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Abstract: In this paper, we focus on investigating the performance of the mathematical software
program Maple and the programming language MATLAB when using these respective platforms to
compute the method of steps (MoS) and the Laplace transform (LT) solutions for neutral and retarded
linear delay differential equations (DDEs). We computed the analytical solutions that are obtained by
using the Laplace transform method and the method of steps. The accuracy of the Laplace method
solutions was determined (or assessed) by comparing them with those obtained by the method
of steps. The Laplace transform method requires, among other mathematical tools, the use of the
Cauchy residue theorem and the computation of an infinite series. Symbolic computation facilitates
the whole process, providing solutions that would be unmanageable by hand. The results obtained
here emphasize the fact that symbolic computation is a powerful tool for computing analytical
solutions for linear delay differential equations. From a computational viewpoint, we found that the
computation time is dependent on the complexity of the history function, the number of terms used
in the LT solution, the number of intervals used in the MoS solution, and the parameters of the DDE.
Finally, we found that, for linear non-neutral DDEs, MATLAB symbolic computations were faster
than Maple. However, for linear neutral DDEs, which are often more complex to solve, Maple was
faster. Regarding the accuracy of the LT solutions, Maple was, in a few cases, slightly better than
MATLAB, but both were highly reliable.

Keywords: symbolic computation; linear delay differential equations; Laplace transform; Maple;
MATLAB

1. Introduction

Often, engineers and scientists may need to choose a software that is specific to
their application or modeling purpose. Some software languages may have different
features, speed/computational complexity, tolerances, architecture, libraries, ease of use,
etc., that can affect the accuracy of the model. Here, we investigated the performance of the
mathematical software program Maple and the programming language MATLAB when
applying the method of steps (MoS) and the Laplace transform (LT) methods to solve linear
delay differential equations (DDEs). To make the comparison fair, we used the benefits
offered by these two programs for symbolic computation, which allows us to derive the
solutions of these DDEs in the ways we would think about carrying them out by hand
with variables, symbols, functions, and other mathematical formulas. An advantage of
using symbolic computation is that it eliminates cases of roundoff errors in intermediate
calculations since parameter variables are carried throughout the calculations using infinite
precision arithmetic [1–3]. However, in some cases, using symbolic computations can lead
to slower execution times depending on the program used and the process [4–6]. Symbolic
computation has been used and proposed for solving many different problems [7–11].

In this paper, we focus on comparing the symbolic mathematical computations of
Maple and MATLAB to obtain analytical solutions of linear neutral and non-neutral DDEs
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by using the LT method. The accuracy of the LT solutions may be determined by comparing
them with the MoS solutions [12–17]. However, the MoS has a very important limitation
since it is a stepwise process that requires solving the relevant differential equation in each
respective time interval, which can be computationally expensive. Moreover, for many
types of DDEs, we will often encounter the swelling phenomena, i.e., the complexity of
the closed-form solution increases rapidly in each successive time interval, making the
computations unfeasible [14,16]. On the other hand, the LT method produces a solution that
can be evaluated at any particular value of time. Thus, we can compute the approximated
solution by evaluating it at any point. Other advantages of the analytical solutions, such
as the long-term behavior of the solution, can be seen in [14,15,18–22]. The errors of the
LT solutions usually decrease as time increases. On the other hand, for classical numerical
solutions, the computation increases as t → ∞ [14,23–25]. However, numerical schemes
that solve linear and nonlinear DDEs are useful and, in some cases, are easy to implement.
For instance, in [26], the authors developed a numerical scheme based on a fitted difference
scheme with the use of exponential basis functions and interpolating quadrature rules
to solve first order linear DDEs. Some researchers have proposed different collocation
methods to solve linear and nonlinear DDEs [27,28]. For instance, in [29], the Haar wavelet
collocation method was applied to obtain the numerical solution of a particular class of
DDEs. The method is also applied to systems involving DDEs. In [30], the authors proposed
a numerical method for solving linear fractional differential equations using discretization
at the Jacobi–Gauss collocation points. Other methods that have been applied that involve
more general DDEs can be found in [31,32]. In these works, the authors deal with the
differential-difference equation in an infinite-dimensional space and with unbounded
domains. Moreover, they consider mixed-type equations that include both forward and
backward shifts of the argument. These forms are generated by different temporal and
spatial discretizations. It is important to mention that one might expect that some of the
techniques and results of retarded differential equations could be applied to mixed-type
equations, but, given that the independent variable in this paper is strictly temporal, this
may require one to introduce some modifications [32,33]. In addition, these last works deal
with idealized nonlinearities in order to obtain a more tractable problem.

It is important to point out that, even for linear DDEs, it might be challenging to obtain
an analytical solution. Moreover, in most cases, the neutral delay differential equations
(NDDEs) are more difficult to solve due to the appearance of a time delay on the derivative
of the state variable. Regarding solving ordinary differential equations (ODEs) and DDEs,
the latter is usually more difficult to solve since the derivatives of the state variables
depend on the values of the state variable from the past. The classic approach used to
obtain the solutions of DDEs is the MoS, but, in many cases, it is unfeasible to advance
further in time and obtain the solution in the long term [14,15,34–36]. In [14], the authors
studied the accuracy of the LT for linear DDEs and, in particular, for NDDEs. In [20], the
authors developed a method for solving linear and nonlinear DDEs with a proportional
delay using a combination of the LT and the differential transformation method (DTM).
The authors mentioned that the convergence rate can be improved by the combination
of the two methods. The LT method has also been used to solve linear second order
DDEs [37]. However, complex analytical computations and the use of the residue theorem
are required [14,37]. Linear DDEs have different applications and have been applied in
many problems [17,38,39].

