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Abstract: The objective of this paper is to investigate the 3D non-linearly thermally radiated flow of a
Jeffrey nanofluid towards a stretchy surface with the Cattaneo–Christov heat flux (CCHF) model in
the presence of a convective boundary condition.The Homotopy Analysis Method (HAM) is used to
solve the ordinary differential equation that is obtained by reforming the governing equation using
suitable transformations. The equations obtained from HAM are plotted graphically for different
parameters. In addition, the skin-friction coefficient, local Nusselt number, and Sherwood number for
various parameters are calculated and discussed. The velocity profile along the x- and y-directions
decrease with a raise in the ratio of relaxation to retardation times. The concentration and temperature
profile rises while magnifying the ratio of relaxation to retardation times. While raising the ratio
parameter, the x-direction velocity, temperature, and concentration profile diminishes, whereas the
y-direction velocity profile magnifies. Magnifying the Deborah number results in a rise in the velocity
profile along the x- and y-directions, and a decline in the temperature and concentration profile.

Keywords: 3D flow; Jeffrey nanofluid; stretchy surface; non-linear thermal radiation

1. Introduction

There are many models for a non-Newtonian fluid, and a few of them have been
discussed in Halim et al. [1], Mahanthesh et al. [2], Malik et al. [3], and Olajuwon et al. [4].
The polymer and textile industries, and plastic manufacturing and food processing are
some of the areas where a non-Newtonian fluid is used. Stretchy flow heat transfer is
used widely in metal sheet cooling, electronic chips cooling, plastic sheet extrusion in
aerodynamic, etc.

A Jeffrey fluid is one of the non-Newtonian fluids that are related to the retardation
time and the ratio of relaxation to retardation time. The CCHF model is one of the flow
models discussed by Christov [5]. Kasmani et al. [6] concluded that the temperature
profile, heat transfer rate, and mass transfer rate rises while magnifying the thermophoresis
parameter. The peristalsis flow of a non-constant viscous Jeffrey nanofluid was studied by
Alvi et al. [7]. While increasing the Brownian motion and the thermophoresis parameter,
the opposite behavior of the concentration profile is identified by Muhammad et al. [8].
Ramly et al. [9] observed that under passive control, the heat and mass transfer rates seem
to have opposite behaviors when influenced by the Brownian motion parameter and the
thermophoresis parameter.

The effects of non-linear thermal radiation and the Soret and Dufour and stratifica-
tion effect on an MHD nanofluid flow over a stretchy cylinder was studied by Jagan and
Sivasankaran [10]. Li et al. [11] identified that the heat transfer rate rises by magnifying
the relaxation time parameter and the mixed convection parameter. The temperature
field enhances with a rise in the thermal radiation, and the heat generation parameters
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were concluded by Niranjan et al. [12]. Das et al. [13] identified that the fluid tempera-
ture of a Jeffrey fluid is higher when compared with a Newtonian fluid. The effects of
radiation, chemical reaction, and slip on a magnetoconvection stagnation-point flow in
a porous medium were analyzed by Niranjan et al. [14]. Ali et al. [15] observed that the
non-linear thermal radiation parameters regulate the momentum and thermal boundary
layers. Thermally stratified stretchy flow with CCHF is studied by Hayat et al. [16]. Fer-
dows et al. [17] examined about the free convective flow in an inclined porous surface.
Ramzan et al. [18] investigated the MHD stagnation-point flow of a Williamson fluid with
CCHF, homogeneous–heterogeneous reactions, and a convective boundary condition.

Hayat et al. [19] studied three-dimensional incompressible elastico-viscous fluid flow
towards a stretchy surface. Unsteady 3D boundary layer flow due to a permeable shrinky
sheet was analyzed by Bachok et al. [20]. Shehzad et al. [21] investigated 3D Jeffrey fluid
flow over a stretched surface that exhibits a convective boundary condition. A Three-
dimensional thermally radiated Jeffrey fluid flow towards a stretchy surface with variable
thermal conductivity was examined by Hayat et al. [22]. Raju et al. [23] concluded that heat
and mass transfer rate for a flow over a stretchy surface is high. Three-dimensional flow
and heat transfer to a Burger’s fluid using the CCHF model was analyzed by Khan et al. [24].
Ramzan et al. [25] examined the supremacy of homogeneous–heterogeneous reactions on
the MHD 3D flow of increasing the Maxwell fluid with the CCHF model and convective
boundary condition. Hayat et al. [26] identified that Fourier and Cattaneo–Christov heat
conduction models remain numerically similar when influenced by an embedding parame-
ter. The three-dimensional Jeffrey fluid boundary layer flow induced by a bi-directional
stretchy surface with CCHF model is studied by Hayat et al. [27]. More related study are
found in [28–30].

