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Abstract: The objective of this paper is to study a new mathematical model describing the human
immunodeficiency virus (HIV). The model incorporates the impacts of cytotoxic T lymphocyte
(CTL) immunity and antibodies with trilinear growth functions. The boundedness and positivity
of solutions for non-negative initial data are proved, which is consistent with biological studies.
The local stability of the equilibrium is established. Finally, numerical simulations are presented to
support our theoretical findings.
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1. Introduction

The human immunodeficiency virus (HIV) is a virus that causes, at the end stage
of infection, acquired immunodeficiency syndrome (AIDS). The human system then fails
to perform its functions [1,2]. Several mathematical models of HIV dynamics have been
developed in recent decades [3–7]. For example, reference [8] investigates a model repre-
senting the interaction between CD4+ T cells, HIV contagions, and cytotoxic T lymphocyte
(CTL) growth using two saturated rates defining viral infection and CTL proliferation. The
authors demonstrate how the cellular immune response may be used to restrict the spread
of HIV infections. Several recent studies have emphasized the importance of antibodies
in reducing viral replication and improving patient quality of life [9–12]. The relevance of
antibodies in infection control was recently examined by the authors of [13]. The essential
novelty here is that antibody growth is dependent not only on the virus and antibody con-
centrations, but also on the uninfected cells’ concentration. It is very important, since the
role of the immune response to HIV infection has been recently recognized by the medical
literature to be of great value. Indeed, it is now well known that the CTL immune response
increases depending on the infection. This increase also depends on the number of CTLs
themselves. Moreover, the antibody immune response increases depending on the virus
proliferation, and this growth also depends on the number of viruses. As the growth of
the immune system cells depends on the number of healthy target cells (CD4+ T cells), the
development of immune responses is described using a trilinear term [14–16]. The objective
of the HIV virus is to destroy CD4+ T cells, often called messengers or the command centers
of the immune system. Once the virus invades the body, these cells send a message to the
immune system. CTLs and antibodies represent the immune system, which responds to
this message and sets out to eliminate the infection by killing infected cells and free viruses.
To include the antibodies in the model, their participation in controlling the infection is thus
essential. Additionally, a comparison between simulations with HIV ordinary differential
equation models and clinical data has been done in [17,18]. The following model has been
presented:
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dx
dt

= λ− dx− βxv,

dy
dt

= βxv− ay− pyz,

dv
dt

= aNy− µv− qvw,

dz
dt

= cxyz− hz,

dw
dt

= gxvw− σw

In this model, x(t), y(t), v(t), z(t), and w(t), denote the concentrations of uninfected
cells, infected cells, HIV virus, CTLs, and antibodies, respectively, at time t. The healthy
CD4+ T cells (x) grow at a rate λ, die at a rate d, and become infected by the virus at a
rate βxv. Infected cells (y), die at a rate a and are killed by the CTLs response at a rate p.
Free virus (v) is produced by the infected cells at a rate aN, die at a rate µ, and decay in
the presence of antibodies at a rate q, where N is the number of free viruses produced by
each actively infected cell during its life time. CTLs (z) expand in response to viral antigen
derived from infected cells at a rate c and decay in the absence of antigenic stimulation at a
rate h. Finally, antibodies (w) develop in response to free viruses at a rate g and decay at
a rate σ. It is worthwhile to note that all the model rates are assumed to be non-negative.
We are interested in the same topic in this study, but we include the function of the CTL
immune response and saturation rate in the model. The nonlinear system of five differential
equations under investigation is as follows:

dx
dt

= λ− dx− βxv
1 + αv

,

dy
dt

=
βxv

1 + αv
− ay− pyz,

dv
dt

= aNy− µv− qvw,

dz
dt

= cxyz− hz,

dw
dt

= gxvw− σw

(1)

where α is the saturated infection rate and the initial conditions are x(0) = x0, y(0) = y0,
v(0) = v0, z(0) = z0, and w(0) = w0.

The paper is organized as follows. Section 2 is devoted to the existence, positivity, and
boundedness of solutions. The analysis of the model is carried out in Section 3. Then, in
Section 4, the results are illustrated through numerical simulations. We finish in Section 5
with our conclusions.