In order to compare the symbolic computations involved in obtaining the solutions of
neutral and non-neutral linear DDEs using the LT method, we selected Maple and MATLAB
software since they are well-known in the scientific community [3,40]. In Maple, we made
use of the symbolic functions diff, dsolve, fsolve, eval, and subs, to name a few, whereas, in
MATLAB, we utilized functions from the symbolic math and optimization toolboxes such
as fsolve, subs, vpa, and vpasolve. We explored several examples of DDEs of neutral and
non-neutral type in order to compare the symbolic computation of Maple and MATLAB.
For each example, we computed the solution over some finite time interval using the MoS
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briefly described in Section 2.1 and the LT method described in Section 3. First, we explored
two examples of non-neutral DDEs and then we followed with several examples of neutral
DDEs. For each example, we compared: (1) the solutions of the two methods from each
program software, (2) the errors associated with each method and software, and (3) the
computation times. DDEs have been used in many different fields, including astronomy
and epidemiology [17,41–43]. For some applications, such as control or communication
systems, the computation time may be a critical factor [44–47]. All computations were
performed on a computer system with an Intel(R) Core(TM) i9-10900K CPU @ 3.70 GHz
processor and 64 GB RAM.

The organization of this paper is as follows. In Section 2, preliminaries for DDEs,
NDDEs, and the MoS for solving linear DDEs are presented. In Section 3, we briefly present
the main aspects of the LT method with the relevant equations and formulas. In Section 4,
we compare the symbolic computations to obtain the solution of linear DDEs using the LT
method. We present several examples related to DDEs and their corresponding numerical
solutions. In Section 5, conclusions regarding the symbolic computations required to obtain
the solution of DDEs using the LT method are provided.

2. Preliminaries

In this section, we present some preliminary definitions that are needed to solve the
different linear DDEs presented in this work. Some preliminaries include background
concepts, the Lambert function, the residue theorem, and the MoS. Familiarity with the
basic concepts of complex analysis is assumed.

2.1. Method of Steps (MoS)

The traditional method for solving DDEs is with an elementary method called the
method of steps [17,34,35,48–50]. It is well-known for being a tedious process when being
worked out by hand, but the complexity can be drastically simplified with symbolic
toolboxes in computer programs [15]. Let us consider a NDDE with fixed delay τ:

y′(t) = f (t, y(t), y(t− τ), y′(t− τ)), t > t0,

y(t) = φ0(t), t ∈ [−τ + t0, t0], (1)

y(t) = y0, t = t0,

where t0 is the initial time value, τ is a constant/discrete delay, and y0 is some constant.
For DDE initial value problems (IVPs), we require a history function, φ0(t) : [−τ, t0]→ R,
and an initial value, y(t0) = y0 for t = t0, to solve the problem. This condition implies
that DDEs are in fact infinite-dimensional problems since we define an infinite set of initial
conditions between t ∈ [−τ, t0].

Using integration properties on the interval [t0, t0 + τ], the solution is then given by
y1(t), which is a solution to the following NDDE:

y′1(t) = f (t, y1(t), φ0(t− τ), φ′0(t− τ)), t ∈ [t0, t0 + τ],

y1(t) = φ0(t), t = t0.

Repeating this process for successive intervals and using the solution over the past
interval, we find the following general derivative formula for the nth partition of the IVP
(n ∈ N):

y′n(t) = f (t, yn(t), yn−1(t− τ), y′n−1(t− τ)), t ∈ [(n− 1)τ, nτ],

yn(t) = yn−1(t), t = (n− 1)τ.

The solutions of {y′n(t)}∞
n=1 form a piecewise solution of the original NDDE (1) on the

interval t ∈ [0, nτ).
Even though the MoS provides an analytical solution for DDEs, it has some drawbacks,

including time consumption and the complexity of the integrals to be solved over each
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interval. This method also requires full knowledge of the history before the approach can
be used. Since it is a successive process, it can be quite difficult to observe the behavior of
the solution or to perform stability analysis of y(t) as t→ ∞.

2.2. Lambert W Function

From ODEs, the roots of the characteristic equation provide information about the
solution of a linear ODE or system of linear ODEs. Often times, this equation is a simple
polynomial that is easy to solve with algebraic operations or use of the quadratic formula.
A linear DDE or system of linear DDEs can be characterized in a similar manner to ODEs
by looking at the characteristic equation. Take, for example, the following linear DDE with
discrete time delay τ:

y′(t) = cy(t− τ), t > 0,

y(t) = φ0(t), t ∈ [−τ, 0],

y(t) = y0, t = 0,

where y0 is the initial value. The characteristic polynomial of the above DDE takes the form
of a quasi-polynomial due to the introduction of the exponential, i.e., P(λ) = λeτλ − cy0.
By setting P(λ) = 0, there could be an infinite number of poles. Through simplifying, we
obtain λeτλ = cy0, which takes the form of a Lambert W function with the equation form
z = W(z)eW(z), where z is some complex number and W(z) is the multi-valued function
solution of the equation.

Lambert functions are used when the unknown of an equation appears as both a base
and exponent. Equations such as λeτλ = cy0 cannot be solved with algebraic, logarithmic,
or exponential properties. For certain values of z, this equation can have an infinite number
of solutions called branches of W, and are denoted by Wk(z) for k ∈ Z. One of the branches,
called the principal branch, is analytic at zero and is denoted by W0 (k = 0). For real
numbers, the branches W0 and W−1 can be used to solve the equation yey = x with real
numbers x and y if x ≥ − 1

e . The solution, y, can be found using the following conditions.{
y = W0(x) if x ≥ 0
y = W−1(x) or y = W0(x) if − 1

e ≤ x < 0.

