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Abstract: Within statistical process control (SPC), normality is often assumed as the underlying
probabilistic generator where the process variance is assumed equal for all rational subgroups.
The parameters of the underlying process are usually assumed to be known—if this is not the case,
some challenges arise in the estimation of unknown parameters in the SPC environment especially
in the case of few observations. This paper proposes a bivariate beta type distribution to guide the
user in the detection of a permanent upward or downward step shift in the process’ variance that
does not directly rely on parameter estimates, and as such presents itself as an attractive and intuitive
approach for not only potentially identifying the magnitude of the shift, but also the position in time
where this shift is most likely to occur. Certain statistical properties of this distribution are derived
and simulation illustrates the theoretical results. In particular, some insights are gained by comparing
the newly proposed model’s performance with an existing approach. A multivariate extension is
described, and useful relationships between the derived model and other bivariate beta distributions
are also included.

Keywords: bivariate beta; gamma; hypergeometric function; sequential; shift in process variance

1. Introduction
1.1. Problem Contextualisation

The monitoring of the variance of independent and identically distributed (i.i.d)
normal random variables over time by taking successive, independent samples of mea-
surements over time remains an interesting and valuable research consideration within
quality control environment. In this case, when the variance σ2 changes to σ2

1 = λσ2

for some λ 6= 1, the practitioner needs to investigate the scope of such a change (a
value of λ), and ideally, the position within the successive measurements where such
a change could’ve taken place. Suppose that Xij are i.i.d. N(µ, σ2), i = 0, 1, 2, · · · , κ− 1 and
Xij ∼ i.i.d. N

(
µ, σ2

1 = λσ2), i = κ, κ + 1, · · · , m where j = 1, 2, · · · , ni ≥ 2 and λ > 0, as
outlined in Figure 1. The values of κ and λ are assumed to be unknown, but deterministic
in nature. The order of these samples is important and cannot be re-ordered; in other words,
the samples have a set sequence corresponding to the order in which they were obtained.

Thus, inspired by a practical objective, this paper aims to present a theoretically
motivated framework to

1. present and contextualise this problem within the quality control environment;
2. follow a systematic approach to build up the distributional foundations from this

practical perspective;
3. exploratively focus on the development of the (new) resulting bivariate beta distribution;
4. compare this model with an existing approach; and

Math. Comput. Appl. 2022, 27, 61. https://doi.org/10.3390/mca27040061 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca27040061
https://doi.org/10.3390/mca27040061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0003-4793-5674
https://orcid.org/0000-0002-5945-6550
https://orcid.org/0000-0003-4793-5674
https://doi.org/10.3390/mca27040061
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27040061?type=check_update&version=2


Math. Comput. Appl. 2022, 27, 61 2 of 18

5. determine whether λ 6= 1, and if this is indeed the case, to determine κ, the location of
where the shift in the variance occurred.

Therefore, from sample κ onwards, the process would be considered out-of-control.
Note that it is assumed that the shift occurs between two samples.

Figure 1. Process shift.

Assume that both the process mean (µ) and variance
(
σ2) are unknown, and that

they are estimated by their respective minimum variance unbiased estimators (MVUE),
given by:

X̄i =
∑ni

j=1 Xij

ni
, i = 0, 1, 2, · · · , m, (1)

S2
i =

1
ni − 1

ni

∑
j=1

(
Xij − X̄i

)2, i = 0, 1, 2, · · · , m, (2)

where X̄i and S2
i denote the mean and variance of sample i respectively. Some particular

notes on Equation (1) and (2) include:

• The index variable i ranges from 0 to m: a total of m + 1 independent rational sub-
groups or samples.

• At least two samples are needed for a potential shift between them to be possible,
therefore we assume m ≥ 1.

• The sample size ni can vary between different samples.
• ni ≥ 2 is necessary since the process mean and variance are both assumed to be

unknown and have to be estimated.
• The pooling approach here is to use m− r + 1 and r sample means and variances in the

construction of the test statistic in Section 1.2. Alternatively one can consider a single
mean/variance in this construction, which would result in additional information
∑m

i=r ni − 1 and ∑r−1
i=0 ni − 1 such that ni ≥ 1 and probability density functions are

valid. In this case, the approach would reduce to a two sample comparison testing for
a change in the variance.

The problem of determining if a shift in the process variance has occurred can be divided
into two stages, namely before the potential shift and after, as indicated below (Gamma(·, ·)
denotes the usual gamma distribution with suitable shape and scale parameters [1]).
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Before the shift

Samples: i = 0, 1, 2, · · · , κ − 1
j = 1, 2, · · · , ni

Distribution: Xij ∼ N
(
µ, σ2)

Wi =
(ni − 1)S2

i
σ2 d

=
Gamma

(
ni − 1

2
, 2
)

d
=

χ2(ni − 1). (3)

After the shift

Samples: i = κ, κ + 1, · · · , m
j = 1, 2, · · · , ni

Distribution: Xij ∼ N
(
µ, σ2

1 = λσ2)
Wi =

(ni − 1)S2
i

λσ2 d
=

Gamma
(

ni − 1
2

, 2λ

)
. (4)

1.2. A Solution: Sequential Statistic Framework

The proposed distribution compares all the sample variances before a certain point
(where the potential shift occurs), with all sample variances after the time of the shift.
In essence, the multi-sample hypothesis testing problem is approached by using m sequen-
tial two sample tests; described as:

S2
0 is compared with S2

1, S2
2, · · · , S2

m
S2

0, S2
1 is compared with S2

2, S2
3, · · · , S2

m
and so forth until

S2
0, S2

1, · · · , S2
m−1 is compared with S2

m.