2. Positivity and Boundedness of Solutions

It is generally known that any solutions reflecting cell densities should be non-negative
and bounded. Therefore, it will be useful to establish the positivity and boundedness of
solutions of the model (1). First of all, for biological results, the initial data x0, y0, v0, z0,
and w0 must be larger than or equal to 0. The main result of this section is given as follows:

Proposition 1. For any non-negative initial conditions, the solutions to the problem (1) exist. In
addition, this solution is non-negative and bounded for all t ≥ 0.

Proof. First, we show that the non-negative R5
+ =

{
(x, y, v, z, w) ∈ R5 : x ≥ 0, y ≥ 0, v ≥

0, z ≥ 0 and w ≥ 0} is positively invariant. Additionally, for (x(t), y(t), v(t), z(t), w(t)) ∈
R5
+, we have:
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ẋx=0 = λ ≥ 0, ẏy=0 =
βxv

1 + αv
≥ 0, v̇v=0 = aNy ≥ 0,

żz=0 = 0 ≥ 0, and ẇw=0 = 0 ≥ 0.

Therefore, all solutions initiating in R5
+ are positive. Next, we prove that these

solutions remain bounded. By adding the two first equations in (1), we have Ḃ =
λ− dx− ay− pyz; thus,

B(t) ≤ B(0)e−δt +
λ

δ

(
1− e−δt

)
,

where B(t) = x(t) + y(t) and δ = min(a; d). Since 1 − e−δt ≤ 1 and 0 ≤ e−δt ≤ 1,
we deduce that B(t) ≤ B(0) + λ

δ . Therefore, x and y are bounded. From the equation
v̇ = aNy− µv− qvw, we deduce that

v(t) ≤ v(0)e−µt + aN
∫ t

0
y(ξ)e(ξ−t)µdξ.

Then,

v(t) ≤ v(0) +
aN
µ
‖y‖∞

(
1− e−µt).

Since 1− e−µt ≤ 1, we have v(t) ≤ v(0) + aN
µ ‖y‖∞. Thus, v is bounded. Now, we

prove the boundedness of z. From the fourth equation of (1), we have

ż(t) + hz(t) = cx(t)y(t)z(t).

Moreover, from the second equation of (1), it follows that

ż(t) + hz(t) =
c
p

x(t)(βx(t)v(t)− ay(t)− ẏ(t)).

By integrating over time, we have

z(t) = z(0)e−ht +
∫ t

0

c
p

x(s)(βx(s)v(s)− ay(s)− ẏ(s))eh(s−t)ds.

From the boundedness of x, y, and v, and by using integration by parts, the bound-
edness of z follows. The two equations v̇(t) = aNy(t) − µv(t) − qv(t)w(t) and ẇ(t) =
gx(t)v(t)w(t)− σw(t) imply

ẇ(t) + σw(t) = gx(t)v(t)w(t) =
g
q

x(t)(aNy(t)− v̇(t)− µv(t)).

Then,

w(t) = w(0)e−σt +
∫ t

0

g
g

x(s)(aNy(s)− µv(s)− v̇(s))eσ(s−t)ds.

From the boundedness of x, y, and v, the boundedness of w follows.

We established the well-posedness of the proposed model in this research, ensuring
that all solutions exist and are bounded. This is consistent with the biological fact that these
populations’ overall cell numbers are limited.

3. Analysis of the Model

In this section, we determine the steady states of the model (1).
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3.1. Stability of the Disease-Free Equilibrium

The basic reproductive number of the system (1), is given by

R0 =
βλN
dµ

.

From a biological point of view, R0 denotes the average number of secondary infections
generated by one infected cell when all cells are uninfected. Moreover, the same system
has the following disease-free equilibrium:

E f =

(
λ

d
, 0, 0, 0, 0

)
.

At any arbitrary point, the Jacobian matrix of the system (1) is given by

J =


−d− βv

1+αv 0 −βx
(1+αv)2 0 0

βv
1+αv −a− pz βx

(1+αv)2 −py 0

0 aN −µ− qw 0 −qv
cyz cxz 0 cxy− h 0
gvw 0 gxw 0 gxv− σ

.