We note that the second condition implies that, in the interval − 1
e ≤ x < 0, the

equation yey = x has two real solutions.
In terms of our given problem, the poles of the quasi-polynomial are given by

λk = 1
τ Wk(cy0τ). The analytical solution to the DDE, then, can be expressed in terms

of an infinite number of branches, given as

y(t) =
∞

∑
k=−∞

eλktCk , λk =
1
τ

Wk(cy0τ)

where the Cks are the coefficients determined from the history function, φ0(t), and the
initial value, y0. One can analyze how changes in the parameters c, y0, and τ affect the
real part of the eigenvalues of the system and, in turn, how that impacts the stability of the
solution. Further details and applications of the Lambert function can be found in literature
such as [51,52].

2.3. Cauchy’s Residue Theorem

The LT method for solving DDEs requires the use of Cauchy’s residue theorem, which
is a powerful tool discussed in complex analysis for evaluating complex real integrals or
infinite series [53,54]. Here, it was used to find the solution of a DDE when converting from
the s-space back to the t-domain.
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Suppose f (z) is an analytic function in the complex regionR defined by 0 < |z− z0| < d,
or the neighborhood of a point z = z0 ∈ C. Then, z0 is an isolated singular point of f (z). The
function f (z) can be represented by the Laurent series expansion as [54]:

f (z) =
∞

∑
n=−∞

Cn(z− z0)
n

where

Cn =
1

2πi

∮
C

f (z)
(z− z0)n+1 dz

are the coefficients and C is a simple closed contour inR. The principal part of the series is

given by the negative portion,
−1
∑

n=−∞
Cn(z− z0)

n, where C−1 is called the residue of f (z) at

z0. An isolated singularity is a pole if f (z) is of the form [53,54]:

f (z) =
ψ(z)

(z− z0)M (2)

where M ∈ N is the order of the pole, ψ(z) is an analytic function inR, and ψ(z0) 6= 0.

Residues of Poles: If M = 1, then f (z) has a simple pole at z0. At a simple pole z0 ∈ C,
the residue of f (z) is given by [54]:

C−1 = Res( f (z), z0) = lim
z→z0

((z− z0) f (z)) = ψ(z0). (3)

If the limit does not exist, then there exists an essential singularity at z0. If the limit is
zero, then f (z) is analytic at z0, or z0 is a removable singularity. If the limit is infinity, then
the order is greater than M = 1 [53,54].

Now, suppose f (z) can be expressed as a rational function, f (z) = N(z)
D(z) , where N(z)

and D(z) are analytic functions inR and D(z) has a zero at z0. Let D(z) = (z− z0)
MD̂(z),

where D̂(z0) is analytic in R and D̂(z0) is nonzero. Using the Taylor series expansion of
N(z) and D̂(z), the residue is given as [53,54]:

C−1 = ψ(z0) =
N(z0)

D′(z0)
. (4)

If M ≥ 2, then f (z) has a pole of order M at z0. From Equation (2), the residue of f (z)
at z0 is given by [53,54]:

C−1 =
1

(M− 1)!
lim

z→z0

(
dM−1

dzM−1

(
(z− z0)

M f (z)
))

=
ψ(M−1)(z0)

(M− 1)!
.

Residue Theorem: Suppose C is a simple closed contour and let f (z) be an analytic
function inside and on C, excluding a finite number (K) of isolated singularities inside
C. Then,

∮
C

f (z) dz = 2πi
K−1

∑
n=0

Res( f (z), zn). (5)

The use of Cauchy’s residue theorem in the LT method comes from the definition of
the inverse Laplace transform (ILT):
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f (t) = L−1{F(s)} = 1
2πi

c+i∞∫
c−i∞

F(s)est ds (6)

where the integration is over a vertical path in the complex plane defined at c = Re(s).
From complex analysis, the function est is entire and, thus, we require the vertical path to
be to the right of all of the poles of F(s). In other words, the real part of all of the poles
needs to be to the left of c. Let us denote this vertical path γ shown in Figure 1. To use the
residue theorem to evaluate the above integral, we construct a contour path, CR, enclosing
all of the poles with radius R as shown in Figure 1 going in a CCW direction. From this
contour and Cauchy’s residue theorem, we obtain∮

C
F(s)est ds =

∫
γ

F(s)est ds +
∫

CR

F(s)est ds

=

c+iR∫
c−iR

F(s)est ds +
∫

CR

F(s)est ds = 2πi
N−1

∑
n=0

Res(F(s)est; sn),

which implies that

f (t) =
1

2πi
lim

R→∞, N→∞

 c+iR∫
c−iR

F(s)est ds

 =
∞

∑
n=0

Res(F(s)est; sn)−
1

2πi
lim

R→∞

∫
CR

F(s)est ds. (7)

Let ICR =
∫

CR

F(s)est ds. We need to show that lim
R→∞

(ICR) = lim
R→∞

∫
CR

F(s)est ds = 0.

Achieving this will give:

f (t) =
1

2πi

c+i∞∫
c−i∞

F(s)est ds =
∞

∑
n=0

Res(F(s)est; sn)

where c is a fixed real constant s.t. F(s) has a finite number of poles located to the left of
the line Re(s) = c.