In this paper, an analysis is made on a 3D non-linearly thermally radiated flow of
a Jeffrey nanofliud with the CCHF model in the presence of a convective boundary con-
dition towards a bidirectional stretchy surface. The current model with non-linear ther-
mal radiation and convective boundary layer flow is not analyzed by any author, which
shows the novelty of the current study. No such investigation is available in the literature,
and therefore, the results obtained are novel. The results may useful to fields such as paper
production and plastic sheet production.

2. Mathematical Formulation

Regarding three-dimensional, steady, and incompressible non-linearly thermally ra-
diated Jeffrey nanofluid flow towards a bidirectional stretchy surface CCHF model, the
convective boundary condition is considered. The velocity of the stretchy surface along
the x-axis and y-axis is assumed as v1,w = b1x and v2,w = b2y, where b1 and b2 are positive
constants, as shown in Figure 1. Fluid flow is considered along the z-axis. The govern-
ing boundary layer equations for the present analysis (refer to Hayat et al. [27]) can be
written as

Contunity Equation

∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
= 0, (1)

Momentum Equation

v1
∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z
=

ν

1 + λ1

∂2v1

∂z2 +
ν λ2

1 + λ1

(
v1

∂3v1

∂x∂z2 + v2
∂3v1

∂y∂z2

+v3
∂3v1

∂z3

)
+

ν λ2

1 + λ1

(
∂v1

∂z
∂2v1

∂x∂z
+

∂v2

∂z
∂2v1

∂y∂z
+

∂v3

∂z
∂2v1

∂z2

)
, (2)
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v1
∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z
=

ν

1 + λ1

∂2v2

∂z2 +
ν λ2

1 + λ1

(
v1

∂3v2

∂x∂z2 + v2
∂3v2

∂y∂z2

+v3
∂3v2

∂z3

)
+

ν λ2

1 + λ1

(
∂v1

∂z
∂2v2

∂x∂z
+

∂v2

∂z
∂2v2

∂y∂z
+

∂v3

∂z
∂2v2

∂z2

)
, (3)

Temperature Equation

v1
∂(Te)

∂x
+ v2

∂(Te)
∂y

+ v3
∂(Te)

∂z
+ λ3

(
v2

1
∂2(Te)

∂x2 + v2
2

∂2(Te)
∂y2 + v2

3
∂2(Te)

∂v2
3

)

+λ3

(
2v1v2

∂2(Te)
∂x∂y

+ 2v1v3
∂2(Te)
∂x∂z

+ 2v2v3
∂2(Te)
∂y∂z

+

(
v1

∂v1

∂x
+ v2

∂v1

∂y

+ v3
∂v1

∂z

)
∂(Te)

∂x

)
+ λ3

((
v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z

)
∂(Te)

∂y
+

(
v1

∂v3

∂x

+ v2
∂v3

∂y
+ v3

∂v3

∂z

)
∂(Te)

∂z

)
=

k(
ρcp
)(∂2(Te)

∂z2

)
+ τDB

(
∂(Te)

∂z
∂(Cn)

∂z

)
+

τDTe
Te∞

(
∂(Te)

∂z

)2

+
1(

ρcp
) 16

3
σ∗Te3

k∗
∂2(Te)

∂z2 , (4)

Nano-Particle Volume Fraction Equation

v1
∂(Cn)

∂x
+ v2

∂(Cn)
∂y

+ v3
∂(Cn)

∂z
= DB

(
∂2(Cn)

∂z2

)
+

DTe
Te∞

(
∂2(Te)

∂z2

)
, (5)

where the boundary conditions (refer to Hayat et al. [27] and Shehzad et al. [21]) are

v1 = v1,w = b1x, v2 = v2,w = b2y, v3 = 0,

−k
∂(Te)

∂z
= h

(
Te f − Te

)
, Cn = Cn f at z = 0.

v1 → 0, v2 → 0, Te→ Te∞, Cn→ Cn∞ as z→ ∞. (6)