Proposition 2. The disease-free equilibrium, E f , is locally asymptotically stable for R0 < 1.

Proof. At the disease-free equilibrium, E f , the Jacobian matrix is given as follows:

JE f =


−d 0 − βλ

d 0 0
0 −a βλ

d 0 0
0 aN −µ 0 0
0 0 0 −h 0
0 0 0 0 −σ

.

The characteristic polynomial of JE f is

PE f (X) = a0X5 + a1X4 + a2X3 + a3X2 + a4X1 + a5,

where

a0 =1,

a1 =σ + h + µ + a + d,

a2 =
σda + ad2 + hda + µda + σd2 + σdh + σdµ + hd2 + µd2 + hdµ− aNβλ

d
,

a3 =
aσd2 + aσdh + aσdµ + ad2h + µd2a + adhµ + σd2h + σd2µ + σdhµ + d2hµ

d

− aNσβλ + αNβλd + aNhβλ

d
,

a4 =
aσd2h + aσd2µ + aσdhµ + ad2hµ + σd2hµ− aNσdβλ− aNσhβλ− aNdhβλ

d
,

a5 =σhµda(1− R0).

By the Routh–Hurwitz theorem [19] applied to the fifth-order polynomial, the eigen-
values of the Jacobian matrix have negative real parts, since we have a1 > 0, a1a2 >
a3, a1a2a3 > a2

1a4, and a1a2a3a4 > a1a2
2a5 + a2

1a2
4. Consequently, we obtain the asymptotic

local stability of the disease-free equilibrium E f .
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3.2. Infection Steady States

We now show the existence and stability of the infected steady states. All these steady
states exist when the basic reproduction number exceeds unity, and disease invasion is
always possible. In fact, it is easily verified that the system (1) has four of them:

E1 = (x1, y1, v1, 0, 0),

x1 =
µ(dR0 + λ)

Nλ(αd + β)
, y1 =

dµ(R0 − 1)
aN(αd + β)

, v1 =
dµ(R0 − 1)
µ(αd + β)

.

E2 = (x2, y2, v2, z2, 0),

x2 =
λ(αv2 + 1)

αdv2 + βv2 + d
, y2 =

µ

aN
v2,

z2 =
a(−αdµv2 + Nβλ− dµ− βµv2)

pµ(αdv2 + βv2 + d)
,

v2 =

√
a2h2(αd + β)2N2 + 2achuλ(αd− β)N + c2λ2u2 + (αd + β)haN − cλu

2αcλu
.

E3 = (x3, y3, v3, 0, w3),

x3 =
λ(αv3 + 1)

αdv3 + βv3 + d
, y3 =

βλ

a(αdv3 + βv3 + d)
v3,

w3 =
−αdµv3 + Nβλ− βµv3 − dµ

q(αdv3 + βv3 + d)
,

v3 =
(αd + β)σ− gλ +

√
(αd + β)2σ2 + 2gλ(αd− β)σ + g2λ2

2gλα
.

E4 = (x4, y4, v4, z4, w4)

x4 =
λ(αv4 + 1)

αdv4 + βv4 + d
, y4 =

gh
σc

v4, w4 =
Nagh− σcµ

σcq
,

z4 = − aαdghv4 + aβghv4 + adgh− αβcλ

gph(αdv4 + βv4 + d)
,

v4 =
(αd + β)σ− gλ +

√
(αd + β)2σ2 + 2gλ(αd− β)σ + g2λ2

2gλα
.