Let F(s) = N(s)
D(s) . For t > 0, we enclosed in the left half plane where s = c + Reiθ ,

θ ∈ [π/2, 3π/2]. Then, ds = iReiθ dθ, and we obtain

ICR =

3π/2∫
π/2

e(c+Reiθ)t · F(c + Reiθ) · (iReiθ) dθ

=⇒ |ICR | ≤
3π/2∫

π/2

∣∣∣∣ect+Rteiθ
∣∣∣∣·∣∣∣∣F(c + Reiθ)

∣∣∣∣·∣∣∣∣iReiθ
∣∣∣∣ dθ

=

3π/2∫
π/2

∣∣∣∣ecteRt(cos(θ)+i sin(θ))
∣∣∣∣·∣∣∣∣F(c + Reiθ)

∣∣∣∣·∣∣∣∣i(s− c)
∣∣∣∣ dθ

We find that ∣∣∣∣ecteRt(cos(θ)+i sin(θ))
∣∣∣∣ = ecteRt cos(θ)

and

|i(s− c)| = |i| · |s− c| ≤ |s|+ |c| < 2|s|
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for sufficiently large |s| . Then, we have

|ICR | ≤ 2ect
3π/2∫

π/2

eRt cos(θ)·
∣∣∣∣sF(s)

∣∣∣∣ dθ

In the integrand, we note that cos(θ) is negative for θ ∈ (π/2, 3π/2). Then, as R→ ∞,
we can observe that |ICR | → 0, which implies that lim

R→∞
(ICR) = lim

R→∞

∫
CR

F(s)est ds = 0. Then,

we have shown that the ILT of F(s) can be represented using residues and is given by

f (t) =
∞

∑
n=0

Res(F(s)est; sn). (8)

Figure 1. Bromwich contour (interested readers are referred to [54]).

3. Laplace Transform (LT) Method

We denote the LT of the solution y(t) as L{y(t)} = Y(s). Then, for a given delay term
in the state variable, the LT is given by (such that t0 = 0)

L{y(t− τ)} =
∞∫

0

y(t− τ)e−st dt = e−sτ

∞∫
−τ

y(v)e−sv dv

= e−sτY(s) + e−sτ

0∫
−τ

y(v)e−sv dv.

(9)

When the delay is present in the derivative of the state variable, the LT is given by
(such that t0 = 0):

L{y′(t− τ)} =
∞∫

0

y′(t− τ)e−st dt = e−sτ

∞∫
−τ

y′(v)e−sv dv

= se−sτY(s) + e−sτ

 0∫
−τ

y′(v)e−sv dv− y(0)


= se−sτY(s)− y(−τ) + se−sτ

0∫
−τ

y(v)e−sv dv.

(10)

The LT method uses Equations (9) and (10) as a part of the process to obtain the
solutions of the linear NDDEs. For further details, interested readers are referred to [14,15].
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3.1. Theory for Linear Non-Neutral DDE Case

First, we consider a simple linear non-neutral DDE case as shown below, where the
solution is derived using the ILT and the residue formula as described in Section 2.3:

y′(t) = ay(t) + by(t− τ) + g(t), t > 0, (11)

y(t) = φ0(t), t ∈ [−τ, 0].

Considering the homogeneous case, and applying the LT to Equation (11) (using Equation (9)),
we obtain the LT transform, Y(s) = N(s)

D(s) , of y(t):

Y(s) =
y(0)esτ + b

0∫
−τ

φ0(v)e−sv dv

(s− a)esτ − b
. (12)

Setting D(s) = 0, we find that the poles of Y(s) occur at sk = a + 1
τ Wk(τbe−aτ) for

k ∈ Z. Recall from the definition of the Lambert function that, if the argument τbe−aτ = − 1
e ,

then we encounter a case where the real pole s = a− 1
τ is of order M = 2 (since s0 = s−1

by definition of the W0 and W−1 Lambert branches). If τbe−aτ 6= − 1
e , then the poles sk are

of order M = 1. By applying the ILT, for M = 1, we obtain the solution

y(t) = ∑
k∈Z

Re
(

lim
s→sk

(
ckeskt)), (13)

where the cks are the computed residues. Further details can be found in [14].
If the linear non-neutral DDE is non-homogeneous, we obtain the LT:

Y(s) =
N(s)
D(s)

+
G(s)
D(s)

(14)

where G(s) is the LT of the function g(t). We denote the additional poles introduced
by G(s) as sv for v = 1, 2, ..., V (assuming that sk 6= sv, ∀k, v and are of order M = 1)
with corresponding residues cv. Applying the ILT and the residue theorem, we obtain
the solution

y(t) = ∑
k∈Z

Re
(

lim
s→sk

(
ckeskt))+

V

∑
v=1

Re
(

lim
s→sk

(
cv

(sv − a)esvτ − b
esvt
))

, (15)

where

ck =
N(sk) + G(sk)

D′(sk)
, k ∈ Z

For more details about the LT, the interested readers are referred to [14]. In Section 4.1,
we will explore the solutions of both cases (homogeneous and non-homogeneous).