(5)

Note that, due to the assumption that we have m+ 1 samples, the procedure to identify
the possible change in the variance requires m comparisons. Of these m comparisons the
one that leads to the largest disparity between the sample variables on the left and the
right of (5) will indicate the most likely position where the process experienced a change
in variance. In essence, what is then needed is to quantify the difference between the
sample variances of the left and right of (5), and then determine which of the m different
comparisons has the largest difference between the sample variances, and finally to use
some measure to determine if this maximum difference is within some set tolerance range.
Our proposed mathematical construct on how to achieve this is discussed for the remained
of this introduction. Assuming that no shift in the process variance has occurred, it
is possible to construct a series of two sample statistics that correspond to the general
procedure described in (5). Each statistic corresponds to whether at sample r = κ the two
independent samples (the sample variances before time r and the sample variances after
and including time r) are from normal distributions with the same unknown variance σ2.
This can alternatively be viewed as testing whether σ2 = σ2

1 , which is similar to testing
λ = 1. As such, it follows that detecting a shift in the process variance can be reduced to
the following hypothesis test:

H0 : σ2 = σ2
1 vs HA : σ2 6= σ2

1 or alternatively H0 : λ = 1 vs HA : λ 6= 1.

Suppose that a shift of size λ occurs in the process variance, then the correspond-
ing random variables after the shift would be Wi∼Gamma( ni−1

2 , 2λ), i = κ, κ + 1, · · · , m
distributed (see (4)). If there is no shift in the variance, λ = 1, and it follows that
Wi∼Gamma( ni−1

2 , 2), i = 0, 1, · · · , m. Thus the hypothesis being investigated can be changed
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depending on the choice of the scale parameter of the specific gamma random variables.
From (5) it follows that the series of statistics that forms the building blocks of the process
are given by

U∗r =

(
∑m

i=r(ni−1)S2
i

λσ2 ∑m
i=r(ni−1)

)
(

∑r−1
i=0 (ni−1)S2

i
σ2 ∑r−1

i=0 (ni−1)

) ≡ ∑m
i=r Wi

∑m
i=r(ni−1)

∑r−1
i=0 Wi

∑r−1
i=0 (ni−1)

, r = 1, 2, · · · , m− 1, m, (6)

where Wi∼Gamma( ni−1
2 , 2) for i = 1, 2, · · · , r − 1 and Wi∼Gamma( ni−1

2 , 2λ) for
i = r, r + 1, · · · , m.

In essence, (6) implies that the sample variances before the potential shift are pooled
together, and the sample variances after the potential shift are pooled together. The
numerator of the statistic at time r is the average, weighted by each statistic’s degrees of
freedom, of all the sample variances between and including samples r and m, while the
denominator is the corresponding weighted average of all the sample variances between
and including samples 0 and r− 1; this is graphically presented in Figure 2. Thus U∗r is the
test statistic that is typically used to test the equality of two population variances from a
normal distribution.

Figure 2. Building blocks of new distribution.

From (3), (4) and (6), it follows that if no shift has occurred in the process variance,
i.e., λ = 1, each statistic U∗r is univariate F distributed with ∑m

i=r(ni − 1) and ∑r−1
i=0 (ni − 1)

degrees of freedom, respectively.
The reasoning behind the critical values that would indicate whether λ 6= 1 is justified

by inspecting the sequence of statistics in (6). Suppose that an increase (λ > 1) in the
process variance has occurred from sample r = κ onward, then:

• The statistic U∗r ’s numerator will contain only sample variances that come from a
N
(
µ, λσ2), λ > 1 distribution, whereas the denominator will contain only sample

variances that come from a N
(
µ, σ2) distribution.

• If k1 is some integer value such that 1 ≤ r − k1 < r, then the statistic U∗r−k1
will

contain k1 sample variances in its numerator that are from a N
(
µ, σ2) distribution.

This will reduce the weighted average of the sample variances of U∗r−k1
’s numerator

in comparison to the numerator of U∗r .
• Similarly, if k2 is some integer value such that r < r + k2 ≤ m, then the statistic

U∗r+k2
will contain k2 sample variances in its denominator that are from a N

(
µ, λσ2)

distribution. This will increase the weighted average of sample variances of U∗r+k2
’s

denominator in comparison to the denominator of U∗r .
• Thus, any statistic other than the one immediately following the shift in the process

variance, will contain either smaller sample variances in its numerator, or larger
sample variances in its denominator (on average). Either of these scenarios result in a
high probability that all other statistics are smaller relative to U∗r .

• This leads to the conclusion that the most probable place where an upwards shift in
the process variance will be detected is at the statistic immediately following the shift.
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The value that this statistic assumes also has a high likelihood of being the maximum
value of all the U∗r , r = 1, 2, · · · , m− 1, m statistics.