In this case, the endemic equilibrium point E1 represents the equilibrium case in the
absence of an adaptive immune response. The endemic equilibrium points E2 and E3 define
the equilibrium case in the presence of only one kind each of adaptive immune response,
antibody response, and CTL response, respectively. The last endemic equilibrium point, E4,
is for chronic HIV infection with the presence of both kinds of adaptive immune response,
CTLs and antibody. To study the stability of the points E1, E2, E3, and E4, we need the
following reproduction numbers:

R1 =
u(αd + β)

(Nαλ + u)β
,

R2 =
N
(

Nαβgλ2 − α2d2σ− αdgλu− 2αβdσ + βgλu− β2σ
)

u2dg
,

R3 =
g

2cσµ

(
aNh(αd + β) +

√
aN2h2(αd + β)2 + 2aNchλµ(αd− β) + c2λ2µ2

)2
− c2λ2µ2(

(αd + β)

(
aNh(αd + β)− cλµ +

√
aN2h2(αd + β)2 + 2aNchλµ(αd− β) + c2λ2µ2

)
+ 2dαcλµ

) ,

and
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R4 =
cβλ2α

ah

(
σ(αd + β) +

√
σ2(αd + β)2 + 2σg(αd− β) + g2λ2 + gλ

)
(
(αd + β)

(
σ(αd + β) +

√
σ2(αd + β)2 + 2σg(αd− β) + g2λ2

)
+ gλ(αd− β)

) .

For the first point, E1, we have the following result.

Proposition 3. If R0 > 1, then E1 is locally asymptotically stable for R2 < 1 and R1 < 1.

Proof. If R0 > 1, then the Jacobian matrix at E1 is given by

JE1 =


−d− β v1

1+αv1
0 −β x1

(1+αv1)
2 0 0

β v1
1+αv1

−a β x1
(1+αv1)

2 −py1 0

0 aN −µ 0 −qv1
0 0 0 cx1y1 − h 0
0 0 0 0 gx1v1 − α

.

Its characteristic equation is

(cx1y1 − h− X)(gx1v1 − σ− X)
(

b0X3 + b1X2 + b2X + b3

)
= 0

where

b0 = 1,

b1 = a + d + µ +
βd(R0 − 1)
β + αdR0

,

b2 = aµ + d(a + µ) +
1

β + αdR0
(βd(a + µ)(R0 − 1)− aµd(β + αd)),

b3 = aµd +
β
(

aµd(R0 − 1)− aλNd(β + αd)
(

R0 − 1− 1
R0

(
1− λα

d −
µ

dN

)))
β + αdR0

.

Direct calculations lead to

gx1v1 − σ = A1(R2 − 1) and cx1y1 − h = B1(R1 − 1)

with

A1 =
dgµ

N(αd + β)2 and B1 =
dcµ2

aN2(αd + β)2

The sign of the eigenvalue A1(R2 − 1) is negative if R2 < 1, zero if R2 = 1, and
positive if R2 > 1. The sign of the eigenvalue B1(R1 − 1) is negative if R1 < 1, zero if
R1 = 1, and positive if R1 > 1. On the other hand, we have b1 > 0 and b1 − b2b3 > 0 (as
R0 > 1). From the Routh–Hurwitz theorem [19], the other eigenvalues of the above matrix
have negative real parts.

For the second endemic-equilibrium point E2, we have the following result.

Proposition 4. If R1 > 1 and R3 ≤ 1, then E2 is locally asymptotically stable.

Proof. We assume that R1 > 1. The Jacobian matrix of E2 is given as follows:
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JE2 =


−d− βv2

1+αv2
0 − βx2

(1+αv2)
2 0 0

βv2
1+αv2

−a− pz2
βx2

(1+αv2)
2 −py2 0

0 aN −µ 0 −qv2
cy2z2 cx2z2 0 cx2y2 − h 0

0 0 0 0 gx2v2 − σ


The characteristic equation of the system (1) at the point E2 is given by

(gx2v2 − σ− X)
(

c0X4 + c1X3 + c2X2 + c3X + c4

)
= 0

where

c0 = 1,

c1 = d + a + µ +
βv2

1 + αv2
+ pz2,

c2 =

(
d +

βv2

1 + αv2

)
(a + µ) + aµ + pz2

(
d + µ + h +

βv2

1 + αv2

)
− aNβx2

(1 + αv2)
2 ,

c3 = aµ

(
d +

βv2

1 + αv2

)
+ pz2

(
µd + hd + µh + µ

βv2

1 + αv2
+ h

βv2

1 + αv2

)
− aNβdx2

(1 + αv2)
2 ,

c4 = pz2

(
µhd + µh

βv2

1 + αv2
− aNβhy2

)
.