3.2. Theory for NDDE Case

Next, we consider a simple NDDE case as shown below, where the solution is derived
using the residue formula as described in Section 2.3:

y′(t) = ay(t) + by(t− η1) + cy′(t− η2) + g(t), t > 0 (16)

y(t) = φ0(t), t ∈ [−τ, 0],
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where τ = max(η1, η2), and η1, η2 > 0. Considering the homogeneous case, and applying the
LT to Equation (16) (using Equations (9) and (10)), we obtain the LT transform, Y(s) = N(s)

D(s) ,
of y(t):

Y(s) =

y(0)− cy(−η2) + be−sη1
0∫
−η1

y(v)e−sv dv + cse−sη2
0∫
−η2

y(v)e−sv dv

s− a− be−sη1 − cse−sη2
. (17)

Setting D(s) = 0, we can find the poles sk of Y(s). Under some general conditions, the
poles sk are of order M = 1. Then, applying the ILT, we obtain the solution

y(t) = ∑
k∈Z

Re
(

lim
s→sk

(
ckeskt)), (18)

where the cks are the computed residues. We can analyze different cases depending on g(t),
and the signs and magnitudes of a, b, c and ηi for i = 1, 2. For further details, interested
readers are referred to [14].

If the NDDE is non-homogeneous, similar properties hold as in the non-neutral case. In
Section 4.2, we explore the solution behavior of different delay cases. Further details and
analysis can be found in [14].

4. Comparison of MoS and LT Methods Using Symbolic Computation

Here, we present and discuss different examples of non-neutral DDEs and NDDEs
introduced in [14] and apply the MoS and LT methodologies to each example to find the
solution of such equations using the Maple and MATLAB software. First, the solutions
obtained by each method will be compared between programs to highlight the variances in
program computations. Second, the accuracy of the LT method will be evaluated against
the analytical solution obtained by the MoS for each program. For this section, we introduce
the following notation:

• eMoS(t) = |yMaple,MoS(t) − yMATLAB,MoS(t)|: absolute error in the solution y(t) be-
tween Maple and MATLAB via the MoS.

• eLT(t) = |yMaple,LT(t)− yMATLAB,LT(t)|: absolute error in the solution y(t) between
Maple and MATLAB via the LT.

• eMap(t) = |yMaple,MoS(t)− yMaple,LT(t)|: absolute error in the solution y(t) between
the MoS and LT via Maple.

• eMAT(t) = |yMATLAB,MoS(t) − yMATLAB,LT(t)|: absolute error in the solution y(t)
between the MoS and LT via MATLAB.

4.1. Linear Non-Neutral DDE Examples

The two examples presented in this section demonstrate solutions formed from poles of
order M = 1. Figures 2 and 3 and Table 1 summarize the solution results, error comparisons
between MoS and LT in each programming language, and the computation times for the
corresponding example.

Example 1. Let us consider the following DDE:

y′(t) = −15y(t) + 15y(t− 1), t > 0, (19)

y(t) = φ0(t) = 2− t− 6t(t + 1)3, t ∈ [−τ, 0],

where τ = 1. Taking the LT of Equation (19), we obtain the quasi-polynomial D(s) = (s+ 15)es− 15,
which has a real pole at s0 = 0 with residue c0 = 2.75 (from Equation (4)). The remaining poles
and residues are given by: sk = −15 + Wk(15e15), k ∈ Z\{0}, with property s−k = sk, and
ck =

N(sk)
D′(sk)

. Applying the ILT and Cauchy’s residue theorem, we obtain the LT solution of y(t):
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y(t) = 2.75 + 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt)).

The solution of Example 1 via MoS (over m = 9 intervals) and LT (n = 5000) and in
each software program is shown in Figure 2a. We notice that, as t→ ∞, y(t)→ c0 = 2.75
since a = −b, s0 = 0, and each Re(sk) < 0 for k ∈ Z\{0}. Figure 2b,c demonstrate the
variances between the software when evaluating the solution via MoS (blue curve) or the
LT (red curve). Figure 2d demonstrates the accuracy of the LT compared to the analytical
MoS via Maple (blue curve) and MATLAB (red curve). Upon analyzing Figure 2b,d, we
note that the MATLAB MoS solution significantly deviates from its LT solution and the
Maple MoS solution. In the MoS process, a piecewise function is produced for each interval
and it becomes harder to integrate and solve the sub-IVPs as the functions become more
complicated with each step. In the LT solution, we see that, as t progresses, the variance
fluctuations in the solution between programs decrease. Each plot shows that error spikes
occur every kτ. The reason is that, around these points, the sines of the truncated non-
harmonic series do not play any significant role, while the cosine and exponential terms
are essentially equal to 1. Therefore, the approximated series solution loses the ability to
approximate the solution close to t = kτ. The spikes can be reduced if we include more
terms in the truncated series [14].

Figure 2. Solution results of Equation (19) over t ∈ [0, 9τ] (n = 5000 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

Figure 3. Solution results of Equation (20) over t ∈ [0, 9τ] (n = 5000 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).
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Table 1. Computation time comparison for the non-neutral systems in Equations (19) and (20).

Example # Program Method Time (s)

1

Maple
MoS 0.407

LT 246.031

MATLAB
MoS 1.335

LT 64.914

2

Maple
MoS 0.485

LT 269.828

MATLAB
MoS 1.385

LT 64.914

The computation times via each method and software are shown in Table 1. Given the
number of terms to compute for the LT solution, the computation time was higher for both
programs compared to the MoS solutions. However, with the use of MATLAB’s symbolic
toolbox functions, the computation time for the LT solution was reduced by a factor of four
compared to Maple for this particular example.

Example 2. Let us consider the following DDE:

y′(t) = −1
5

y(t)− 5
8

y(t− 3), t > 0, (20)

y(t) = φ0(t) = (t + 3/2)2, t ∈ [−τ, 0],

where τ = 3. Taking the LT of Equation (20), we obtained the quasi-polynomial D(s) = (s−
1/5)e3s − 5/8, which has no real poles since D(ln(−bτ)/τ) > 0 (see [14]). The complex poles
are given by: sk = − 1

5 + 1
3 Wk

(
− 15

8 e3/5
)

, k ∈ Z, with property s−(k+1) = sk, and corresponding

residues ck =
N(sk)
D′(sk)

. Applying the ILT and Cauchy’s residue theorem, we obtained the LT solution
of y(t):

y(t) = 2
∞

∑
k=1

Re
(

lim
s→sk

(
ck eskt)).