• As such, the most reasonable method of calculating the critical value to detect an
upwards shift in the process variance is to calculate the maximum order statistic of
the charting statistics U∗r , r = 1, 2, · · · , m− 1, m, (under the null hypothesis) and to
set the critical value equal to some percentile of the distribution of the maximum
order statistic.

Using a similar but inverted argument, it can be justified that the critical value of the
control chart should be set equal to some percentile of the minimum order statistic of the
charting statistics, under the null hypothesis of no shift having occurred, if the detection
of a downward shift in the process variance is of concern. Due to space limitations, the
minimum order statistics are not presented in this article.

To simplify matters going forward and for notational purposes we omit the factors
∑m

i=r(ni − 1) and ∑r−1
i=0 (ni − 1) in (6), and drop the superscript *, and therefore the statistics

of interest become

Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m− 1, m, (7)

where Wi ∼ Gamma(αi > 0, βi > 0), i = 0, 1, · · · , m and independent. Since αi =
ni−1

2 and
βi = 2λ, the shape parameter is related to the sample size of the ith sample, and the scale
parameter is related to the underlying distribution’s variance. The theoretical focus here
is based on the statistics in (7), whereas the statistics in (6) are those that are practically
applicable and is the basis in the simulation study in Section 3.

Constructing statistics using ratios of random variables as in (7) is of practical interest
in many areas of science. Ref. [2] studied and derived the joint density functions of
ratios of Rayleigh, Rician, Nakagami-m, and Weibull random variables; [3] approached the
ratios of generalised gamma variables via exact- and near exact solutions, and [4] derived
closed-form expressions for the ratio of independent non-identically distributed variables
from an α-µ distribution which have applications in the performance analysis of wireless
communication systems.

The proposed model in this paper will be compared to the model of [5] in Section 3,
and is described here for the convenience of the reader. If r = 2, that the bivariate joint
probability density function of the statistics in (10) is given by

g(t1, t2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1(t2)
α2−1(1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1(1 + t1)t2)
−α0−α1−α2

(8)

where t1, t2 > 0, αi, βi > 0 for i = 0, 1, 2,, t1 = w1
w0

and t2 = w2
(w0+w1)

, and Γ(·) is the
gamma function [6].

Refs. [5,7] proposed a beta distribution that is used to detect a shift in the process
variance which is based on the Q chart that was developed by [8], and as such the series of
comparisons of sample statistics they made were

S2
1 is compared with S2

0
S2

2 is compared with S2
0, S2

1
and so forth until

S2
m is compared with S2

0, S2
1, · · · , S2

m−1.

(9)

Using a similar approach to the method described earlier the statistics can be given as

Tr =
Wr

∑r−1
i=0 Wi

, r = 1, 2, · · · , m− 1, m, (10)

which is graphically presented in Figure 3—with Wi defined in (3) and (4).
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Figure 3. Building blocks of [7].

Based on the work of [5,9] provided insight for detecting the change in the parameter
structure if the underlying process is multivariate normal.

1.3. Outline of Paper

In Section 2, the bivariate joint probability density function which emanates from (7) is
derived, accompanied by an exploratory shape analysis. This is followed by the derivation
of the marginal probability density functions, the product moment as well as the maximum
order statistic of the distribution. In Section 3 the performance of the model that this
article proposes is compared to the Q chart studied by [5], this will be conducted through a
simulation study. Tables of simulated values for the 95th percentiles of the maximum order
statistics of the sets of random variables in (6) and (7) are provided in Section 3, for varying
parameter choices, to enable practical application of the proposed model. The values in
these tables are corroborated through numerical integration of the derived expressions for
the maximum order statistics. The Appendices A and B contains proofs of the obtained
results as well as the positioning of this distribution among other often considered bivariate
beta models.

2. Proposed Model

In this section, the joint probability density function of the random variables U1 and
U2 (see (7) when r = 2) is derived, followed by a shape analysis, the derivation of the
marginal probability density functions, the product moment as well as the maximum order
statistic. A brief review of this new candidate with respect to its partners is provided
in the Appendices A and B—which provides additional insight for modelling as well as
expressions with closed form.

2.1. Bivariate Probability Density Function

Theorem 1. Let Wi be independent gamma random variables with parameters αi =
ni−1

2 > 0,
βi = 2λ > 0 for i = 0, 1, 2. Let U1 = W1+W2

W0
and U2 = W2

W0+W1
then the joint probability density

function of U1 and U2 is given by

f (u1, u2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(u1 − u2)

α1−1uα2−1
2 (1 + u1)

α2(1 + u2)
α0

× (β1β2(1 + u2) + β0β2(u1 − u2) + β0β1u2(1 + u1))
−α0−α1−α2

(11)

where u1 > u2 > 0.

2.2. Shape Analysis

In this section a shape analysis is conducted for the joint probability density function (11).
A standard set of parameters has been chosen as a baseline. The parameters are chosen
to be α0 = α1 = α2 = 5 and β0 = β1 = β2 = 2, in other words, a process where all three
samples consist of 5× 2 + 1 = 11 observations, and where no shift has occurred in the
process variance. Some of the parameters will then be varied from this baseline in order
to investigate the effect that a change in the specific parameters will have on the general
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shape of the joint probability density function. Note that the change in some parameters
will be large - so large that they lose practical realism; this is conducted to emphasise and
investigate the general change in the shape, and is not meant to be an indication of the
practical applications of the joint probability density function. The functions will only be
plotted for u1 ∈ [0, 3] , u2 ∈ [0, 3].

