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Abstract: Numerical solutions of heterogeneous Helmholtz problems present various computational
challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness
and scalability are key for practical and reliable solvers in large-scale applications, especially for large
wave number problems. In this work, we explore the use of a GenEO-type coarse space to build a
two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through
a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free
meshes, we observe robust convergence, iteration counts that do not increase with the wave number,
and good scalability of our approach. We further provide results showing a favourable comparison
with the DtN coarse space. Our numerical study shows promise that our solver methodology can be
effective for challenging heterogeneous applications.

Keywords: Helmholtz equation; domain decomposition; two-level method; coarse space; additive
Schwarz method; heterogeneous problem; high frequency

1. Introduction

Consider solving the heterogeneous Helmholtz problem: for a bounded domain
Ω ⊂ Rd, d = 2, 3, we wish to find u(x) : Ω→ C such that

−∆u− k2u = f in Ω, (1a)

C(u) = 0 on ∂Ω, (1b)

where C incorporates some appropriate boundary conditions. For the heterogeneous
problem, we suppose the wave number k(x) > 0 is a function of space, defined by the ratio
k = ω/c of the angular frequency ω and the wave speed c(x). In this work, we investigate
the use of an overlapping Schwarz preconditioner with a suitably chosen coarse space
based on solving local eigenvalue problems on each subdomain.

The ability to compute solutions to the Helmholtz problem (1) is important across
many disciplines of science and engineering. As the prototypical model for frequency-
domain wave propagation, it features within the fields of optics, acoustics, and seismology,
amongst others. Further applications can be found in imaging science, such as through
medical imaging techniques and geophysical studies of the Earth’s subsurface within, for
instance, the oil industry. Nonetheless, it is challenging to develop efficient computational
methods to solve (1), particularly when the wave number k becomes large.

Discretisation of (1) by standard approaches, such as Lagrange finite elements, as
we shall use here, results in large linear systems to be solved which are indefinite, non-
self-adjoint, and ill-conditioned; see also [1]. These systems present various difficulties to
solve, especially in the presence of complex heterogeneities, at high frequencies (large k), or
when solutions include many wavelengths in the domain. Classical methods for solving
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such large systems typically fail for several reasons, as detailed in [2,3], and specialist
approaches must be employed for a robust solver. While much progress has been made for
symmetric positive definite problems, such techniques cannot be applied out-of-the-box
and extensions to tackle indefinite and non-self-adjoint problems may not be clear. This
has led to a number of approaches being developed in recent years aiming to bridge this
gap. For the Helmholtz problem, this includes parallel direct solvers, such as [4,5], and
preconditioned iterative methods that utilise multigrids, such as [6,7], or the so-called
“shifted Laplace” approach [8,9]. This latter (complex) shifted Laplace preconditioner has
seen much interest into its practical use [10] and further developments through deflation
techniques, most recently in [11,12].

Another broad class of solvers are domain decomposition methods, which provide a
natural balance between using direct and iterative solvers. Specialist methods are again
required for the Helmholtz problem, a popular set of which fall under the heading of
“sweeping” methods [13,14]. These are multiplicative domain decomposition methods
linked to a variety of other approaches, including optimised Schwarz methods, as detailed
in the recent survey [3]. While sweeping is a conceptually serial approach, much work has
been done to incorporate parallelism. Of particular note is the “L-Sweeps” method [15],
stated to be the first parallel scalable preconditioner for high-frequency Helmholtz prob-
lems; a review of developments in this area is provided in the introductions of [15,16].
Other popular approaches are FETI methods; for the Helmholtz problem, these include
FETI-H [17] and FETI-DPH [18].

Within the domain decomposition community, there has also been renewed work
on additive Schwarz methods, which offer a naturally parallel approach. Following on
from the seminal work [19], which utilised Robin (or impedance) transmission conditions
to provide a convergent Schwarz method for the Helmholtz problem, a wealth of non-
overlapping Schwarz methods have been devised; see the introduction of [20] for a recent
overview. In these methods, one has to be careful to either avoid or treat cross points
(where three or more subdomains meet), as can be done in the robust treatment of [20].
Many optimised approaches rely on deriving higher-order transmission conditions, such
as through second-order impedance operators in [21], absorbing boundary conditions
(ABCs) [22], or non-local operators [23]. Ideally, one would use the Dirichlet-to-Neumann
(DtN) map (a Poincaré–Steklov operator) to provide transparent transmission conditions,
but this is prohibitive in practice, and so these optimised Schwarz methods in essence try
to approximate this operator.

Overlapping Schwarz methods for the Helmholtz problem—see for example [24–26]—
have also received renewed attention in recent years, and it is this type of method we
shall consider. A successful approach is to design additive Schwarz methods based on
including absorption (a complex shift k2 7→ k2 + iε), with absorption parameter ε; see [27,28].
Theoretical work to understand the effectiveness of this approach can be found in [29,30]
and for the heterogeneous problem in [31]; see also [32]. To be scalable, such additive
Schwarz methods require a second level, known as a coarse space (see [33] for a novel
analysis for the absorptive problem). For the two-level methods in [27,29], this is provided
through a coarse grid—an approach that is effective also for the time-harmonic Maxwell
problem [34].

As well as to provide scalability, coarse spaces have been devised to provide robustness
to heterogeneity. This is exemplified by the “Generalised Eigenproblems in the Overlap”
(GenEO) approach for symmetric positive definite (SPD) problems [35]. This approach
provides a spectral coarse space, where appropriate local eigenvalue problems are solved
to provide a two-level method. Another spectral coarse space is the DtN coarse space [36],
which has been extended and investigated for the Helmholtz problem in [37,38]. While the
standard GenEO theory applies only in the SPD case (see [39]), in this work, we develop
and explore a GenEO-type method for the Helmholtz problem and show numerically
that, for a 2D model problem of a wave guide, it provides a scalable approach that is
robust to heterogeneity and increasing wave number in terms of the iteration count of a
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preconditioned GMRES method. Companion results for large benchmark problems on
coarsely resolved meshes that typically arise in applications, along with comparisons to
other methods, are found in [40]. Theoretical results on variants of DtN and GenEO for
Helmholtz problems are currently out of reach, but promising numerical results, based on
heuristics, were obtained in [37,38], showing the potential of these methods in practice.

The primary aim of this work is to explore the utility of a GenEO-type method for the
heterogeneous Helmholtz problem (1); we call this approach H-GenEO. In particular, we
highlight the following contributions:

• We present a range of numerical tests, on pollution-free meshes, comparing our
proposed H-GenEO approach with another spectral coarse space applicable to the
Helmholtz problem, namely the DtN method.

• We investigate the use of appropriate thresholding for the required generalised eigen-
problems in both the DtN and H-GenEO coarse spaces.

• We consider robustness to non-uniform decomposition, heterogeneity, and increasing
wave number as well as the scalability of the methods. We find that only the H-GenEO
approach is scalable and robust to all of these factors for a 2D model problem.

• We provide both weak and strong scalability tests for H-GenEO applied to high wave
number problems.

The remainder of this work is structured as follows. We begin by considering a
finite element discretisation of the Helmholtz problem in Section 2.1, before outlining
the underlying domain decomposition methodology we use in Section 2.2. The main
topic of interest, that of suitable spectral coarse spaces for the heterogeneous Helmholtz
problem, is then detailed in Section 2.3. Extensive numerical results on a 2D model problem
are provided in Section 3, along with a discussion of our findings. Finally, we draw our
conclusions in Section 4.