The transformations (refer to Hayat et al. [27]) are

ζ = z

√
b1

ν
, v1 = b1xφ′1(ζ), v2 = b1yφ′2(ζ), v3 = −

√
b1ν(φ1(ζ) + φ2(ζ)),

φ3(ζ) =
Te− Te∞

Te f − Te∞
, φ4(ζ) =

Cn− Cn∞

Cn f − Cn∞
. (7)

Equation (1) satisfies identically, and Equations (2)–(6) are reduced to Equations (8)–(12)
using Equation (7).
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φ′′′1 + (1 + λ1)
[
φ′′1 (φ1 + φ2)− φ′21

]
+ β

[
φ′′21 − (φ1 + φ2)φ

iv
1 − φ′′′1 φ′2

]
= 0, (8)

φ′′′2 + (1 + λ1)
[
(φ1 + φ2)φ

′′
2 − φ′22

]
+ β

[
φ′′22 − (φ1 + φ2)φ

iv
2 − φ′1φ′′′2

]
= 0, (9)(

1 +
4
3

Rd
)

φ′′3 +
4
3

Rd
[
(θw − 1)3

(
3φ2

3
(
φ′3
)2

+ φ3
3φ′′3

)
+3(θw − 1)2

(
2φ3
(
φ′3
)2

+ φ2
3φ′′3

)]
+ 4Rd

[
(θw − 1)

((
φ′3
)2

+ φ3φ′′3

)]
+Pr(φ1 + φ2)φ

′
3 − γPr

[
(φ1 + φ2)

2φ′′3 + φ′3(φ1 + φ2)
(
φ′1 + φ′2

)]
+PrNt

(
φ′3
)2

+ PrNbφ′3φ′4 = 0, (10)

φ′′4 + Sc (φ1 + φ2)φ
′
4 +

Nt
Nb

φ′′3 = 0, (11)

φ1(0) = 0, φ2(0) = 0, φ′1(0) = 1, φ′2(0) = c, φ′3(0) = −α(1− φ3(0)),

φ4(0) = 1 (12)

φ′1(ζ)→ 0, φ′2(ζ)→ 0, φ3(ζ)→ 0, φ4(ζ)→ 0 as ζ → ∞.

where

α =
h
√

ν/b1

k
, β = λ2b1, c =

b2

b1
, γ = λ3b1, Nb =

τDB

(
Cn f − Cn∞

)
ν

,

Nt =
τDTe

(
Te f − Te∞

)
νTe∞

, Pr =
µcp

k
, Rd =

4σ∗Te3
∞

kk∗
, Sc =

ν

D
, (13)

θw =
Te f

Te∞
.

The skin-friction coefficient, and the local Nusselt and Sherwood number are given by

Re1/2
x C fx =

(
2

1 + λ1

)
φ′′1 (0), (14)

Re1/2
y C fy =

(
2

1 + λ1

)
φ′′2 (0), (15)

Re−1/2
x Nu = −

(
1 +

4
3

Rd(θw)
3
)

φ′3(0), (16)

Re−1/2
x Sh = −φ′4(0). (17)

where Rex =
v1,wx

ν and Rey =
v2,wy

ν are Reynolds numbers.

Figure 1. Physical diagram.
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3. Convergence of the Solution

Equations (8)–(11), subject to Equation (12), are solved using HAM by choosing the
initial boundary approximations, auxillary function, and auxillary linear operators (refer to
Hayat et al. [27]) as

φ1,0(ζ) = 1− exp(−ζ), φ2,0(ζ) = c(1− exp(−ζ)),

φ3,0(ζ) =
α

1 + α
exp(−ζ), φ4,0(ζ) = exp(−ζ). (18)

H(ζ) = 1. (19)

Lφ1(φ1) =
d3φ1

dζ3 −
dφ1

dζ
, Lφ2(φ2) =

d3φ2

dζ3 −
dφ2

dζ
,

Lφ3(φ3) =
d2φ3

dζ2 − φ3, Lφ4(φ4) =
d2φ4

dζ2 − φ4. (20)

which satisfies the property

Lφ1 [A1 + A2 exp(−ζ) + A3 exp(ζ)] = 0, (21)

Lφ2 [A4 + A5 exp(−ζ) + A6 exp(ζ)] = 0, (22)

Lφ3 [A7 exp(−ζ) + A8 exp(ζ)] = 0, (23)