The solution of Example 2 via MoS (over m = 9 intervals) and LT (n = 5000) and in
each software program is shown in Figure 3a. We noticed that, as t → ∞, y(t) → 0 since
Re(sk) < 0 ∀k ∈ Z. Figure 3b,c demonstrates the variances between the software when
evaluating the solution via MoS (blue curve) or the LT (red curve). Figure 3d demonstrates
the accuracy of the LT compared to the analytical MoS via Maple (blue curve) and MATLAB
(red curve).

Compared to Example 1, Figure 3b,d demonstrates that the performance error in
MATLAB’s MoS solution, relative to the Maple MoS solution and the MATLAB LT solution,
decreased. One notable difference between Examples 1 and 2 is the reduced complexity
in the history function. In Example 1, the history function was a fifth-order polynomial,
whereas, here, the history is a second-order polynomial. In both examples, the LT solution
is truncated to 5000 terms. Note that truncation creates ringing in the solution near the
history function endpoints. In Figure 3d, the LT error decreases exponentially for both
software, while, in Figure 2d, we notice that the error has a maximum peak at around t = 8.
In some cases, increasing the number of terms reduces the error further and improves the
history function approximation, but at the cost of computational complexity and time.

The computation times via each method and software are shown in Table 1. We
noticed that Examples 1 and 2 exhibit similar times since we used the same solution
structure in both programs, compatible functions between programs, number of terms
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to be computed, and number of intervals to integrate over. Given the number of terms
to be computed for the LT solution, the computation time was higher for both programs
compared to the MoS solutions. However, with the use of MATLAB’s symbolic toolbox
functions, the computation time for the LT solution was reduced by 4x compared to Maple
for both examples.

4.2. Linear NDDE Examples

The NDDE examples to be discussed conform to the general form in Equation (16).
These five examples demonstrate solutions formed from poles of order M = 1. Figures 4–8
and Table 2 summarize the solution results, error comparisons between MoS and LT in
each programming language, and the computation times for the corresponding example.

Table 2. Computation time comparison for the NDDE systems in Equations (21)–(25).

Example # Program Method Time (s)

3

Maple
MoS 0.203

LT 84.219

MATLAB
MoS 0.838

LT 870.978

4

Maple
MoS 0.296

LT 15.470

MATLAB
MoS 2.022

LT 32.663

5

Maple
MoS 0.453

LT 17.110

MATLAB
MoS 1.572

LT 29.052

6

Maple
MoS 0.438

LT 42.344

MATLAB
MoS 1.130

LT 284.252

7

Maple
MoS 0.297

LT 89.093

MATLAB
MoS 1.280

LT 349.196

Example 3. Consider

y′(t) = y(t) + y(t− 1)− 1
4

y′(t− 1), t > 0, (21)

y(t) = φ0(t) = −t, t ∈ [−τ, 0],

where η1 = 1, η2 = 1, and τ = max{η1, η2} = 1. This example was utilized in [36] to evaluate
the performance of a numerical method for solving linear NDDEs using the generalized Lambert W
function [55,56]. Applying MoS for a few partitions, we obtained the following analytical solution:
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y(t) =


−t, [−τ, 0],
t + 1

4 et − 1
4 , [0, 1],

−t + 1
2 +

(
3

16 t + 17
16 + 1

4 e
)

et−1, [1, 2],

. . . . . .

Taking the LT of Equation (21), we obtained the quasi-polynomial D(s) = s− 1− e−s + 1
4 se−s,

which has a real pole at s0 ≈ 1.2084 with residue c0 ≈ 0.3837 (from Equation (4)). The remaining
poles and residues are given by the sequence {sk}∞

k=−∞ for k ∈ Z\{0} (s−k = sk) and ck =
N(sk)
D′(sk)

,

respectively. For large j ≥ k, these poles approach sj =
ln(|b|)+(2j+1)πi

τ ≈ −1.3863 + (2j + 1)πi
for j ∈ N (see [14]). Since s0 > 0, then, from the stability analysis, the solution will be unstable.
Applying the ILT and Cauchy’s residue theorem, we obtained the LT solution of y(t):

y(t) ≈ 0.3837e1.2084t + 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt)).

The solution of Example 3 via MoS (over m = 5 intervals) and LT (n = 2000) and in
each software program is shown in Figure 4a. Figure 4b,c shows that, as t→ ∞, the variance
between each software increases exponentially. Figure 4d indicates that the accuracy of the
LT solution improves exponentially as t increases for both programs, and with noticeable
spikes every kτ. Compared to the non-neutral examples, NDDE solutions have a higher
complexity and, thus, one software may be more beneficial to use vs. another.

Figure 4. Solution results of Equation (21) over t ∈ [0, 5τ] (n = 2000 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

Example 4. Consider

y′(t) = −2y(t) + y(t− 2) +
1
2

y′(t− 2), t > 0, (22)

y(t) = φ0(t) = sin(πt), t ∈ [−τ, 0],

where η1 = 2, η2 = 2, and τ = max{η1, η2} = 2. This second example was first presented in [57]
to study the superconvergence of continuous Galerkin finite element methods for linear NDDEs.
Applying the MoS, the following analytical solution of y(t) over the interval [−τ, mτ] was obtained,
where m is the number of intervals:
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y(t) =



sin(πt) [−τ, 0]
sin(πt)/2 [0, 2]
sin(πt)/4 [2, 4]
...