2. Materials and Methods
2.1. Finite Element Discretisation

The problem we consider in this work is the interior Helmholtz problem (1), for
which we must prescribe appropriate boundary conditions. In practical applications, the
computational domain Ω is often truncated, and the physically relevant condition, namely
the far field Sommerfeld radiation condition, must be approximated on the non-physical
boundary of Ω. This allows for appropriate wave behaviour to be modelled in a bounded
domain. This simplest approximation that is widely used is that of a Robin (or impedance)
condition, and this is what we shall consider; other approaches include ABCs [41] or
perfectly matched layers (PML) [42,43]. We also suppose that Dirichlet conditions may be
imposed on a boundary ΓD ⊂ ∂Ω, with the Robin condition on the remaining boundary
ΓR = ∂Ω \ ΓD. Thus, in general, we seek the solution of the boundary value problem

−∆u− k2u = f in Ω, (2a)

u = uΓD on ΓD, (2b)
∂u
∂n

+ iku = 0 on ΓR, (2c)

where the forcing function f (x) incorporates any sources in the domain. Note that if
ΓR 6= ∅, the problem is well posed, but if ΓR = ∅, the problem is ill-posed for certain
choices of k related to eigenfunctions of the Laplacian.

To discretise (2), we use standard Lagrange finite elements; the details can be found in,
for example, [40], and so we provide only an outline here. Defining the relevant trial and
test spaces V =

{
u ∈ H1(Ω) : u = uΓD on ΓD

}
and V0 =

{
u ∈ H1(Ω) : u = 0 on ΓD

}
, the

weak formulation of (2) is to find u ∈ V such that

a(u, v) = F(v) ∀ v ∈ V0, (3)
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where

a(u, v) =
∫

Ω

(
∇u · ∇v̄− k2uv̄

)
dx +

∫
ΓR

ikuv̄ ds and F(v) =
∫

Ω
f v̄ dx. (4)

Assuming a simplicial mesh T h of Ω with characteristic element diameter h, piecewise
polynomial finite element approximation reduces the problem to solving the complex
linear system

Au = f, (5)

with coefficient matrix A ∈ Cn×n and right-hand side vector f ∈ Cn stemming from a(·, ·)
and F(·), respectively; see [40]. For accurate discretisation of the Helmholtz problem, the
number of degrees of freedom n is required to be large, especially for large k. Indeed, to
maintain the same level of accuracy of discrete solutions as k increases, the number of mesh
points must increase faster than k, due to the pollution effect [44]. This depends on the
polynomial order of the approximation used: for instance, using piecewise linear (P1) finite
elements, k3h2 must be bounded, and so h must shrink as O(k−3/2). Higher order finite
elements can reduce this restriction on h, but ultimately the interpolation properties of such
methods degrade. Here, we utilise standard P1 elements and maintain a discretisation such
that k3h2 is fixed to avoid the pollution effect.

2.2. Underlying Domain Decomposition Method

To solve the discrete Helmholtz problem (5), we use GMRES accelerated via a two-level
overlapping domain decomposition preconditioner. For the underlying one-level method,
we consider the optimised restricted additive Schwarz (ORAS) method [45] (sometimes
known as WRAS-H [26]; see discussions in [31,32] and [27,29] for a related IMPHRAS1
method). The key difference in ORAS compared with standard additive Schwarz methods
such as RAS is that the local Dirichlet problems on subdomains are replaced by appropriate
Robin problems.

To formulate the domain decomposition preconditioner, we first suppose that Ω is
decomposed into non-overlapping subdomains {Ω′s}

N
s=1, assumed to be resolved by the

mesh T h. To give an overlapping decomposition, a layer of adjoining mesh elements is
added to give overlapping subdomains {Ωs}N

s=1 by way of the extension

Ωs = Int

 ⋃
supp(φj)∩Ω′s 6=∅

supp(φj)

, (6)

where
{

φj
}n

j=1 are the nodal basis functions of the finite element space, Int(·) denotes the

interior of a domain, and supp(·) is the support of a function. Further layers of elements
can be added in a recursive manner in order to obtain subdomains with larger overlap,
if desired.

Once we have an overlapping decomposition into subdomains {Ωs}N
s=1, we define

the required operators for the Schwarz preconditioner. We let Rs ∈ Rns×n be the discrete
form of the restriction operator, restricting functions to the subdomain Ωs, where ns is the
number of degrees of freedom in Ωs. The corresponding extension operator, RT

s , then acts
as an extension by zero outside of Ωs. We also utilise a partition of unity, with the discrete
form of a diagonal matrix Ds ∈ Rns×ns satisfying ∑N

s=1 RT
s DsRs = I, which appropriately
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scales the multiple subdomain contributions in the overlapping regions. Finally, within
ORAS, we require the solution of local Robin problems given by

−∆ws − k2ws = f in Ωs, (7a)
∂ws

∂ns
+ ikws = 0 on ∂Ωs \ ∂Ω, (7b)

C(ws) = 0 on ∂Ωs ∩ ∂Ω, (7c)

with C representing the underlying problem boundary conditions on ∂Ω, namely (2b) and
(2c). Note that the use of the Robin condition (7b) ensures the solvability of these local
problems. Defining the equivalent finite element discretisation of (7) to be given by the
stiffness matrix Âs ∈ Rns×ns , the construction of the one-level ORAS preconditioner is
given by the sum

M−1
ORAS =

N

∑
s=1

RT
s Ds Â−1

s Rs. (8)

Note that the local solutions on each subdomain given by Â−1
s can be carried out in parallel.

In order to provide robustness and scalability, the ORAS method above must be
augmented by the suse of a coarse space to provide a two-level method. A coarse space can
be thought of as a collection of linearly independent column vectors Z. The vectors that are
incorporated into Z are key to providing scalability, especially for indefinite problems, such
as the Helmholtz problems we solve here, where the addition of a coarse space need not
improve the performance of the underlying one-level method [46]. There are several ways
to incorporate the coarse space; here, we consider an effective approach that is based on
deflation. For this, a coarse space operator E = Z† AZ is constructed as well as the coarse
correction operator Q = ZE−1Z†, which we incorporate to give a two-level ORAS method

M−1
ORAS,2 = M−1

ORAS(I − AQ) + Q. (9)

We now turn our attention the choice of coarse space.

2.3. Spectral Coarse Spaces

In this work, we consider and explore spectral coarse spaces for the discrete Helmholtz
problem (5). These utilise local eigenvalue problems on subdomains in order to build a
global coarse space. We review the DtN coarse space [38] before detailing a new coarse
space for Helmholtz problems based on GenEO technology [35]. We then show a link
between these two approaches.

Remark 1 (Notation). We utilise the following notation for local Dirichlet, Robin, and Neumann
matrices: for a variational problem that gives rise to a system matrix B, we denote by Bs the
corresponding local Dirichlet matrix on Ωs. In the case that Robin conditions are used on internal
subdomain interfaces, the local problem matrix is denoted by B̂s. On the other hand, if Neumann
conditions are used on such interfaces, we denote the local matrix by B̃s.