In Figure 4 it can be seen what effect increasing the sample sizes (while keeping them
equal) has on the joint probability density function. It is seen that increasing the sample
sizes also increases the height of the peak of the probability density function. Larger sample
sizes also shrink the length and width of the “tails” of the joint probability density function.
In essence, the larger the sample sizes (ni = 11, ni = 51, ni = 101), the smaller the domain
on which the function has non-trivial values.

Figure 4. Equal sample sizes, no shift in the variance.

Figure 5 below demonstrates that a sustained increase in the process variance, irre-
spective of size, minimally affects the general shape and location of the joint probability
density function, but does affect the height of the probability density function’s peak. In
the below example, the shift in the process variance occurs at time 1, and as one would
hope and expect, the joint probability density function relies heavily on the value of the
statistic at time 1, U1. A similar effect, where the joint probability density function relies
heavily on the value of U2 is seen when the shift occurs at time 2.

Figure 5. Equal sample sizes, increase in variance at time 1.
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2.3. Marginal Probability Density Functions

Theorem 2. Assume that (U1, U2) has the joint probability density function in (11), then the
marginal probability density function of U1 is given by

f (u1)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(β1β2 + β0β2u1)

−α0−α1−α2

×(1 + u1)
α2 ∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;− u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

)] (12)

where u1 > 0, α0, α1, α2 ∈ Z, β1(β2 + β0(1 + u1)) > β0β2,
∣∣∣− u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

∣∣∣ < 1,
and the marginal probability density function of U2 is given by

f (u2)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α2)
(1 + u2)

α0 ∑∞
k=0

[
α2!

k!(α2−k)!

×∑∞
l=0

[
(−1)l(α0+α1+α2+l−1

l )(β0β2 + β0β1u2)
−α0−α1−α2−l

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
luk−α0−l−1

2
Γ(α0+α2+l−k)

Γ(α0+α1+α2+l−k)

]] (13)

where u2 > 0, α0, α1, α2 ∈ Z, αi, βi > 0 for i = 0, 1, 2 and 2F1(, ) is the Gauss hypergeometric
function ([6] p. 1005). Note that in (12) if α0 ∈ {1, 2, · · · } the sum changes from ∑∞

k=0 to ∑α0
k=0

(See [6] p. 25, Equations (1).110 and 1.111). Similarly if α2 ∈ {1, 2, · · · } the sum changes from
∑∞

k=0 to ∑α2
k=0 in (13).

If β0 = β1 = β2 it follows that:

f (u1) =
Γ(α0 + α1 + α2)

Γ(α0)Γ(α1)Γ(α2)
(1 + u1)

−α0−α1
∞

∑
k=0

[(
α0!

k!(α0 − k)!

)
(u1)

k+α1+α2−1

× Γ(α1)Γ(k + α2)

Γ(k + α1 + α2)
2F1(α0 + α1 + α2, k + α2; k + α1 + α2;−u1)

where 0 < u1 < 1, and

f (u2) =
Γ(α0 + α1 + α2)

Γ(α0)Γ(α2)
(1 + u2)

α0
∞

∑
k=0

[
α2!

k!(α2 − k)!

∞

∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j− 1

j

)
× (1 + u2)

−α0−α1−α2 uk−α0−j−1
2

Γ(α0 + α2 + j− k)
Γ(α0 + α1 + α2 + j− k)

]]
where u2 > 0.

2.4. Product Moment and Order Statistics

Theorem 3. Assume that (U1, U2) has the joint probability density function (11), then the product
moment of U1 and U2 is given by

E
(
Ur

1Us
2
)

= ∑r
p=0(rp)

(
β

α1−p−s
0 β

−α1
1 β

p+s
2

)
Γ(α2+p+s)Γ(α0+α1−p−s)Γ(α1+r−p)Γ(α0−r)

Γ(α0)Γ(α1)Γ(α2)Γ(α0+α1−p)

×2F1

(
α0 + α1 − p− s, α1 + r− p; α0 + α1 − p; 1− β0β2

β1β2

) (14)

where r, s ∈ {0, 1, 2, · · · }, α0 + α1 > r + s, α0 > α1, α0 + α1 > p, and
∣∣∣1− β0β2

β1β2

∣∣∣ < 1.
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The maximum order statistics are of importance in detecting whether a shift in the
process variance does indeed occur, as was discussed in Section 1 and will be demonstrated
in Section 3. Although a closed form expression for the maximum order statistic is not
tractable in a closed form, an expression is provided that can be implemented to calculate
numerical values.

Assume that (U1, U2) has the joint probability density function (11), then the maximum
order statistic of U1 and U2 can be determined either by

P(max(U1, U2) < z) = P(U1 < z)
=

∫ z
0 f (u1)du1

(15)

when α0, α1, α2 ∈ < (since u1 > u2).

3. Comparison Study and Discussion

Deriving the order statistics of the series of statistics in (6) and (7) is a complex task
since they are neither independent nor identically distributed, (see [10]). Hence values for
the 95th percentiles of the maximum order statistics are simulated for varying numbers of
samples (m equal to 1, 4, 9, 14, 19, 24, 29, 49, 99 and 499) and sample sizes (n equal to 2, 5,
10, 15, 20, 25, 30, 50, 100 and 500) in Section 3.1.