Lφ4 [A9 exp(−ζ) + A10 exp(ζ)] = 0. (24)

where A1 to A10 are arbitrary constants. Mathematica software is used to solve the above
HAM equations. The equations obtained contain the parameters hθ1 , hφ1 , hφ2 , and hs. The h-
curve is plotted for α = 0.3, β = 0.2, c = 0.3, γ = 0.2, λ1 = 0.3, Nb = 0.2, Nt = 0.2,
Pr = 1.0, Rd = 0.3, Sc = 0.6, and θw = 0.3. From Figure 2, it is clear that the range for
the admissible values of hφ1 , hφ2 , hφ3 , and hφ4 are −1.5 ≤ hφ1 ≤ −0.2, −1.4 ≤ hφ2 ≤ −0.1,
−1.5 ≤ hφ3 ≤ −0.1, and −1.4 ≤ hφ4 ≤ −0.3 at the 20th-order approximation.

    Φ1
''H0L

Φ2
''H0L

Φ3
'H0L

Φ4
'H0L

-2.0 -1.5 -1.0 -0.5 0.0

-1.0

-0.5

0.0

0.5

1.0

1.5

hΦ1
,hΦ2

,hΦ3
,hΦ4

Figure 2. h-curve for φ′′1 (0), φ′′2 (0), φ′3(0), and φ′4(0).

The convergence value is tabulated in Table 1 for different orders of approximations.
In order to vary our results, we made a comparison of the results for −φ′′1 (0),−φ′′2 (0) and
−φ′3(0) when β = γ = 0.2, c = λ = 0.3, Pr = 1, with Hayat et al. [27]. We found a good
agreement between the present results and the available results.
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Table 1. Convergence of the series −φ′′1 (0), −φ′′2 (0), −φ′3(0), and −φ′4(0) for α = 0.3, β = 0.2,
c = 0.3, γ = 0.2, λ1 = 0.3, Nb = 0.2, Nt = 0.2, Pr = 1.0, Rd = 0.3, Sc = 0.6, and θw = 0.3.

m-th-Order Approximation −φ′′1 (0) −φ′′2 (0) −φ′3(0) −φ′4(0)

1 1.0625 0.2873 0.2186 0.7573
5 1.1055 0.2774 0.2016 0.4537
10 1.1064 0.2774 0.1980 0.3766
15 1.1064 0.2774 0.1974 0.3487
20 1.1064 0.2774 0.1974 0.3357
25 1.1064 0.2774 0.1974 0.3292
30 1.1064 0.2774 0.1975 0.3258
35 1.1064 0.2774 0.1975 0.3239

In Tables 2 and 3, the skin-friction coefficient, and the Nusselt number and Sherwood
number are tabulated for various parameters with different sets of values.

Table 2. Numerical values of the skin-friction coefficient for the fixed values α = 0.3, γ = 0.2,
Nb = 0.2, Nt = 0.2, Pr = 1.0, Rd = 0.3, Sc = 0.6, and θw = 0.3.

λ1 β c −Re1/2
x C fx −Re1/2

y C fy

0.1 0.2 0.3 1.8505 0.4639
0.2 0.2 0.3 1.7717 0.4441
0.3 0.2 0.3 1.7022 0.4267
0.4 0.2 0.3 1.6403 0.4112
0.5 0.2 0.3 1.5847 0.3973
0.3 0.1 0.3 1.7739 0.4268
0.3 0.2 0.3 1.7022 0.4267
0.3 0.3 0.3 1.6387 0.4265
0.3 0.4 0.3 1.5819 0.4263
0.3 0.5 0.3 1.5306 0.4259
0.3 0.2 0.1 1.6361 0.1204
0.3 0.2 0.2 1.6696 0.2641
0.3 0.2 0.3 1.7022 0.4267
0.3 0.2 0.4 1.7341 0.6053
0.3 0.2 0.5 1.7656 0.7976
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Table 3. Numerical values of the Nusselt number and Sherwood number for the fixed values α = 0.3,
c = 0.3, Pr = 1.0, Sc = 0.6, and θw = 0.3.