2.3.1. The DtN Coarse Space

The Dirichlet-to-Neumann (DtN) coarse space, first studied in [36,47] for elliptic
problems, is based on solving local eigenvalue problems on subdomain boundaries related
to a DtN map. Harmonic extensions of low-frequency modes on subdomains are then used
to provide a coarse space. In order to define this approach for the Helmholtz problem, as
explored in [38], we first require the Helmholtz extension operator from the subdomain
boundary ∂Ωs.
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On each subdomain, let Γs = ∂Ωs \ ∂Ω, and suppose we have Dirichlet data vΓs on Γs.
The Helmholtz extension v into Ωs is given by solving

−∆v− k2v = 0 in Ωs, (10a)

v = vΓs on Γs, (10b)

C(v) = 0 on ∂Ωs ∩ ∂Ω, (10c)

where C(v) = 0 represents the original problem boundary conditions, as in (7c). The DtN
map takes Dirichlet data vΓs to the corresponding Neumann data on Γs, namely

DtNΩs(vΓs) =
∂v
∂n

∣∣∣∣
Γs

(11)

where v is the Helmholtz extension defined by (10). The associated local DtN eigenproblem
on subdomain Ωs is given by

DtNΩs(uΓs) = λuΓs , (12)

for eigenfunctions uΓs and eigenvalues λ ∈ C. In order to build the coarse space, we take
the Helmholtz extension of uΓs in Ωs and extend by zero into the whole domain Ω using
the partition of unity; see [38].

To formulate the discrete version of the eigenproblems to be solved, we require the
coefficient matrices Ãs, corresponding to local Neumann problems on Ωs with boundary
conditions C = 0 on ∂Ωs ∩ ∂Ω, similar to that supplying the local Robin problems in (7).
Furthermore, we must distinguish between degrees of freedom on the boundary and the
interior of the subdomain Ωs, and so we let Γs and Is be the set of indices on the boundary
and interior, respectively. Recalling that

{
φj
}

are our nodal basis functions, we also define

MΓs =

(∫
Γs

φjφi

)
i,j∈Γs

(13)

to be the mass matrix on the subdomain interface. Using standard block notation to denote
submatrices of As and Ãs, the discrete DtN eigenproblem can be written as(

ÃΓs ,Γs − AΓs ,Is A−1
Is ,Is

AIs ,Γs

)
uΓs = λMΓs uΓs . (14)

We then make use of the Helmholtz extension of uΓs to degrees of freedom in Is given
by uIs = −A−1

Is ,Is
AIs ,Γs uΓs . Letting us denote the complete local vector representing the

Helmholtz extension, the corresponding global vector that enters the coarse space Z is
RT

s Dsus. Further motivation and details on the DtN eigenproblems can be found in [38].
What remains is to determine which eigenvectors of (14) should be incorporated into

the coarse space. A variety of selection criteria were investigated in [38], which made it
clear that the best choice was to select eigenvectors corresponding to eigenvalues with the
smallest real part. That is, a threshold on the abscissa η = Re(λ) should be used, namely

η < ηmax, (15)

where ηmax depends on ks = max~x∈Ωs k(~x). The choice ηmax = ks is advocated in [38];
however, we recently showed that taking a slightly larger threshold ηmax = k4/3

s can be ben-
eficial in certain cases in order to gain robustness to the wave number [37]. Unfortunately,
this only occurs for the homogeneous problem with sufficiently uniform subdomains. To
construct a more robust coarse space, we build upon the GenEO approach.
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2.3.2. The GenEO Coarse Space

The Generalised Eigenproblems in the Overlap (GenEO) coarse space was derived
in [35] to provide a rigorously robust approach for symmetric positive definite problems
even in the presence of heterogeneities. In recent years, this approach has been extended
and used within various settings and applications—for example, [39,45,48,49]; see also the
discussion on developments for other spectral coarse spaces in [50].

Within the original derivation [35], the generalised eigenproblems are defined in a
variational framework on the assumption that a(·, ·) is a symmetric and coercive bilinear
form. On a subdomain Ωs, an overlapping zone Ω◦s is defined as the parts of Ωs that
overlap with another subdomain, and the local eigenproblem

aΩs(u, v) = λaΩ◦s (Ξs(u), Ξs(v)) ∀ v ∈ V(Ωs), (16)

is solved for small λ, where Ξs represents the action of the partition of unity operator
on Ωs. To be clear, aD(·, ·) represents the underlying variational problem on the domain
D with problem boundary conditions on ∂Ω and natural (“do nothing”) conditions on
∂D \ ∂Ω. The eigenproblem (16) provides an appropriate link in order to bound the
condition number of the preconditioned operator independently of the heterogeneity
and number of subdomains. This bound depends on the smallest eigenvalue λ whose
corresponding eigenfunction is not incorporated into the GenEO coarse space. Hence, to
achieve a desired rate of convergence, all eigenfunctions corresponding to eigenvalues
smaller than a threshold (say, λ < λmax) must be computed. Alternatively, one may opt
in practice to compute a fixed number of eigenfunctions per subdomain and use these in
order to accelerate convergence.

The restriction within the right-hand side of (16) to the overlapping zone is not an
essential requirement, and alternative formulations can be used. In order to remove
the need to track overlap regions, one possibility is to replace Ω◦s with the whole of Ωs,
as in [45,48]. When formulating the discrete eigenproblem, this requires only the local
Neumann matrix Ãs to be constructed. In this case, we must solve

Ãsu = λDs AsDsu, (17)

where As = Rs ART
s is the local Dirichlet matrix—a sub-matrix of A. As with the DtN

method, the vectors which then go into the coarse space Z are RT
s Dsu. It is this form of the

GenEO eigenproblem in (17) that we shall build upon to develop an approach tailored to
the heterogeneous Helmholtz problem.

2.3.3. H-GenEO: A GenEO-Type Coarse Space for Helmholtz Problems

In consideration of GenEO approaches for the Helmholtz problem, a key hurdle is the
loss of operators that are definite or self-adjoint. While some progress has been made at the
theoretical level for closely related problems [39,51], currently available analysis has yet to
overcome all the challenges present for the Helmholtz problem, and rigorous justification
for a choice of spectral coarse space remains out of reach. The approach taken in [39,51] is to
formulate the GenEO eigenproblem for a nearby symmetric positive definite problem, here
corresponding to a Laplace problem and hence given the name ∆-GenEO. This problem
can be given by setting k = 0 in (2) and (4). Letting Ls be the local Dirichlet matrix for this
problem in Ωs and L̃s be the equivalent Neumann matrix, the ∆-GenEO eigenproblem is
given by

L̃su = λDsLsDsu. (18)

This is a positive (semi-)definite eigenproblem with real non-negative eigenvalues λ and,
as such, eigenvectors can be chosen in the standard way using a threshold λ < λmax.
Unfortunately, for the Helmholtz problem, the ∆-GenEO approach can perform rather
poorly when k becomes large (see Table 1 in Section 3), as might be anticipated from the
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fact that solutions to the Laplace problem differ considerably to those of the Helmholtz
problem in this range.