...
sin(πt)/(2m) [(m− 1)τ, mτ].

The characteristic equation of the system is given by D(s) = s + 2− 1
2 se−2s − e−2s, which

has a real pole at s0 ≈ −0.3466 with residue c0 ≈ −0.0786. The remaining poles and residues are
given by the sequence {sk}∞

k=−∞ for k ∈ Z\{0} (s−k = sk) and ck = N(sk)
D′(sk)

, respectively. These

poles are exactly given by sk = ln(c)+2kπi
τ ≈ −0.3466 + kπi for k ∈ N (see [14]). Since s0 < 0

and Re(sk) < 0 ∀k, then, from the stability analysis, the solution will be stable. Applying the ILT
and Cauchy’s residue theorem, we obtained the LT solution of y(t):

y(t) ≈ −0.0786e−0.3466t + 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt)).

The solution of Example 4 via MoS (over m = 6 intervals) and LT (n = 500) and in
each software program is shown in Figure 5a. Figure 5b,c shows that the variance between
each software is of order 10−16 and, as t→ ∞, the error decreases with peak errors every
t = k for k ∈ N. Figure 5d indicates that the accuracy of the LT solution improves as t
increases for both programs, and has an interesting spike located around πτ.

Figure 5. Solution results of Equation (22) over t ∈ [0, 6τ] (n = 500 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

Example 5. Let us consider

y′(t) = −3
2

y(t)− 9
10

y′(t− 2) + 6, t > 0, (23)

y(t) = φ0(t) = −
5
6
(t + 2) t3, t ∈ [−τ, 0],

where η2 = 2 and τ = η2. The third example does not contain a state-dependent delay term. This
equation is governed by the characteristic quasi-polynomial given by D(s) = s + 3

2 + 9
10 se−2s,
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which has a real pole at s0 ≈ −0.4602 with residue c0 ≈ −2.2994. The other poles are given by
the sequence {sk}∞

k=1 (s−k = sk). For large j ≥ k, these poles approach sj =
ln(|c|)+(2j+1)πi

τ ≈
−0.0527 + (2j + 1)πi for j ∈ N (see [14]). The corresponding residues are given by ck =

N(sk)
D′(sk)

.
Applying the ILT and Cauchy’s residue theorem, we obtained the LT solution of y(t):

y(t) ≈ −2.2994e−0.4602t + 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt)).

The solution of Example 5 via MoS (over m = 10 intervals) and LT (n = 500) and in
each software program is shown in Figure 6a. Figure 6b,c shows that the variance between
each software is of order 10−5 via MoS and order 10−15 via LT. From Figure 6d, as t→ ∞,
the error decreases with peak errors every t = k for k ∈ N. This indicates that the accuracy
of the LT solution improves as t increases for both programs, and has an interesting spike
located around πτ.

Figure 6. Solution results of Equation (23) over t ∈ [0, 10τ] (n = 500 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

Example 6. Let us consider

y′(t) = −6y(t)− 6y(t− 1) +
9

10
y′(t− 2), t > 0, (24)

y(t) = φ0(t) = −t(1 + t), t ∈ [−τ, 0],

where η1 = 1, η2 = 2, and τ = max{η1, η2} = η2. The fourth example has the characteristic
quasi-polynomial given by D(s) = s + 6− 9

10 se−2s + 6e−s, which has no real poles. The complex
poles are given by the sequence {sk}∞

k=1 (s−k = sk). For large j ≥ k, these poles approach

sj =
ln(c)+2jπi

τ ≈ −0.0527 + jπi for j ∈ N (see [14]). The corresponding residues are given by

ck =
N(sk)
D′(sk)

. Applying the ILT and Cauchy’s residue theorem, we obtained the LT solution of y(t):

y(t) ≈ 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt)).

The solution of Example 6 via MoS (over m = 7τ intervals) and LT (n = 500) and in
each software program is shown in Figure 7a. Figure 7b,c shows that the variance between
each software is of order 10−9 via MoS and order 10−16 via LT. We see similar deviances
in the MoS solutions compared to Example 5 between each software. A larger timespan
would be needed to deduce conclusions on the similarities of the LT solution between each
software. From Figure 6d, as t→ ∞, the error decreases, with peak errors every t = kτ for
k ∈ N.
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Figure 7. Solution results of Equation (24) over t ∈ [0, 7τ] (n = 500 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

Example 7. Let us consider

y′(t) = −6y(t) + 6y(t− 2) +
2
3

y′(t− 1), t > 0, (25)

y(t) = φ0(t) = 4 + t, t ∈ [−τ, 0],

where η1 = 2, η2 = 1, and τ = max{η1, η2} = η1. The fifth example in Equation (25) has
the characteristic quasi-polynomial given by D(s) = s + 6− 2

3 se−s − 6e−2s, which has a real
pole at s0 = 0 with residue c0 ≈ 3.0811. The remaining poles are divided into two sequences
(see [14]). One sequence of poles, {sk}∞

k=1 (s−k = sk), lies relatively close to the imaginary

axis, which, for large j ≥ k, approaches sj = ln(c)+2jπi
η2

≈ −0.4055 + 2jπi for j ∈ N. The
second sequence of poles, {sk′}∞

k′=1 (s−k′ = sk′), is offset from the imaginary axis, which, for large

j′ ≥ k′, approaches sj′ =
Wj′(

b
c (η2−η1))
η1−η2

for j′ ∈ N. The corresponding residues are given by

ck,k′ = lim
s→sk ,sk′

(
N(s)

1+ 2
3 (s−1)e−s+12e−2s

)
. Then, the solution is of the form

y(t) ≈ 3.0811 + 2
∞

∑
k=1

Re
(

lim
s→sk

(
ckeskt))+ 2

∞

∑
k′=1

Re
(

lim
s→sk′

(
ck′ e

sk′ t
))

.