Rd λ1 β Nt Nb γ Re−1/2
x Nu Re−1/2

x Sh

0.1 0.3 0.2 0.2 0.2 0.2 0.2019 0.3453
0.2 0.3 0.2 0.2 0.2 0.2 0.2007 0.3471
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.4 0.3 0.2 0.2 0.2 0.2 0.1986 0.3503
0.5 0.3 0.2 0.2 0.2 0.2 0.1976 0.3518
0.3 0.1 0.2 0.2 0.2 0.2 0.2016 0.3613
0.3 0.2 0.2 0.2 0.2 0.2 0.2006 0.3548
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.3 0.4 0.2 0.2 0.2 0.2 0.1986 0.3431
0.3 0.5 0.2 0.2 0.2 0.2 0.1977 0.3380
0.3 0.3 0.1 0.2 0.2 0.2 0.1985 0.3424
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.3 0.3 0.3 0.2 0.2 0.2 0.2005 0.3546
0.3 0.3 0.4 0.2 0.2 0.2 0.2014 0.3600
0.3 0.3 0.5 0.2 0.2 0.2 0.2022 0.3651
0.3 0.3 0.2 0.1 0.2 0.2 0.2001 0.4146
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.3 0.3 0.2 0.3 0.2 0.2 0.1990 0.2835
0.3 0.3 0.2 0.4 0.2 0.2 0.1985 0.2191
0.3 0.3 0.2 0.5 0.2 0.2 0.1979 0.1553
0.3 0.3 0.2 0.2 0.1 0.2 0.2020 0.2098
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.3 0.3 0.2 0.2 0.3 0.2 0.1971 0.3951
0.3 0.3 0.2 0.2 0.4 0.2 0.1946 0.4183
0.3 0.3 0.2 0.2 0.5 0.2 0.1920 0.4323
0.3 0.3 0.2 0.2 0.2 0.1 0.1985 0.3496
0.3 0.3 0.2 0.2 0.2 0.2 0.1996 0.3487
0.3 0.3 0.2 0.2 0.2 0.3 0.2007 0.3478
0.3 0.3 0.2 0.2 0.2 0.4 0.2019 0.3467
0.3 0.3 0.2 0.2 0.2 0.5 0.2032 0.3456

4. Computational Results and Discussion

The supremacy of embedding the parameters involved in the study are discussed here.
The agreement is found to be good while comparing the current study with Hayat et al. [27]
for β = 0.2, λ1 = 0.3, and c = 0.3 (see Table 4). In Figure 3, the ratio of relaxation to the
retardation time (λ1) is plotted with different values for φ′1(ζ), φ′2(ζ), φ3(ζ), and φ4(ζ). It is
clear that φ′1(ζ) and φ′2(ζ) rise while boosting (λ1), whereas φ3(ζ) and φ4(ζ) diminish. In
Figure 4, it is found that when the Deborah number (β) is raised, φ′1(ζ) and φ′2(ζ) enhance,
and at the same time, the temperature and concentration profile diminishes because the
retardation will be raised while raising β.
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Table 4. Comparision of current study with Hayat et al. [27] for β = 0.2, λ1 = 0.3, and c = 0.3.

m-th-Order
Approximation

Hayat et al. [27]
−φ′′1 (0)

Present
−φ′′1 (0)

Hayat et al. [27]
−φ′′2 (0)

Present
−φ′′2 (0)

1 1.10000 1.0375 0.27960 0.29235
5 1.10638 1.0947 0.27744 0.27983

10 1.10643 1.1053 0.27737 0.27753
15 1.10643 1.10633 0.27737 0.27737
20 1.10643 1.10643 0.27737 0.27737
25 1.10643 1.10643 0.27737 0.27737
35 1.10643 1.10643 0.27737 0.27737
50 1.10643 1.10643 0.27737 0.27737

Λ1 = 0.0,0.2,0.4,0.6,0.8

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Ζ

Φ
1

' H
Ζ
L

(a)

Λ1 = 0.0,0.2,0.4,0.6,0.8

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ζ

Φ
2

' H
Ζ
L

(b)

Λ1 = 0.0,0.3,0.6,0.9,1.2

0 1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ζ

Φ
3
HΖ
L

(c)

Λ1 = 0.0,0.3,0.6,0.9,1.2

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Ζ

Φ
4
HΖ
L

(d)

Figure 3. Influence of λ1 on (a) φ′1(ζ), (b) φ′2(ζ), (c) φ3(ζ), and (d) φ4(ζ).
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Figure 4. Influence of β on (a) φ′1(ζ), (b) φ′2(ζ), (c) φ3(ζ), and (d) φ4(ζ).