In order to provide an appropriate spectral coarse space for the Helmholtz problem,
it stands to reason that a Helmholtz operator must be included. If we try to apply the
GenEO eigenproblem (17) as is, with matrices stemming from the Helmholtz bilinear form
in (4), we must first note that the problem is non-self-adjoint and, as such, eigenvalues λ
are no longer real in general. As a threshold criterion, as with the DtN approach, we can
consider the abscissa η = Re(λ) instead and seek eigenvectors corresponding to η < ηmax.
Unfortunately, this formulation fails to be robust, and numerically, we have found that the
eigensolver we use can often break down. Given that, without any relevant theory, it is no
longer clear that (17) provides an appropriate eigenproblem; thus, we develop a different
approach that yields a robust method in our numerical experiments.

While the above approaches consider only Helmholtz, or only Laplace, operators
in their formulation, we instead link the underlying Helmholtz problem to the positive
definite Laplace problem. Since this GenEO-type method targets the Helmholtz problem,
we call it “H-GenEO”. The local eigenproblem utilised is given by

Ãsu = λDsLsDsu. (19)

Since eigenvalues are complex (though, in our experience, they tend to cluster close to the
real line) we threshold based on the abscissa η < ηmax. We see the effectiveness of the
H-GenEO coarse space for a 2D model problem in Section 3. When used with a threshold
(typically, we use ηmax = 1

2 ), we observe that the number of GMRES iterations for the
H-GenEO approach is independent of the wave number k, which is not true of the DtN
method in general. Before continuing to our numerical results, we first show a link between
the DtN and GenEO eigenproblems and how the H-GenEO method is related.

2.3.4. A Link between DtN and GenEO

While the DtN and GenEO eigenproblems look rather different, here we show a link
between the two approaches. In particular, consider the GenEO method when we remove
the partition of unity matrices Ds from (17), so that we are left with the Neumann matrix
on the left and the Dirichlet matrix on the right, namely Ãsu = λAsu. Further, let us use
subscripts Os and Is to denote overlap and interior degrees of freedom in Ωs, respectively.
Then, moving all terms to the left-hand side, the GenEO eigenproblem can be written as(

ÃOs ,Os − λAOs ,Os (1− λ)AOs ,Is

(1− λ)AIs ,Os (1− λ)AIs ,Is

)(
uOs

uIs

)
=

(
0
0

)
, (20)

where we have used the fact that the Neumann matrix is equal to Dirichlet matrix except in
the block associated with the overlap degrees of freedom. Forming the Schur complement
of (20) with respect to the AIs ,Is block and dividing by 1− λ, we obtain(

ÃOs ,Os − AOs ,Is A−1
Is ,Is

AIs ,Os

)
uOs =

λ

1− λ

(
AOs ,Os − ÃOs ,Os

)
uOs . (21)

Now, if the overlap degrees of freedom Os are precisely those used as boundary degrees
of freedom Γs in the DtN method, we see that (21) resembles the DtN eigenproblem (14).
The primary difference stems from the right-hand side, where we now have the difference
between the Dirichlet and Neumann matrices on the boundary degrees of freedom as
opposed to a mass matrix, though we note that these can coincide for certain choices of
discretisation; for example, a simple finite difference scheme on a Cartesian grid where
forward or backward differences are used to approximate the Neumann condition. The
other difference, aside from the partition of unity in the true GenEO approach, stems from
a transformation of the eigenvalues, namely the comparative eigenvalues for the DtN
method are µ = λ

1−λ .
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Now consider the H-GenEO eigenproblem (19) without the partition of unity matrices.
Splitting for the moment A = L− k2M, we have(

L̃Os ,Os − λLOs ,Os − k2MOs ,Os (1− λ)LOs ,Is − k2MOs ,Is

(1− λ)LIs ,Os − k2MIs ,Os (1− λ)LIs ,Is − k2MIs ,Is

)(
uOs

uIs

)
=

(
0
0

)
. (22)

Now, dividing by 1− λ and defining κ2 = k2

1−λ and the corresponding Helmholtz matrices
with wave number κ as B = L− κ2M, we have(

B̃Os ,Os +
λ

1−λ

(
L̃Os ,Os − LOs ,Os

)
BOs ,Is

BIs ,Os BIs ,Is

)(
uOs

uIs

)
=

(
0
0

)
. (23)

Using the fact that L̃Os ,Os − LOs ,Os = B̃Os ,Os − BOs ,Os , the resulting Schur complement
system is then given as(

B̃Os ,Os − BOs ,Is B−1
Is ,Is

BIs ,Os

)
uOs =

λ

1− λ

(
BOs ,Os − B̃Os ,Os

)
uOs . (24)

Thus, we see that H-GenEO corresponds to solving GenEO problems based on a wave
number κ that varies with the eigenvalue. Since we are predominantly looking for small
eigenvalues λ, this wave number κ = k(1− λ)−1/2 will then be close to k.

To further exhibit the link between these spectral coarse spaces for the Helmholtz
problem, we consider example eigenfunctions for both the DtN (14) and H-GenEO (19)
eigenproblems on the central subdomain of a 5× 5 decomposition into square subdomains
for a homogeneous model problem with k = 46.5 (see Section 3 for details). Figure 1
displays a selection of eigenfunctions, and in the top two rows, we plot DtN (top row) and
H-GenEO (middle row) eigenfunctions, which show the same features, visually being very
similar. Note that, since the central subdomain does not touch the Robin boundary ΓR,
both eigenproblems are real and symmetric, albeit indefinite, and so all eigenvalues λ are
real. With DtN, as λ increases, variation in the eigenfunctions tends to be restricted to the
boundary, as can be seen in Figure 1c,e. Such behaviour is observed for many H-GenEO
eigenfunction as well; however, we also obtain distinct eigenfunctions which are not found
amongst DtN eigenfunctions: examples are given in the bottom row of Figure 1, and we
note that they tend to exhibit large variation in the interior of the subdomain. Nonetheless,
there is a clear link between many of the DtN and H-GenEO eigenfunctions.
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(k) λ1 = −0.431 (l) λ17 = 0.233 (m) λ22 = 0.315 (n) λ23 = 0.315 (o) λ33 = 0.438
Figure 1. Local eigenfunctions for k = 46.5. Top row: Examples using DtN (14). Middle row:
Equivalent examples using H-GenEO (19). Bottom row: Examples using H-GenEO which are not
found amongst the DtN eigenfunctions.

3. Results and Discussion

In this section, we present and discuss the numerical results computed using FreeFEM [52],
in particular through the functionality of ffddm, which handles the underlying domain
decomposition data structures. As a model problem, we consider the case of a wave
guide in 2D, defined on the unit square Ω = (0, 1)2. We impose homogeneous Dirichlet
conditions on two opposite sides, namely (2b) with uΓD = 0 on ΓD = {0, 1} × [0, 1], and
Robin conditions on the two remaining sides, that is (2c) on ΓR = [0, 1]× {0, 1}. A point
source is located in the centre of the domain at ( 1

2 , 1
2 ) and provides the forcing function f .

A schematic of this model problem is found in Figure 2.

D
irichletD

ir
ic

hl
et

Robin

Robin
y = 1

y = 0
x = 1x = 0

source f

Figure 2. Schematic of the 2D wave guide model problem with example triangular mesh.