In Section 3.1, properties of (7) are also studied when no shift in the variance occurs,
this is imperative since the control limits of a control chart are constructed under the null
hypothesis that no shift has occurred, or alternatively given that the process is in control.
The in control properties that are investigated for both the Q chart and the new proposed
model (6) are where the maximum order statistic is most likely to occur when no shift has
occurred in the process variance. Practically, this is a very important question since, if the
maximum order statistic consistently occurs at roughly the same place in the sequence
of samples, it implies that the distribution should be treated with added suspicion if it
indicates that a shift in the process occurs at this location.

In Section 3.2, the out of control performance of the newly proposed distribution is
compared with the Q chart model investigated by [5]. The probability that the respective
control charts will detect a shift in the process variance is investigated for differing sizes of
shifts in the process variance. The comparison is made for varying numbers of samples as
well as sample sizes.

3.1. Comparison When the Process Is in Control

The location of the maximum order statistic when the process is in control is investi-
gated using graphs. For brevity’s sake only one possible combination (m = 29, n = 15) of
the number of samples and sample sizes mentioned above is included in this paper. All of
them, however, lead to the same general conclusion.

As can be seen from Figure 6 the [5] distribution’s maximum order statistic occurs most
often at the first statistic, with the probability of the maximum occurring at subsequent
statistics steadily decreasing. This implies that the Q chart becomes more stable as the
process progresses, which makes practical sense since each subsequent statistic includes
more of the sample data. The newly proposed distribution’s maximum order statistic
occurs most often at the first statistic, and second-most often at the last statistic. This due to
the way in which the statistics of the distribution are constructed (see (6)). This implies that
while our proposed model may detect shifts at the ends of the samples, signals received at
these locations should be treated with a bit of skepticism.
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Figure 6. Location of maximum order statistics: m = 29 and n = 15.

In Table 1 the 95th percentiles of the maximum order statistics of the newly proposed
distributions are simulated (to the third decimal) using Monte Carlo simulation. In other
words z in the equation P

(
max

(
U∗1 , U∗2 , · · · , U∗m

)
< z
)
= 0.95. Similarly the 95th percentiles

of the maximum order statistics of (6) are simulated in Table 2.

Table 1. 95th percentiles of the maximum order statistics of U∗1 , U∗2 , · · · , U∗m.

m
n 2 5 10 15 20 25 30 50 100 500

1 214.286 6.652 3.230 2.512 2.189 1.998 1.872 1.615 1.399 1.160

4 242.046 6.229 3.047 2.385 2.093 1.919 1.805 1.569 1.371 1.150

9 254.592 5.992 2.908 2.301 2.023 1.863 1.755 1.534 1.349 1.142

14 251.747 5.874 2.871 2.266 1.997 1.842 1.739 1.522 1.341 1.139

19 255.413 5.836 2.851 2.254 1.987 1.831 1.730 1.517 1.337 1.137

24 257.880 5.813 2.837 2.243 1.980 1.827 1.723 1.514 1.335 1.137

29 259.105 5.815 2.824 2.238 1.977 1.822 1.720 1.512 1.334 1.136

49 259.963 5.799 2.818 2.228 1.968 1.815 1.715 1.508 1.331 1.135

99 258.810 5.797 2.803 2.222 1.959 1.811 1.710 1.504 1.329 1.134

499 263.017 5.772 2.801 2.215 1.957 1.808 1.707 1.501 1.328 1.133
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Table 2. 95th percentiles of the maximum order statistics of U1, U2, · · · , Um.

m
n 2 5 10 15 20 25 30 50 100 500

1 399.762 12.091 5.933 4.638 4.072 3.735 3.513 3.062 2.688 2.275

4 1151.103 29.015 14.061 11.045 9.708 8.958 8.434 7.411 6.553 5.618

9 2413.470 57.222 27.649 21.699 19.101 17.623 16.615 14.615 12.984 11.184

14 3691.861 85.496 41.144 32.376 28.469 26.292 24.837 21.864 19.419 16.754

19 4944.966 112.744 54.656 43.071 37.870 34.913 33.020 29.081 25.816 22.318

24 6187.147 141.315 68.325 53.653 47.313 43.549 41.182 36.293 32.248 27.887

29 7528.303 170.174 81.753 64.408 56.621 52.313 49.397 43.531 38.678 33.457

49 12560.904 281.708 135.824 107.163 94.200 86.900 82.168 72.395 64.349 55.728

99 25774.144 565.834 270.688 213.065 187.991 173.740 164.160 144.638 128.625 111.365

499 126434.246 2815.186 1353.458 1064.841 939.259 868.035 819.248 722.038 642.752 556.808

Note that:

• Since the critical values of the distribution are derived under the assumption of the
null hypothesis, the equations for the maximum order statistic can be simplified
to be constructed out of chi-square random variables instead of the more complex
gamma case.