Simple calculations lead to

gx2v2 − σ = σ(R3 − 1).

Then, gx2v2 − σ = σ(R3 − 1) is an eigenvalue of JE2 . The sign of this eigenvalue is
negative if R3 < 1, null when R3 = 1, and positive if R3 > 1. On the other hand, from the
Routh–Hurwitz theorem [19], the other eigenvalues of the above matrix have negative real
parts when R1 > 1.

For the third endemic-equilibrium point E3, the following result holds.

Proposition 5. If R2 > 1, then E3 is locally asymptotically stable for R4 < 1 .

Proof. We assume that R2 > 1. The Jacobian matrix of the system at point E3 is given by

JE3 =


−d− βv3

1+αv3
0 − βx3

(1+αv3)
2 0 0

β
βv3

1+αv3
−a βx3

(1+αv3)
2 −py3 0

0 aN −µ− qw3 0 −qv3
0 0 0 cx3y3 − h 0

gv3w3 0 gx3w3 0 gx3v3 − σ

.

The characteristic equation associated with JE3 is given by

(cx3y3 − h− X)
(

d0X4 + d1X3 + d2X2 + d3X + d4

)
= 0
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where

d0 = 1,

d1 = a + d + µ +
βv3

1 + αv3
+ qw3,

d2 =

(
d +

βv3

1 + αv3

)
(a + µ) + aµ +

(
d + a + σ +

βv3

1 + αv3

)
qw3 − aN

βx3

(1 + αv3)
2 ,

d3 = aµ

(
d +

βv3

1 + αv3

)
+

(
ad + σd + aσ + a

βv3

1 + αv3

)
qw3 − aNd

βx3

(1 + αv3)
2 ,

d4 = adσqw3.

Here, cx3y3− h is an eigenvalue of JE3 . By assuming cx3y3− h = h(R4 − 1), we deduce
that the sign of this eigenvalue is negative when R4 < 1, zero when R4 = 1, and positive for
R4 > 1. On the other hand, from the Routh–Hurwitz theorem [19], the other eigenvalues
of the above matrix have negative real parts when RW > 1. Consequently, E3 is locally
asymptotically stable when R2 > 1 and R4 < 1.

For the last endemic-equilibrium point E4, we prove the following result.

Proposition 6. If R3 > 1 and R4 > 1, then E4 is locally asymptotically stable.

Proof. The Jacobian matrix of the system at the point E4 is given by

JE4 =


−d− βv4

1+αv4
0 − βx4

(1+αv4)
2 0 0

βv4
1+αv4

−a− pz4
βx4

(1+αv4)
2 −py4 0

0 aN −µ− qw4 0 −qv4
cy4z4 cx4z4 0 cx4y4 − h 0
gv4w4 0 gx4w4 0 gx4v4 − σ


The characteristic equation associated with JE4 is given by

f0X5 + f1X4 + f2X3 + f3X2 + f4X + f5 = 0

where

f0 =1,

f1 =a + d + µ +
βv4

1 + αv4
+ pz4 + qw4,

f2 =

(
d +

βv4

1 + αv4

)
(a + µ) + aµ + pz4

(
d + h + µ +

βv4

1 + αv4
+ qw4

)
+ qw4

(
d + a + σ +

βv4

1 + αv4

)
− aN

βx4

(1 + αv4)
2 ,

f3 =aµ

(
d +

βv4

1 + αv4

)
+ pz4

(
dµ + dh + µh + µ

βv4

1 + αv4
+ h

βv4

1 + αv4

)
+ qw4

(
ad + σd + aσ + a

βv4

1 + αv4

)
+ pqz4w4

(
d + σ + h +

βv4

1 + αv4

)
− aNd

βx4

(1 + αv4)
2 ,

f4 =adqw4 + pz4

(
dhµ + µh

βv4

1 + αv4
− aNβhy4

)
+ pqz4w4

(
dσ + σ

βv4

1 + αv4
+ hσ

)
,

f5 =σhd
(

pqz4w4 + aN
βv4

1 + αv4

(
1− βx4

1 + αv4

))
.
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From the Routh–Hurwitz theorem applied to the five-order polynomial, the eigen-
values of the Jacobian matrix have negative real parts, since we have f1 > 0, f1 f2 >
f3, f1 f2 f3 > f 2

1 f4, and f1 f2 f3 f4 > f1 f 2
2 f5 + f 2

1 f 2
4 . Consequently, we can obtain the asymp-

totic local stability of the endemic point E4.