To discretise the problem, we triangulate Ω using a Cartesian grid with spacing h and
alternating diagonals to form a simplicial mesh (see Figure 2 where h = 1

4 ). The discrete
problem (5) is then built using a P1 finite element approximation on this mesh. In order
to avoid the pollution effect, we choose k and h simultaneously so that k3h2 = 2π

10 is fixed.
The large sparse linear system (5) is solved using right-preconditioned GMRES, with the
preconditioner given by the two-level ORAS method (9) and the choice of coarse space
as stated. We terminate the GMRES iteration once a relative residual tolerance of 10−6 is
reached. Unless otherwise stated, within the domain decomposition preconditioner, we
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use minimal overlap: that is, one layer of adjoining mesh elements are added to the non-
overlapping subdomains via the extension in (6). To solve the local eigenvalue problems in
the two-level methods, we make use of ARPACK [53], while both the subdomain solves
and coarse space operator solves are given by MUMPS [54].

We first compare coarse spaces in the simplest case of a homogeneous problem,
investigating the choice of eigenvalue threshold used. We then show results on how the
methods perform in a variety of settings; for instance, with non-uniform subdomains,
heterogeneity, and additional overlap. Finally, both weak and strong scalability tests are
performed for H-GenEO applied to high wave number problems with timings reported.

3.1. A Comparison of Methods for the Homogeneous Problem with Uniform Partitioning

In Table 1, we give some benchmark results for the simplest problem of a homogeneous
wave guide using a uniform decomposition into 25 square subdomains. We see that the
one-level ORAS method (8) performs relatively poorly as the wave number k increases.
The standard DtN coarse space (14) (with ηmax = k) is able to reduce iteration counts with
a relatively small coarse space size; however, there is still a clear increase in iterations
as k increases. The ∆-GenEO method (18), with λmax = 1

2 , performs poorly here, often
performing worse than the one-level method despite a larger coarse space than the DtN
approach; this may be because the impedance conditions from the wave guide problem
are not included in the definition of the ∆-GenEO coarse space and so the eigenfunctions
are not appropriate here. Finally, the standard H-GenEO method (19) (with ηmax = 1

2 )
performs well and significantly reduces the iteration counts, by a factor of 10 for the largest
wave number, and provides robustness to increasing wave number k (in fact, iteration
counts tend to decrease with k). We note that the size of the H-GenEO coarse space is larger
than the DtN coarse space, and we now explore this further.

Table 1. Preconditioned GMRES iteration counts and size of coarse space (in parentheses) for the
homogeneous problem when using ORAS and various coarse spaces. A uniform decomposition into
5× 5 square subdomains is used, giving 25 subdomains in total.

k h−1 One-Level DtN ∆-GenEO H-GenEO

18.5 100 73 19 (147) 53 (135) 21 (164)
29.3 200 97 26 (218) 100 (271) 18 (370)
46.5 400 125 35 (303) 148 (560) 17 (779)
73.8 800 156 42 (502) 220 (1120) 15 (1712)

In Table 2, we provide results for both the DtN and H-GenEO methods with differ-
ing eigenvalue thresholds ηmax. For DtN, we use the standard threshold ηmax = k, the
suggested threshold from [37] ηmax = k4/3, and the larger threshold of ηmax = k3/2. For
H-GenEO, we use the standard threshold ηmax = 1

2 as well as the weaker thresholds
of 1

4 and 1
8 , the latter giving coarse space sizes more comparable to the standard DtN

approach. To differentiate between these methods, we use the notation DtN(ηmax) and
H-GenEO(ηmax) where ηmax is as specified. We notice in Table 2 that increasing the DtN
threshold to ηmax = k4/3 significantly improves the iteration counts for this problem so that
they are almost independent of k, albeit very slightly growing. Increasing the threshold
further only marginally improves the iteration counts, which still grow slightly with k, but
at the expense of a coarse space almost twice the size. On the other hand, if we relax the
H-GenEO threshold, we start to see higher iteration counts and lose some robustness, but
generally iteration counts do not increase with k as they do for the standard DtN method.
We note that, for this homogeneous problem, roughly comparable coarse space sizes give
approximately similar iteration counts, and so it is primarily the thresholds used in DtN
and H-GenEO that dictate the different growth behaviour we observe.



Math. Comput. Appl. 2022, 27, 35 12 of 23

Table 2. Preconditioned GMRES iteration counts and size of coarse space (in parentheses) for the
homogeneous problem when using ORAS and the DtN and H-GenEO coarse spaces with varying
eigenvalue thresholds. A uniform decomposition into 5× 5 square subdomains is used, giving
25 subdomains in total.

k h−1 DtN (k) DtN (k4/3) DtN (k3/2) H-GenEO ( 1
8 ) H-GenEO ( 1

4 ) H-GenEO ( 1
2 )

18.5 100 19 (147) 13 (260) 11 (403) 46 (80) 31 (105) 21 (164)
29.3 200 26 (218) 14 (483) 13 (759) 53 (139) 33 (189) 18 (370)
46.5 400 35 (303) 14 (868) 12 (1479) 56 (245) 35 (378) 17 (779)
73.8 800 42 (502) 16 (1588) 15 (2925) 40 (546) 25 (800) 15 (1712)

To explore the growth in the size of the coarse space further, in Figure 3a, we plot coarse
space size against the wave number k. From this, we can see that growth for DtN(k4/3) is
approximately proportional to k4/3, while for H-GenEO( 1

2 ), it is around k5/3 for our model
problem. When the thresholds are relaxed, the precise relationship becomes less clear, but
we note that the coarse space sizes grows more slowly with a weaker threshold, especially
for the DtN approach. The faster growth seen for DtN(k4/3) and H-GenEO( 1

2 ) may help
to accommodate the stronger robustness to k observed in the iteration counts of Table 2.
These two approaches appear to provide the best trade-off for obtaining a well-behaved
method, and so we focus primarily on these approaches, but first we consider the question
of scalability.
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2
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(b)
Figure 3. The size of coarse space utilised for the homogeneous problem when using ORAS with
the DtN and H-GenEO coarse spaces. A uniform decomposition into

√
N ×
√

N square subdomains
is used. (a) Varying the wave number k for N = 25, (b) Varying the number of subdomains N for
k = 73.8.

3.2. Scalability of DtN and H-GenEO for the Homogeneous Problem with Uniform Partitioning

We now investigate the scalability of the DtN and H-GenEO methods. This will
depend on the threshold used, and so we compare results for DtN(k) and H-GenEO( 1

8 ) as
well as DtN(k4/3) and H-GenEO( 1

2 ), with each pair of approaches giving broadly similar
iteration counts. Results for the homogeneous problem with k = 73.8 and h−1 = 800 are
given in Table 3 for an increasing number of uniform square subdomains N. We see that
the DtN(k) approach does not exhibit scalability here, with iteration counts that noticeably
increase with N. Similarly, with the weaker threshold, H-GenEO( 1

8 ) also fails to be scalable.
On the other hand, both DtN(k4/3) and H-GenEO( 1

2 ) are scalable here, with low iteration
counts that vary little with N.

Comparing the size of the coarse spaces employed, we see that the DtN(k4/3) coarse
space grows faster with N and becomes larger than the H-GenEO( 1

2 ) coarse space, which
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may account for its particularly strong robustness to N here. From Figure 3b, we see that
for both DtN approaches, the coarse space size grows approximately proportional to N0.6,
while for the H-GenEO method, it is around N0.4. This suggests that H-GenEO may be
advantageous when N becomes large due to the smaller coarse space required. For each
method, the average number of eigenvectors taken per subdomain decreases as N increases;
this means that, as well as smaller subdomain solves, we also benefit from requiring fewer
eigenvectors to be computed per subdomain, even if the global coarse space size increases.
We note that the size of the DtN(k) or H-GenEO( 1

8 ) coarse space sometimes shrinks as we
increase N, and in these cases, the iteration counts tend to be particularly poor, suggesting
that the thresholds of ηmax = k for DtN and ηmax = 1

8 are not doing a suitable job in
capturing the eigenfunctions required for scalability. As such, we now narrow our focus to
the DtN(k4/3) and H-GenEO( 1

2 ) approaches.