• When the sample sizes of all the samples are equal (ni = n for i = 1, · · · , m) the re-
moval of the constant terms in (7) is superfluous since the series of statistics in (6) and (7)
are merely scalar multiples of each other. This can be seen in Tables 1 and 2 where
P
(
max

(
U∗1 , U∗2 , · · · , U∗m

)
< z
)
≈ P(max(U1, U2, · · · , Um) < mz).

• Instead of using simulation, the maximum order statistics in Table 2 could have been
calculated using (15). Table 3 demonstrates their equivalence for the bivariate case by
numerically integrating (15).

Table 3. Simulated and theoretical 95th percentiles of the maximum order statistics of U1, U2.

Method
n 2 5 10 15 20 25 30 50 100 500

Simulated values 399.762 12.091 5.933 4.638 4.072 3.735 3.513 3.062 2.688 2.275

Theoretical values 399.000 12.083 5.920 4.640 4.068 3.735 3.515 3.064 2.688 2.276

3.2. Comparisons When the Process is Out of Control

In this section, the proposed model’s potential to detect shifts in compared with that of
the Q chart form investigated by [5]. The probability of signaling that a shift in the process
variance has occurred depends on a few variables. In this paper, these variables are: the
number of samples, the sample size of the samples, where in the process the shift in the
process variance occurs, and the size of the shift. The figures in this section take all of these
parameters into account.

In each of the following figures, the probability of signaling a shift in the variance is
displayed as a function of the size of the shift, where the shift size λ, ranges from λ = 1 (no
shift) to λ = 5 (a 500% increase in the process variance). Many different combinations of
the number of samples, the sample sizes, as well as the locations of the shift were tested;
however, only the graphs that illustrate key findings are included in this paper. The chosen
parameters that were simulated are: number of samples (m) equal to 10, 20 and 30, the
sample sizes (n) equal to 2, 5, 10 and 20, and the location of the shift in the process variance
(κ) occurring at (roughly, due to integer sample numbers) 25%, 50% and 75% of the way
through the samples.
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By simulating graphs such as those in Figures 7–9, certain conclusions can be reached
about the properties and efficacy of the two competing models ((5) and (9)):

• When n = 2, irrespective of the number of samples, the newly proposed model
outperforms the Q chart. There are some caveats however that should be noted:

1. In the above graphs, each plotted point was simulated 500,000 times during
the Monte Carlo process. For all the n = 2 graphs, the points vary erratically
between each 0.05 increases in the shift size, and thus even for a large number of
simulations the process cannot be described as “stable”.

2. The Q chart seems to be completely incapable of detecting an increase in the
process variance when n = 2, with the probability of detecting a shift remaining
at roughly 5%, irrespective of the size of the shift.

3. While the new model’s probability of detecting a shift does increase as the size of
the shift increases, it remains relatively low, at roughly 7% to 10%, just marginally
higher than the 5% chance when the process is actually IC. This implies that
while it might be theoretically possible to implement the new model for samples
sizes of 2, it would likely not be a practically useful technique.

4. The new model’s probability of detecting a shift does not increase as the number
of samples increases, as would be expected (and as is the case for the other
choices of n)

• From these points above, it can be concluded that using a sample size of 2 does not
lead to an effective control chart.

• For a small numbers of samples (m = 9), the newly proposed model outperforms the
Q chart for all simulated sample sizes as well as locations of shifts (for all shift sizes).

• When there are 20 samples (m = 19), the newly proposed model outperforms the Q
chart in nearly all situations. The Q chart does have a higher probability of detecting
a shift in the process variance only when the sample sizes are small (n = 5), and the
shift occurs relatively late in the process (κ = 15), for shifts in the process variance
between λ = 3 and λ = 4.75. Since a 300% to 475% increase in the process variance is
unlikely to occur in practice, the newly proposed model would likely be more effective
for m = 19.

• For m = 29, sweeping statements about the performances of the two methods are
more difficult to make since the plotted percentage lines cross often. However it can
be said that:

1. For small sample sizes (n = 5), the proposed model outperforms the Q chart
for small shifts in the process variance, whereas the Q chart performs better for
larger shifts.

2. The Q chart performs at its best when the shift in the process variance occurs late
in the series of samples.

3. For larger sample sizes (n = 20) the proposed model outperforms the Q chart
when the shift in the process variance occurs early, but when the shift occurs
roughly half way through the series of samples, or further, the performance of
the two methods are very similar.
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m = 9, n = 2, κ = 7 m = 29, n = 2, κ = 15

Figure 7. Probability of detecting a shift when n = 2.

m = 9, n = 5, κ = 3 m = 9, n = 20, κ = 7

Figure 8. Probability of detecting a shift when m = 9.

m = 19, n = 10, κ = 15 m = 29, n = 20, κ = 22

Figure 9. Probability of detecting a shift when κ ≈ 0.75 m.
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4. Concluding Remarks

In this paper a new bivariate beta type distribution is proposed that can be utilised
to detect a shift in a process’s variance when the underlying process follows a normal
distribution. The proposed model compares favourably with the Q chart model studied
by [5] in most situations; especially when the number of samples is small, and when the
process variance experiences a change early on in the series of samples. Future work
can include focus on (i) when a shift occurs within a sample, (ii) expanding underlying
distributional assumptions to that of the class of scale mixtures to consider departures from
normality (see [11]), and (iii) the multivariate setup, of which we propose the probability
density function in the following theorem and a proof outlined in the Appendices A and B.