The supremacy of the ratio of stretching rates (c) on φ′2(ζ), φ3(ζ), and φ4(ζ) is analyzed
in Figure 5. It is noticed that φ′2(ζ) enlarges while boosting c, whereas φ3(ζ) and φ4(ζ)
diminish. Magnifying the radiation parameter leads to the generation of more heat energy
to flow, which leads to a rise in the temperature profile (see Figure 6a). From Figure 6b, it
is clear that the temperature profile declines by magnifying the thermal relaxation time
parameter (γ). The concentration profile magnifies with a rise in the thermal Biot number
(α) (see Figure 6c).
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Figure 6. Influence of (a) Rd and (b) γ on φ3(ζ), and (c) α on φ4(ζ).

The skin-friction coefficient along the x- and y-directions rises upon boosting the ratio
of the relaxation to retardation time (λ1) (see Figure 7). From Figure 8, it is clear that the
local Nusselt number diminishes by magnifying both Rd. Also, the local Nusselt number
enhances by raising α. In Figure 9, the local Nusselt number diminishes on raising λ1 and
Nb. From Figure 10, it is observed that local Sherwood number enhances with a rise in Rd
and Nb.
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Figure 9. Influence of (a) λ1 and (b) Nb on Re−
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Figure 10. Influence of (a) Rd and (b) Nb on Re−
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x Shx.

The regression equation for skin friction with a variation in the ratio of relaxation to
retardation time (λ1), Deborah number (β), and the ratio of stretching rates (c) are

Re1/2
x C fx = −1.9288 + 0.6631 ∗ λ1 + 0.6057 ∗ β− 0.3236 ∗ c. (25)

Re1/2
y C fy = 0.0203 + 0.1662 ∗ λ1 + 0.0249 ∗ β− 1.6956 ∗ c. (26)
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The regression equation for the Nusselt number and the Sherwood number with
variations in the radiation parameter (Rd), Deborah number (β), thermophoresis parameter
(Nt), Brownian motion parameter (Nb), and thermal relaxation time parameter (γ) are

Re1/2
x Nu = 0.2077− 0.0106 ∗ Rd− 0.0097 ∗ λ1 + 0.0088 ∗ β− 0.0056 ∗ Nt

−0.0252 ∗ Nb + 0.0117 ∗ γ. (27)

Re1/2
x Sh = 0.3847 + 0.0161 ∗ Rd− 0.0583 ∗ λ1 + 0.0742 ∗ β− 0.6286 ∗ Nt

+0.4019 ∗ Nb + 0.0083 ∗ γ. (28)

5. Conclusions

The study of the 3D non-linearly thermally radiated flow of a Jeffrey nanofliud with
the CCHF model in the presence of a convective boundary condition is presented. The fol-
lowing are the outcomes of this analysis:

• The thickening of the thermal boundary occurs while raising the thermal radiation.
• On increasing the thermal radiation, the local heat transfer diminishes and the local

heat transfer raises with a raise in the Deborah number.
• The thickness of the momentum boundary layer reduces by boosting the ratio of the

relaxation to retardation time; however, the skin friction rises by raising the ratio of
the relaxation to retardation time.

• While boosting the thermal Biot number, the thermal boundary layer thickness rises,
which results in a rise in the heat transfer rate.

• The local heat (mass) transfer rate diminishes (rises) when the Brownian motion
parameter is raised.
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Abbreviations
The following abbreviations are used in this manuscript:

CCHF Cattaneo–Christov heat flux
HAM Homotopy Analysis Method
Nomenclature
c ratio of stretching rates
cp specific heat
h heat transfer coefficient
k thermal conductivity
k∗ mean absorption coefficient
v1, v2, v3 velocity components taken along the x-, y- and z-axes
Cn concentration
DB Brownian motion
DT thermophoresis coefficient
Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number
q heat flux
Rd radiation parameter
Sc Schmidt number
Te temperature
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Greek Symbols
α thermal Biot number
β Deborah number
γ thermal relaxation time parameter
λ1 ratio of relaxation to retardation time
λ2 retardation time
λ3 thermal relaxation
ν kinematic viscosity
ρ density
σ∗ Stefan–Boltzmann constant
τ ratio between the effective nanoparticle materials and fluid heat capacity
θw temperature ratio parameter
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