Table 3. Preconditioned GMRES iteration counts (above), size of coarse space (middle), and average
number of eigenvectors taken per subdomain (below) for the homogeneous problem when using
ORAS with the DtN and H-GenEO coarse spaces and a varying number of subdomains N for k = 73.8
and h−1 = 800. A uniform decomposition into

√
N ×
√

N square subdomains is used.

N 4 9 16 25 36 49 64 81 100 121 144 169 196

DtN (k) 28 32 40 42 51 76 49 94 90 36 37 96 154
DtN (k4/3) 15 16 19 16 16 16 15 16 15 15 16 17 17

H-GenEO ( 1
8 ) 26 31 36 40 71 70 65 127 81 116 247 194 138

H-GenEO ( 1
2 ) 13 15 15 15 16 16 16 18 16 18 18 18 19

DtN (k) 124 251 362 502 605 736 843 1000 946 1329 1554 1529 1327
DtN (k4/3) 392 790 1175 1588 1994 2366 2753 3176 3611 3976 4369 4955 5118

H-GenEO ( 1
8 ) 200 305 408 546 536 600 788 733 936 927 780 974 1264

H-GenEO ( 1
2 ) 852 1116 1428 1712 1903 2261 2444 2629 3120 3204 3482 3882 3816

DtN (k) 31.0 27.9 22.6 20.1 16.8 15.0 13.2 12.3 9.5 11.0 10.8 9.0 6.8
DtN (k4/3) 98.0 87.8 73.4 63.5 55.4 48.3 43.0 39.2 36.1 32.9 30.3 29.3 26.1

H-GenEO ( 1
8 ) 50.0 33.9 25.5 21.8 14.9 12.2 12.3 9.0 9.4 7.7 5.4 5.8 6.4

H-GenEO ( 1
2 ) 213.0 124.0 89.3 68.5 52.9 46.1 38.2 32.5 31.2 26.5 24.2 23.0 19.5

3.3. Robustness of DtN and H-GenEO for the Homogeneous Problem with METIS Decomposition

We now consider utilising non-uniform subdomains, as provided through the software
METIS [55]. In Table 4, we compare DtN(k4/3) and H-GenEO( 1

2 ) in this situation, again
for the homogeneous problem. We observe that both methods retain their robustness,
meaning that iteration counts only depend mildly on the wave number k and the number
of subdomains N. For H-GenEO( 1

2 ), the scalability becomes more favourable for larger k,
and we can see that for the smallest wave numbers with large N, the average number of
eigenvectors per subdomain becomes very small; in fact, on many subdomains, only a single
eigenvector is taken, and so the achieved tolerance on the eigenvalue may be somewhat
weaker than 1

2 , which may explain the slightly poorer performance. One way this could
be overcome is by always taking a minimum number of eigenvectors per subdomain; for
instance, using at least 5 eigenvectors per subdomain when k = 18.5 gives iteration counts
bounded by 19. Since we are primarily interested in approaches that remain effective for
increasingly large wave numbers, where this issue diminishes, we do not worry further
about this and assert that for problems of interest, H-GenEO( 1

2 ) provides good scalability.
On the other hand, for DtN(k4/3), the mild increase in iteration count is seen as k increases
here, with scalability observed for all wave numbers.

We note that the coarse space sizes for each method tend to be slightly larger with the
more general decompositions used by METIS, but otherwise the same trends are seen. As
such, we conclude that non-uniform decompositions can be well handled by the spectral
coarse spaces employed here.
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Table 4. Preconditioned GMRES iteration counts (above), size of coarse space (middle), and average
number of eigenvectors taken per subdomain (below) for the homogeneous problem when using
ORAS with DtN(k4/3) or H-GenEO( 1

2 ) and a varying number of subdomains. A non-uniform
decomposition into N subdomains is used, given by METIS.

Number of Subdomains N
DtN (k4/3) H-GenEO ( 1

2 )
k h−1 20 40 80 120 160 200 20 40 80 120 160 200

18.5 100 10 10 10 10 10 10 15 17 19 22 27 27
29.3 200 12 15 11 12 12 12 15 17 19 20 22 23
46.5 400 12 13 15 13 13 13 15 16 16 18 20 20
73.8 800 15 15 14 16 14 16 15 16 17 17 17 19

117.2 1600 14 15 16 17 15 16 14 15 15 16 16 16

18.5 100 281 422 652 843 1005 1157 201 285 383 471 524 589
29.3 200 477 758 1130 1410 1693 1922 400 574 783 958 1097 1245
46.5 400 959 1466 2132 2677 3151 3553 869 1193 1670 2008 2253 2507
73.8 800 1695 2563 3751 4672 5486 6199 1863 2456 3433 4147 4749 5338

117.2 1600 3049 4695 6831 8486 9896 11,092 4238 5680 7575 9049 10,273 11,305

18.5 100 14.1 10.6 8.2 7.0 6.3 5.8 10.1 7.1 4.8 3.9 3.3 2.9
29.3 200 23.9 18.9 14.1 11.8 10.6 9.6 20.0 14.3 9.8 8.0 6.9 6.2
46.5 400 48.0 36.6 26.6 22.3 19.7 17.8 43.5 29.8 20.9 16.7 14.1 12.5
73.8 800 84.8 64.1 46.9 38.9 34.3 31.0 93.2 61.4 42.9 34.6 29.7 26.7

117.2 1600 152.4 117.4 85.4 70.7 61.9 55.5 211.9 142.0 94.7 75.4 64.2 56.5

3.4. The Effect of Heterogeneity

We now turn our attention to the key property of robustness to heterogeneities. For
this, we consider layered media within the wave guide. Three configurations, each having
10 layers, are used and are detailed in Figure 4. The heterogeneity is introduced in the wave
speed c(x), and in each case, c takes values from 1 to ρ, where ρ is a contrast parameter
determining the strength of the heterogeneity. The wave number is then given by k = ω/c
where ω is the angular frequency; we vary both ω and ρ in our tests. Note that for the
DtN method, the eigenvalue threshold now depends on ks = max~x∈Ωs k(~x), which may be
different for different subdomains Ωs. To avoid notational clutter, we omit the subscript
when referring to the method, namely retaining the name DtN(k4/3).

(a) Increasing layers (b) Alternating layers (c) Diagonal layers
Figure 4. Piecewise constant layer profiles for the wave speed c(x). For the darkest shade c(x) = 1,
while for the lightest shade c(x) = ρ, with ρ being the contrast factor.