Theorem 4. Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0)

for i = 0, 1, 2, · · · , m. Let Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m− 1, m, then the joint probability density

function of U1, U2, · · · , Um is given by

f (u1, u2, · · · , um)

=
∏m−1

i=1

[
(ui−ui+1)

αi−1
]
(um)αm−1Γ(∑m

i=0 αi)

∏m
i=0

[
β

αi
i Γ(αi)

]
×(1 + u1)

∑m
i=2 αi ∏m

i=2

[
(1 + ui)

−αi−1−αi
]

×
(

1
β0

+ (u1−u2)
β1(1+u2)

+ ∑m−1
i=2

[
(1+u1)(ui−ui+1)
βj(1+ui)(1+ui+1)

]
+ (1+u1)um

βm(1+um)

)−∑m
i=0 αi

(16)

where u1 > u2 > · · · > um > 0.
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Appendix A. Positioning

The aim of this section is to show the relationships between some of the most com-
monly used bivariate beta distributions, and to relate these distributions to the bivariate
distribution derived by [5] and the one proposed by this article. In this section the statistics
in the relationships are constructed out of chi-square random variables, not gamma, as is
conducted throughout the rest of this article. This is conducted for the sake of simplicity;
however, the relationships hold regardless.

Let Y1 ∼ χ2(α), Y2 ∼ χ2(β) and Y3 ∼ χ2(γ). Then:

• If Q1 = Y1
Y1+Y2+Y3

and Q2 = Y2
Y1+Y2+Y3

. Then the joint distribution of Q1 and Q2 is called
a bivariate beta type I distribution. In Figure A1 this will be denoted alternatively as
(Q1, Q2) ∼ BI(α, β, γ). The multivariate generalisation of this distribution is called
the Dirichlet type I distribution (see [12,13]).



Math. Comput. Appl. 2022, 27, 61 15 of 18

• If V1 = X1
X3

and V2 = X2
X3

then (V1, V2) has a bivariate beta type II distribution [14].

• If W1 = Y1
Y1+Y2+2Y3

and W2 = Y2
Y1+Y2+2Y3

then (W1, W2) has a bivariate beta type III
distribution. The multivariate generalisation was derived and studied by [15,16] con-
sidered the case when W1 = Y1

Y1+Y2+cY3
and W2 = Y2

Y1+Y2+cY3
, which is a generalisation

of the above type III distribution.
• If X1 = Y1

Y1+Y3
and X2 = Y2

Y2+Y3
then (X1, X2) has a bivariate beta type IV

distribution, ([17,18]).
• If C1 = aY1

aY1+bY2+cY3
and C2 = bY2

aY1+bY2+cY3
, a, b, c > 0. Then (C1, C2) has a bivariate beta

type V distribution. If a = 1, b = 1 and c = 1, the bivariate beta type V reduces to the
bivariate beta type I [19].

• If Z1 = Y1
Y2+Y3

and Z2 = Y2
Y1+Y3

then (Z1, Z2) has a bivariate beta type VI distribution.
This joint probability density function has not yet been derived in the literature and
could potentially be applied to detecting shifts in a process variance.

• If T1 = Y2
Y1

and T2 = Y3
Y1+Y2

then (T1, T2) be referred to as the bivariate beta type VII
distribution, ([5]).

• If U1 = Y2+Y3
Y1

and U2 = Y3
Y1+Y2

then (U1, U2) has a bivariate beta type VIII distribution.
This is the model that this article proposes in terms of gamma variables in Section 2,
but in its special case it can be reduced to be constructed from chi-square variables.

Relationships between these models are graphically represented in Figure A1.

Figure A1. Relationships between several bivariate beta distributions.

Appendix B. Proofs

Proof of Theorem 1. The joint probability density function of W0, W1, W2 is given by

f (w0, w1, w2) =
1

βα0
0 βα1

1 βα2
2 Γ(α0)Γ(α1)Γ(α2)

(
wα0−1

0 e−
w0
β0

)(
wα1−1

1 e−
w1
β1

)(
wα2−1

2 e−
w2
β2

)
(A1)
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where w0, w1, w2 > 0. Let U0 = W0, then W1 = U0(U1−U2)
(1+U2)

and W2 = U0U2(1+U1)
(1+U2)

, and

f (u0, u1, u2)

= 1
β

α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1uα2−1

2 (1 + u1)
α2(1 + u2)

−α1−α2

×u(α0+α1+α2)−1
0 exp

(
−u0(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))

β0β1β2(1+u2)

)
.

(A2)

By integrating (A2) with respect to u0, and rearranging the terms it follows that

f (u1, u2)

= 1
β

α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1uα2−1

2 (1 + u1)
α2(1 + u2)

−α1−α2

×
∫ ∞

0 u(α0+α1+α2)−1
0 exp

(
−u0(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))

β0β1β2(1+u2)

)
du.

(A3)

By applying [6] p. 346, Equation (3).381.4, to (A3), the result in (11) follows.

Proof of Theorem 2. From (11), by rearranging the terms, and applying [6] p. 25,
Equations (1).110 and 1.111, it follows that

f (u1)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(1 + u1)

α2

×(β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2 ∑∞

k=0

(
α0!

k!(α0−k)!

