definite matrices Pi, Q1, Q2, Q3, M1,

M2, Ωi, and matrices Hi = Mi

[
Hi11 Hi12

0 Hi22

]
MT

i , Vi and Ki such that the matrix inequalities

(15b)–(15e) and the following inequality hold:
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Φ̃ =

Φ̃1 Φ̃2 Φ̃3
∗ Φ4 Φ̃5
∗ ∗ Φ̄6

 < 0, (48a)

µN((α1 + ε2)c2
1 + α2σ) + γ2ρ < ε1c2

2, (48b)

where S ∈ Rn×n fulfills ETS = 0 with rank(S) = n− r, and

Φ̃1 =

Φ̃11 0 τ1iBiYiCi
∗ Φ̃12 µd1+1ET M2E
∗ ∗ Φ̃13

,

Φ̃12 = −µd1 Q1 − µd1+1ET M2E,
Φ̃13 = −µd2 Q3 − 2µd1+1ET M2E + δCT

i ΩiCi,

Φ̃2 =

0 τ1iBiYi
0 0
0 0

, Φ̃3 =

τ1i HiDi Φ̃31
0 0
0 τ2iCT

i YT
i BT

i

,

Φ̃31 = −τ1i Hi + τ2i(Ai − E)T HT
i + ET P̄i + VT

i ST ,

Φ̃5 =

[
0 0
0 τ2iYT

i BT
i

]
,

and other variables follow the same definition as those in Theorem 1. Furthermore, a suitable static
output feedback controller gain matrix is given by

Ki = (BT
i HiBi)

−1BT
i BiYi. (49)

Proof of Theorem 3. Since Bi is with full column rank, it follows from lemma 2 that there
must exist two Orthogonal matricesMi and Ni such that

Bi =Mi

[
Bi1
0

]
N T

i , HiBi = BiLi,

and then

BT
i Bi = NiB2

i1N T
i , (50)

BT
i HiBi = NiBi1Hi11Bi1N T

i , (51)

(BT
i Bi)

−1BT
i HiBi = NiB−1

i1 HiBi1N T
i , (52)

and further gives
Yi = (BT

i Bi)
−1BT

i HiBiKi, (53)

and

BiLiKi = BiYi

= Bi(BT
i B)−1BT

i HiBiKi

=Mi

[
Hi11Bi1

0

]
N T

i Ki

= HiBiKi.

(54)

This completes the proof.

Remark 3. In this paper, (48a), (15b) and (15f) in Theorem 3 are not strictly linear matrix
inequalities, they can be converted to linear ones by given scalars τ1i and τ2i. Therefore, the finite-
time event-triggered output feedback gain design algorithm for the discrete-time singular Markov
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system can be translated into the following optimization problem based on linear matrix inequalities.

min
τ1i ,τ2i

γ2

Pi, Hi, Ki, Vi, δi, ε j, i ∈ I
s.t. (48a), (15b)–(15f)

4. Numerical Examples

In this section, we use a DC motor model to verify the correctness and effectiveness
of the proposed method. The typical DC motor model can be described as a discrete-time
singular Markov jump system with two jump modes,

Ex(k) = Aix(k) + Biu(k) + Diω(k)

y(k) = Cix(k)

z(k) = Fix(k) + Gix(k)

(55)

where

Ai =

[
Rs Kl

KsT∗
Ji

1− b
Ji

]
, Bi = Di =

[
0
T∗
Ji

]
, πij =

[
0.4 0.6
0.7 0.3

]
and E = diag{0, 1}, Ci = [0.5 1]T , Fi = [1 1]T , Gi = 0.2, J1 = 6.1, J2 = 6.2, Kl = 2.4,
Ks = 1, b = 1, T∗ = 0.1, Rs = 3.

According to E, we can choose S =

[
1 1
0 0

]
. The other parameters can be chosen

as d1 = 1, d2 = 3, δ1 = 0.08, δ2 = 0.12, c1 = 1, c2 =
√

5, N = 8, ρ = 0.56, σ = 0.1,
R = diag{1, 1}, µ = 1.11, γ = 0.7235. Based on those parameters and using Theorem 3, we
can obtain the pair of static output feedback controller gains as

K1 = −3.7008, K2 = −3.5634

The initial state is set to be x(k0) = [−0.6 0.75]T , and the disturbance is assumed to
be ω(k) = e−0.2k sin 0.5k. The Markov jump modes and event trigger release instants and
intervals are shown in Figures 1 and 2, which show that only 17 times are triggered and
transmitted. Compared with other works, such as [33], the network transmission frequency
is greatly decreased.
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Figure 1. The Markov jump modes.
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Figure 2. The event trigger release instants and intervals.

The system trajectory is shown in Figure 3 and the trajectory of xT(k)ET REx(k) is
shown in Figure 4, which indicate that the DC motor model is finite-time bounded and also
satisfies H∞ performance.

0 20 40 60 80
−1

−0.5

0

0.5

1

time(k)

x(
k)

x1
x2

Figure 3. The state trajectory.
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Figure 4. The trajectory of xT(k)ET REx(k).

Remark 4. If the minimum value of γ2 is chosen as the optimization objective, then the optimal
values γ can change with the different values µ, which are presented in Table 1.

Table 1. Comparison of γmin with different values µ.

µ 1.05 1.15 1.20

γmin 0.8313 0.6625 0.6251
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5. Conclusions

This paper studied the finite-time static output feedback H∞ control for discrete-
time singular Markov jump systems based on an event-triggered scheme. We considered
both the network transmission and event-trigger scheme, built the closed-loop discrete-
time singular Markov system model, and gave a static output feedback H∞ controller
synthesis method guaranteeing the closed-loop to be regular, causal, finite-time bounded
and satisfy a given H∞ performance in a finite time interval. A DC-motor was used finally
to demonstrate the effectiveness of the presented method. In the future, based on the finite-
time event-triggered scheme, the issues of H∞ control or filtering for neutral Markov jump
systems or neutral singular Markov jump systems with random delays and cyber-attacks
will be discussed.
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