The solution of Example 7 via MoS (over m = 7τ intervals) and LT (n = 500) and in
each software program is shown in Figure 8a. Figure 8b,c shows that the variance between
each software is of order 10−9 via MoS and order 10−15 via LT. We see similar deviances
in the MoS solutions near the boundary intervals compared to Example 5. Relative to
previous NDDE examples, Example 7 has a larger error in the LT solution vs. the analytical
MoS via both software, with an order of magnitude 10−3 as shown in Figure 8d, despite
the simplicity of the history function. Nevertheless, we can observe that, as t → ∞, the
error decreases.

The computation times via each method and software are shown in Table 2. We make
the following notes regarding the time computation results:

• From Maple MoS solutions, the order of time computation is as follows:
Example 5 > Example 6 > Example 7 > Example 4 > Example 3.

• From Maple LT solutions, the order of time computation is as follows:
Example 7 > Example 3 > Example 6 > Example 5 > Example 4.

• From MATLAB MoS solutions, the order of time computation is as follows:
Example 4 > Example 5 > Example 7 > Example 6 > Example 3.

• From MATLAB LT solutions, the order of time computation is as follows:
Example 3 > Example 7 > Example 6 > Example 4 > Example 5.
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From these results, we notice that the computation time is dependent on the complexity
of the history function, the number of terms used in the LT solution, the number of intervals
used in the MoS solution, and the magnitude of the parameters of the NDDE. Regarding
MoS solutions, Examples 4 and 5 both have a complicated history function (one is a fourth-
order polynomial and the other is periodic), and we observe that both programs took longer
to compute the solutions. Regarding LT solutions, Examples 3 and 7 took the most time to
compute via both software, even though Example 1 had the most terms. The differences
between these examples is that Example 7 consisted of an extra sequence of poles due
to the different delays in the state-dependent term and the derivative-of-state-dependent
term. Nevertheless, Example 3 was found to be the quickest to compute via MoS for both
softwares, whereas Examples 4 and 5 were found to be the quickest to compute via LT. We
also note that, in all cases, Maple’s computation time was found to significantly outrank
MATLAB’s computation time.

We notice that Examples 3 and 4 exhibit similar times since we used the same solution
structure in both programs, compatible functions between programs, number of terms
to be computed, and number of intervals to integrate over. Given the number of terms
to be computed for the LT solution, the computation time was higher for both programs
compared to the MoS solutions. However, with the use of MATLAB’s symbolic toolbox
functions, the computation time for the LT solution was reduced by 4x compared to Maple
for both examples.

Figure 8. Solution results of Equation (25) over t ∈ [0, 7τ] (n = 500 terms): plot of (a) the solution
y(t) via each method and software, (b) eMoS(t), (c) eLT(t), (d) eMap(t) and eMAT(t).

5. Conclusions

In this paper, we investigated the symbolic mathematical computational performance
of the software program Maple and the programming language MATLAB when applying
the method of steps (MoS) and the Laplace transform (LT) methods to solve neutral and
retarded linear DDEs. Of particular interest was comparing how these programs performed.
The exact, analytic MoS solution was used to aid in this comparison. However, the main
reason for why most of the graphs only include the first 5–10 time-intervals is due to the
fact that the method of steps often could not compute the solution beyond these intervals.
The Laplace solution is an infinite series, which requires one to compute the relevant
poles along with their associated residues. We computed the analytical solutions using
Maple and MATLAB in order to take advantage of their respective symbolic computation
features. The accuracy of the Laplace method solutions were measured by comparing
them with those obtained by the method of steps. The Laplace method produces an
analytical solution that can be evaluated at any particular value of time. The results
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obtained emphasize that symbolic computational software is a powerful tool, capable
of computing analytic solutions for linear delay differential equations, including neutral
ones. From a computational viewpoint, we found that the computation time is dependent
on the complexity of the history function, the number of terms used in the LT solution,
the number of intervals used in the MoS solution, and the DDE parameters. We found
that, for linear non-neutral DDEs, MATLAB symbolic computations were faster than the
ones from Maple. However, for the linear neutral DDEs, which are often more difficult to
solve, Maple was faster. Regarding accuracy, it is important to point out that we compared
Maple and MATLAB via MoS and LT. The differences between both software were smaller
for the LT in comparison to the MoS. In addition, the accuracy of the LT solutions using
Maple were, in a few cases, slightly better than the ones generated by MATLAB. However,
both were reliable, but we can mention that Maple lightly surpasses MATLAB in symbolic
computation due to its symbolic capabilities/nature. Finally, we would like to mention
some limitations of the LT irrespective of the software choice. The LT method is only
applicable for linear DDEs due to the Laplace transform definition. Thus, nonlinear DDEs
should be solved by other means. In addition, we implemented the LT for scalar linear
DDEs with constant coefficients and a finite number of delays. However, the LT method
can also be extended to solve first-order linear DDE systems. In this work, we applied
the LT method to homogeneous and non-homogenous DDEs. Future works that are in
progress include solving linear non-homogeneous DDEs with Dirac delta function inputs,
with one related goal being to develop a Green’s function type kernel.
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