4. Numerical Simulations

The numerical simulations were performed using in-house code run in MATLAB
software. To solve numerically the five differential equations of the system (1), numerical
simulations have been carried out. The simulation parameters were derived from [13,19–21].
Our first numerical simulations were focused on demonstrating the importance of anti-
bodies to reducing infection severity. Other numerical simulations was used to verify
our theoretical findings. We also take into account the initial conditions given as follows:
x0 = 5, y0 = 1, v0 = 1, z0 = 1, and w0 = 1.

Figure 1 shows the development of the infection in the free equilibrium case: d = 0.007,
β = 0.00025, a = 0.2, p = 1, µ = 2.06, c = 0.0051, h = 0.004, λ = 1, N = 6.25, g = 0.00013,
q = 0.12, α = 10−4, and σ = 0.12. Within these chosen parameters, we have the basic
reproduction number being less than unity R0 = 0.1084 < 1, and we can observe the
convergence of the curves corresponding to the stability of the disease-free equilibrium
E f = (142.8571, 0, 0, 0, 0). This confirms our theoretical result given in Proposition 2.
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Figure 1. Behavior of the infection over time for d = 0.007, β = 0.00025, a = 0.2, p = 1, µ = 2.06,
c = 0.0051, h = 0.004, λ = 1, N = 6.25, g = 0.00013, q = 0.12, α = 10−4, and σ = 0.12, which
corresponds to the stability of the free equilibrium E f = (142.8571, 0, 0, 0, 0) with (R0 = 0.1084 < 1).

Figure 2 shows the infection dynamics for the following parameters: d = 0.1, β = 0.000024,
a = 0.002, µ = 3, c = 5.8× 10−6, h = 0.23, λ = 10, N = 2640, g = 1.3× 10−6, q = 5× 10−9,
α = 10−5, and σ = 0.2. With these parameters we can easily compute the reproduction
numbers R0 = 2.1120 > 1 and R1 = 0.7535 < 1, which means that the first one is greater
than unity, and the second is less than one. This predicts numerical stability of the first
endemic equilibrium, E1. Indeed, we can observe that the curves converge toward the first
endemic equilibrium E1 = (85.8342, 479.1444, 800.2941, 0, 0), which confirms our theoretical
finding concerning the stability of E1.
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Figure 2. Behavior of the infection in time for d = 0.1, β = 0.000024, a = 0.002, µ = 3, c = 5.8× 10−6,
h = 0.23, λ = 10, N = 2640, g = 1.3 × 10−6, q = 5 × 10−9, α = 10−5, and σ = 0.2, which
corresponds to the stability of the endemic equilibrium point E1 = (85.8342, 479.1444, 800.2941, 0, 0)
with (R0 = 2.1120 > 1 and R1 = 0.7535 < 1).