)
×
∫ u1

0 (u1 − u2)
α1−1uk+α2−1

2

(
β1β2+β0β2u1

β1β2−β0β2+β0β1+β0β1u1
+ u2

)−α0−α1−α2
du2.

(A4)

By applying [6] p. 317, Equation (3). 197.8, to (A4), the result in (12) follows. From
(11), by rearranging the terms, and applying [6] p. 25, Equations (1).110 and 1.111 twice, it
follows that

f (u2)

= A(u1, u2)
∫ ∞

u2
(u1 − u2)

α1−1(1 + u1)
α2
(

1 + u1(β0β2+β0β1u2)
β1β2+β1β2u2−β0β2u2+β0β1u2

)−α0−α1−α2
du1

= A(u1, u2)∑∞
k=0

[
α2!

k!(α2−k)! ∑∞
l=0

[
(−1)l

(
α0 + α1 + α2 + l − 1

l

)
×
(

(β0β2+β0β1u2)
β1β2+β1β2u2−β0β2u2+β0β1u2

)−α0−α1−α2−l ∫ ∞
u2
(u1 − u2)

α1−1uk−α0−α1−α2−l
1 du1

]] (A5)

where

A(u1, u2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
uα2−1

2 (1 + u2)
α0

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2 .

(A6)

By applying [6] p. 315, Equation (3).191.2 to (A5), the result in (13) follows.

Proof of Theorem 3. By using the relationships in Figure A1, and reordering the terms it
follows that

E
(
Ur

1Us
2
)

= E
(
(T1 + T2 + T1T2)

r(T2)
s)

=
∫ ∞

0

∫ ∞
0 (t1 + t2 + t1t2)

r(t2)
sg(t1, t2)dt2dt1

=

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

r−α0−α1(t1)
α1−1

×
∫ ∞

0

(
t1

1+t1
+ t2

)r
(t2)

α2+s−1
(

β1β2+β0β2t1
β0β1(1+t1)

+ t2

)−α0−α1−α2
dt2dt1.

(A7)
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By applying [6] p. 25, Equations (1).110 and 1.111 to (A8), and reordering the terms, it
follows that

E
(
Ur

1Us
2
)

= ∑r
p=0 (

r
p)

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

−α0−α1+p(t1)
α1+r−p−1

×
(

β1β2+β0β2t1
β0β1(1+t1)

)−α0−α1−α2 ∫ ∞
0 (t2)

α2+p+s−1
(

1 + β0β1(1+t1)
β1β2+β0β2t1

t2

)−α0−α1−α2
dt2dt1.

(A8)

From [6] p. 315, Equation (3).194.3, it follows that (A8) may be expressed as

E
(
Ur

1Us
2
)

= ∑r
p=0 (

r
p)

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

−α0−α1+p(t1)
α1+r−p−1

×
(

β1β2+β0β2t1
β0β1(1+t1)

)−α0−α1−α2
(

β0β1(1+t1)
β1β2+β0β2t1

)−α2−p−s

× B(α2 + p + s, α0 + α1 + α2 − α2 − p− s)dt1

= ∑r
p=0 (

r
p)

(
β

α1−p−s
0 β

α0−p−s
1 β

α0+α1
2

)
Γ(α2+p+s)Γ(α0+α1−p−s)

Γ(α0)Γ(α1)Γ(α2)

× (β1β2)
−α0−α1+p+s ∫ ∞

0 (1 + t1)
−s(t1)

α1+r−p−1
(

1 + β0β2
β1β2

t1

)−α0−α1+p+s
dt1.

(A9)

By applying [6] p. 317, Equation (3). 197.5 to (A9), the result in (14) follows.

Proof of Theorem 4. The joint probability density function of Wi, i = 0, 1, 2, · · · , m is
given by

f (w0, w1, · · · , wm) =
m

∏
i=0

(
wαi−1

i e−
wi
βi

)
β

αi
i Γ(αi)

, w0, w1, · · · , wm > 0. (A10)

Let U0 = W0, Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m− 1, m. It follows that

W0 = U0

W1 = U0(U1−U2)
(1+U2)

Wr =
U0(1+U1)(Ur−Ur+1)
(1+Ur)(1+Ur+1)

, r = 2, 3, · · · , m− 1

Wm = U0(1+U1)Um
(1+Um)

,

with J(w0, · · · , wm → u0, u1, · · · , um) = um(1+u1)
m−1

∏m
j=2(1+uj)

2 . Subsequently the joint probability

density function of U0, U1, U2, · · · , Um is

f (u0, u1, u2, · · · , um)

=
∏m−1

i=1

[
(ui−ui+1)

αi−1
]
(um)αm−1

∏m
i=0

[
β

αi
i Γ(αi)

] u∑m
i=0[αi ]−1(1 + u1)

∑m
i=2[αi ] ∏m

i=2

[
(1 + ui)

−αi−1−αi
]

×e
−u0

(
1

β0
+

(u1−u2)
β1(1+u2)

+∑m−1
i=2

[
(1+u1)(ui−ui+1)
βi(1+ui)(1+ui+1)

]
+
(1+u1)um
βm(1+um)

)
.

(A11)

By applying [6] p. 346, Equation (3). 381.4 to (A11), the result in (16) is proved.
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