Results for DtN(k4/3) and H-GenEO( 1
2 ) for the increasing layers problem (Figure 4a)

are provided in Table 5. Unfortunately, we see that the DtN(k4/3) loses robustness with
the heterogeneity present in this problem. In particular, we lose any robustness to the
wave number k, and for the largest wave number used, we also see that changes in the
contrast, given by ρ, can begin to have a sizeable impact on the iteration counts despite
otherwise being relatively stable to changes in ρ. To a lesser extent, we also lose scalability
with DtN(k4/3) as the iteration counts now slowly increase with N. On the other hand,
H-GenEO( 1

2 ) has strong robustness throughout, both with respect to the wave number k,
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the contrast in the heterogeneity ρ, and scalability as N increases. As such, we see a clear
preference for H-GenEO( 1

2 ) as a stable and reliable method for heterogeneous problems.

Table 5. Preconditioned GMRES iteration counts (above) and size of coarse space (below) for the
heterogeneous increasing layers problem when using ORAS with DtN(k4/3) or H-GenEO( 1

2 ) and
a varying number of subdomains. A uniform decomposition into

√
N ×

√
N square subdomains

is used.

Number of Subdomains N
DtN (k4/3) H-GenEO ( 1

2 )
ω h−1 ρ 16 36 64 100 144 196 16 36 64 100 144 196

29.3 200 10 29 37 41 52 55 58 15 16 19 18 18 19
1000 44 44 50 58 52 52 15 15 17 18 17 17

46.5 400 10 32 38 41 66 65 73 15 16 16 19 18 18
1000 63 69 74 84 73 71 14 15 16 18 17 17

73.8 800 10 35 43 42 40 58 69 15 17 16 17 18 17
1000 89 93 107 111 114 109 14 15 15 16 17 16

29.3 200 10 116 173 234 363 399 467 224 354 452 662 679 754
1000 84 111 136 285 329 371 222 350 446 642 679 741

46.5 400 10 208 317 405 600 704 812 458 706 990 1234 1523 1678
1000 144 176 202 421 496 554 450 693 990 1216 1512 1666

73.8 800 10 379 557 693 1142 1217 1404 930 1425 2074 2584 3060 3553
1000 254 294 326 748 784 838 914 1409 2058 2572 3059 3534

We also consider the case of a diagonal layers problem (Figure 4c) in Table 6. Here,
the issues with DtN(k4/3) are reduced, but there is still some increase in iteration counts,
especially for higher wave numbers k and a larger number of subdomains N. We note, in
results not shown here, that DtN(k3/2) also suffers from the same lack of robustness. For
H-GenEO( 1

2 ), however, we still have good robustness to the parameters of the problem.
We further consider the heterogeneous problem when making use of METIS for more

general non-uniform subdomain decompositions in order to ensure that H-GenEO is able
to handle both difficulties together. For this, we consider the alternating layers problem
(Figure 4b) and provide results in Table 7. We find that H-GenEO( 1

2 ) performs very well
and continues to provide a rather robust method, even in the presence of heterogeneity on
non-uniform subdomains. This further evidences the strength of the H-GenEO( 1

2 ) approach,
and we briefly study this more closely, dropping reference to the eigenvalue tolerance and
simply denoting the method as H-GenEO. First, however, we provide a brief examination
into the use of higher order discretisation.
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Table 6. Preconditioned GMRES iteration counts (above) and size of coarse space (below) for the
heterogeneous diagonal layers problem when using ORAS with DtN(k4/3) or H-GenEO( 1

2 ) and a
varying number of subdomains. A uniform decomposition into

√
N ×

√
N square subdomains

is used.

Number of Subdomains N
DtN (k4/3) H-GenEO ( 1

2 )
ω h−1 ρ 16 36 64 100 144 196 16 36 64 100 144 196

29.3 200 10 13 14 13 14 21 25 16 18 20 18 23 25
1000 13 14 14 14 22 25 16 18 20 18 23 25

46.5 400 10 15 14 14 16 25 31 16 17 17 26 21 22
1000 15 14 15 16 25 34 16 17 18 27 22 22

73.8 800 10 14 18 16 15 20 26 16 17 17 17 19 20
1000 15 18 16 15 32 39 16 17 17 17 19 20

29.3 200 10 336 593 866 1090 1376 1390 260 376 499 689 737 828
1000 336 594 866 1090 1375 1390 259 375 499 687 737 826

46.5 400 10 621 1075 1540 1910 2370 2622 543 789 1095 1384 1599 1825
1000 621 1075 1539 1907 2368 2614 541 790 1093 1381 1596 1824

73.8 800 10 1164 1947 2692 3592 4145 4608 1145 1636 2243 2823 3233 3681
1000 1163 1946 2693 3592 4131 4569 1141 1633 2239 2822 3232 3671

Table 7. Preconditioned GMRES iteration counts for the heterogeneous alternating layers problem
with ρ = 10/100/1000 when using ORAS with H-GenEO( 1

2 ) and a varying number of subdomains.
A non-uniform decomposition into N subdomains is used, given by METIS.

Number of Subdomains N with Sub-Columns for ρ = 10/100/1000
ω h−1 20 40 80 120 160 200

18.5 100 17 17 17 19 19 19 21 21 21 27 27 27 31 31 31 33 33 33
29.3 200 16 16 16 17 17 17 19 19 19 20 20 20 21 21 21 23 23 23
46.5 400 17 18 18 18 18 18 22 23 23 25 26 26 27 28 28 28 29 29
73.8 800 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 23 23 23
117.2 1600 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16

3.5. Higher Order Finite Elements

We briefly investigate the use of higher order finite elements. In particular, we consider
the use of P2 elements as opposed to P1 elements. To give a direct comparison, we utilise
the same meshes, and in Table 8 we give results for the heterogeneous diagonal layers
problem with ρ = 10; equivalent results for P1 elements are given in Table 6. We observe
that both iteration counts and coarse space sizes remain rather similar to the case of P1
elements. This suggests that, by itself, the order of the underlying finite elements used does
not strongly affect performance. However, the typical meshes employed for higher order
elements may be coarser, and further studies would be required to observe how this affects
the utility of the spectral coarse spaces presented here. Further investigation into which
method and order of finite element approximation provides the most efficient choice is
beyond the scope of the present study.
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Table 8. Preconditioned GMRES iteration counts (above) and size of coarse space (below) for P2 finite
element discretisation of the heterogeneous diagonal layers problem with ρ = 10 when using ORAS
with DtN(k4/3) or H-GenEO( 1

2 ) and a varying number of subdomains. A uniform decomposition
into
√

N ×
√

N square subdomains is used.

Number of Subdomains N
DtN (k4/3) H-GenEO ( 1

2 )
ω h−1 ρ 16 36 64 100 144 196 16 36 64 100 144 196

18.5 100 10 13 11 10 10 10 18 15 16 19 18 23 24
29.3 200 10 14 12 12 13 19 25 15 17 18 18 23 25
46.5 400 10 15 12 12 15 23 30 15 16 17 20 21 22
73.8 800 10 17 16 14 13 18 25 15 16 16 17 18 20

18.5 100 10 151 326 510 706 898 937 125 186 231 346 398 519
29.3 200 10 300 608 892 1086 1444 1516 260 377 507 686 733 824
46.5 400 10 589 1108 1572 2069 2491 2638 540 794 1100 1403 1594 1820
73.8 800 10 919 1916 2862 3614 4409 4748 1144 1645 2239 2805 3225 3695

3.6. The Effect of Boundary Conditions within the H-GenEO Eigenproblem

We now consider the choice of boundary conditions within H-GenEO in light of the fact
that, for wave propagation problems, impedance conditions can often prove more practical
within overlapping Schwarz methods. To this end, we consider the H-GenEO eigenproblem
where the Neumann boundary condition is replaced by an impedance condition instead
(i.e., the Robin condition in (7b)). Results for this impedance–H-GenEO method are given
in Table 9 for the homogeneous problem with uniform square subdomains. We see that,
while the use of this eigenproblem retains the good behaviour of H-GenEO as k increases,
it lacks scalability as we increase the number of subdomains N. We note that the size of the
coarse space is very similar to that when the standard Neumann condition is used (a direct
comparison can be made for k = 73.8 with results in Table 3), and so this is not simply
an artefact of a smaller coarse space. This shows that the Neumann condition within the
eigenproblem is an important aspect of H-GenEO.