Figure 3 shows the infection dynamics for the following parameters: d = 0.05, β = 0.000024,
a = 0.0017, p = 0.0001, µ = 2.06, c = 3.9× 10−6, h = 0.15, λ = 12, N = 2640, g = 1.3× 10−6,
q = 5× 10−9, α = 10−11, and σ = 20. With these parameters we can easily compute the
reproduction numbers R1 = 1.0010 > 1 and R3 = 0.0325 < 1. This predicts the numerical
stability of the second endemic equilibrium, E2. Indeed, we can observe that the curves converge
toward the second endemic equilibrium E2 = (199.7789, 192.5205, 419.4330, 87.4592, 0), which
confirms our theoretical finding concerning the stability of E2. Additionally, Figure 4 shows
the infection dynamics for the following parameters: d = 0.05, β = 0.000024, a = 0.001,
p = 0.0001, µ = 2.06, c = 2.4 × 10−6, h = 0.26, λ = 14, N = 2640, g = 1.3 × 10−6,
q = 5× 10−9, α = 10−11, and σ = 0.1. With these parameters, we can easily compute the
reproduction numbers R2 = 3.6200 > 1 and R4 = 0.1318 < 1. This predicts the numerical
stability of the third endemic equilibrium, E3. Indeed, we observe that the curves converge
toward the third endemic equilibrium, E3 = (246.9057, 434.8010, 279.2416, 0, 4.168× 108),
which confirms our theoretical finding concerning the stability of E3. Figures 3 and 4 show
the actions of the disease in the absence of CTLs and antibody responses, respectively.
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Figure 3. Behavior of the infection over time for d = 0.05, β = 0.000024, a = 0.0017,
p = 0.0001, µ = 2.06, c = 3.9 × 10−6, h = 0.15, λ = 12, N = 2640, g = 1.3 × 10−6,
q = 5 × 10−9, α = 10−11, and σ = 20, which corresponds to the stability of the endemic equi-
librium E2 = (199.7789, 192.5205, 419.4330, 87.4592, 0) with (R1 = 1.0010 > 1 and R3 = 0.0325 < 1).
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Figure 4. Behavior of the infection over time for d = 0.05, β = 0.000024, a = 0.001, p = 0.0001,
µ = 2.06, c = 2.4 × 10−6, h = 0.26, λ = 14, N = 2640, g = 1.3 × 10−6, q = 5 × 10−9,
α = 10−11, and σ = 0.1, which corresponds to the stability of the endemic equilibrium
E3 = (246.9057, 434.8010, 279.2416, 0, 4.168× 108) with (R2 = 3.6200 > 1 and R4 = 0.1318 < 1).



Math. Comput. Appl. 2022, 27, 85 12 of 13

Finally, Figure 5 shows the infection dynamics for the following parameters: d = 0.05,
β = 0.000024, a = 0.0017, p = 0.0001, µ = 2.06, c = 3.9× 10−6, h = 0.15, λ = 12, N = 2640,
g = 1.3× 10−6, q = 5× 10−9, α = 10−11, and σ = 0.1. With these parameters we can easily
compute the reproduction numbers R3 = 1.0200 > 1 and R4 = 2.4652 > 1; both of them are
greater than unity. This predicts the numerical stability of the fourth endemic equilibrium,
E4. Indeed, we can observe that the curves converge toward the fourth endemic equilibrium
E4 = (208.5510, 1982.7148, 420.251, 104.9445, 3.6800× 107), which confirms our theoretical
finding concerning the stability of E4 of model (1), which is globally asymptotically stable;
this is consistent with Proposition 6. Figure 5 shows the actions of the complaint in the
presence of all the variables acting on the model. The figure shows the continuity of
HIV contagion. Additionally, we observe that the two immunity systems may control the
infection better than only one immunity type. We have observed many oscillations like
those in many previous works in the literature [22,23]. We have studied numerically the
stability of the problem’s equilibria. We have found that the numerical tests are consistent
with the theoretical results.
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Figure 5. Behavior of the infection over time for d = 0.05, β = 0.000024, a = 0.0017,
p = 0.0001, µ = 2.06, c = 3.9 × 10−6, h = 0.15, λ = 12, N = 2640, g = 1.3 × 10−6,
q = 5 × 10−9, α = 10−11, and σ = 0.1, which corresponds to the stability of the endemic
equilibrium E4 = (208.5510, 1982.7148, 420.251, 104.9445, 3.6800× 107) with (R3 = 1.0200 > 1 and
R4 = 2.4652 > 1).

5. Conclusions

In this paper, we presented and investigated a new mathematical model of human
immunodeficiency illness by considering the adaptive immune response and a trilinear
antibody growth function. The model’s primary innovation is that it considers how anti-
body formation is influenced not only by illness and antibody concentration, but also by
the concentration of uninfected cells, which has been validated by current findings. The
boundedness and positivity of the findings were established once the new mathematical
model was proposed. The local stability of the disease-free and infection-stable states was
also investigated. Other numerical simulations were also carried out in order to verify the
theoretical conclusions on equilibrium stability.
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