Table 9. Preconditioned GMRES iteration counts (above) and size of coarse space (below) for the
homogeneous problem when using ORAS with impedance-H-GenEO (the eigenproblem (19) is
altered to have impedance as opposed to Neumann boundary conditions on the left-hand side) and
a varying number of subdomains. A uniform decomposition into

√
N ×

√
N square subdomains

is used.

Number of Subdomains N
k h−1 4 9 16 25 36 49 64 81 100 121 144 169 196

18.5 100 17 19 23 27 30 36 42 45 43 58 61 61 67
29.3 200 17 19 22 25 34 33 41 38 35 49 60 62 65
46.5 400 15 18 19 22 26 25 26 39 43 47 52 51 54
73.8 800 15 19 19 20 25 27 26 35 33 39 43 44 51

18.5 100 68 102 140 158 204 217 236 287 344 341 404 477 504
29.3 200 148 215 296 370 392 521 504 576 720 768 725 793 908
46.5 400 360 492 628 754 917 988 1236 1176 1468 1550 1740 1807 1930
73.8 800 848 1106 1420 1696 1877 2218 2432 2574 2960 3180 3443 3834 3732

3.7. The Effect of More Overlap When Using H-GenEO

So far, all our results use minimal overlap. Here, we consider the case of increasing
the overlap between subdomains—this is done by adding on layers of adjoining elements
to each subdomain in a symmetric way so that minimal overlap is given by an overlap
parameter of 2; that is, the overlapping region has a width of 2 elements. In Table 10, we
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report results for increasing overlap when using H-GenEO for the homogeneous problem
with k = 46.5 and h−1 = 400 and where a uniform decomposition is used. We see
that adding on a small amount of overlap can slightly decrease the iteration counts, but
increasing the overlap width further can give much poorer results, especially when using
a large number of subdomains N. One possible explanation could be an increase in the
“colouring constant” (see, e.g., [45] (Definition 5.5)). We note that the size of the coarse space
decreases somewhat as the overlap is increased; however, the extra computational effort
required to deal with the larger subdomains will hamper any gains from this, along with
the increased iteration counts. From these results, we determine that the H-GenEO coarse
space is best suited to the case of minimal overlap, as we have used elsewhere throughout
this work.

Table 10. Preconditioned GMRES iteration counts (above) and size of coarse space (below) for the
homogeneous problem when using ORAS with H-GenEO, varying the amount of overlap (in terms
of element width, with 2 representing minimal overlap) and number of subdomains for k = 46.5 and
h−1 = 400. A uniform decomposition into

√
N ×
√

N square subdomains is used.

Number of Subdomains N
Overlap 4 9 16 25 36 49 64 81 100 121 144 169 196

2 14 15 15 17 16 16 16 20 26 19 19 22 21
4 10 11 11 12 12 13 12 17 14 16 17 21 20
8 8 10 10 10 13 13 12 20 23 22 26 31 27

16 13 21 26 26 37 77 61 75 86 109 178 157 164

2 368 492 644 779 938 1030 1248 1195 1476 1558 1758 1845 2016
4 352 472 600 699 871 947 1088 1124 1296 1449 1689 1697 1690
8 336 436 538 650 799 863 1024 981 1132 1395 1511 1425 1512

16 316 417 500 610 733 717 920 942 1108 1239 1086 1212 1280

3.8. Weak Scalability and Timing Results for H-GenEO

In this section, we consider the weak scalability of the H-GenEO method. To approach
this, we consider a growing wave guide domain where fixed size subdomains are added,
each with the same number of degrees of freedom (dofs). This is done by repeatedly adding
a unit square, which is split into 25 non-overlapping square subdomains, to the right of
the existing domain L times to give Ω = (0, L)× (0, 1). Along the long edges of the global
domain, we prescribe homogeneous Dirichlet boundary conditions, while Robin conditions
are used at each end of the wave guide; a schematic for this weak scaling test is given in
Figure 5. Heterogeneity is given by the alternating layers problem (see Figure 4b) with the
10 layers extending across the length of the wave guide.

R
obinR

ob
in

Dirichlet

Dirichlet
y = 1

y = 0
x = 0 x = 1 x = L

· · ·
source f

Figure 5. Schematic of the growing 2D wave guide model problem used in a weak scaling test on
N = 25L fixed size subdomains, with the underlying non-overlapping subdomains shown in grey.

To deal with the large problem sizes (reaching up to 10,253,601 dofs) and provide appro-
priate timing results, we assign one core per subdomain and solve using the ARCHIE-WeSt
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supercomputing facility on up to 400 cores (the machine uses Intel Xeon Gold 6138 proces-
sors at 2.0 GHz with 4.8 GB RAM per core).

In Table 11, we give results for a length of domain L = 2 up to L = 16; that is, from
N = 50 to N = 400 subdomains, using k = 73.8, h−1 = 800 and ρ = 100. We observe that
the iteration counts remain almost constant, increasing only very mildly with N. On the
other hand, the coarse space size grows linearly with N, as expected given that subdomains
have a fixed size, and we see that the time taken to solve the eigenproblems stays constant.
However, due the increasing size of the coarse space, the run times slowly increase, meaning
that the efficiency degrades as we solve increasingly large problems. Further, the setup
of the decomposition and partitioning is performed sequentially, and so this setup time
increases with N. Nonetheless, when removing this initial setup, the efficiency still slowly
reduces as we increase the problem size, as can be seen in the final row of Table 11. To
overcome this, the factorisation of the coarse space operator and associated solves must be
made scalable. While a multi-level approach is therefore an attractive option, it is not yet
clear how to formulate such a strategy for Helmholtz problems. Additionally, the coarse
problem is only assigned to one process here, and so spreading it over more processes as N
increases may stop the coarse solve from becoming a bottleneck.

Table 11. Weak scaling results and timings for the alternating layers problem when using ORAS with
H-GenEO ( 1

2 ) and a varying number of subdomains for k = 73.8, h−1 = 800 and ρ = 100. A uniform
decomposition into N = 25L subdomains is used, as depicted in Figure 5. Note that setup refers to
the initial decomposition and partitioning, which is performed sequentially, while the local problems
and eigensolves are carried out in parallel.

N 50 100 150 200 250 300 350 400

Iteration count 17 18 18 19 19 20 21 21
Coarse space size 3010 6150 9290 12,430 15,570 18,710 21,850 24,990
Total run time (s) 45.8 48.6 53.0 58.7 63.5 70.0 79.7 88.1

Weak scaling efficiency − 94.2% 86.4% 78.0% 72.1% 65.4% 57.5% 52.0%
Eigensolve time (s) 37.1 37.9 37.9 38.3 37.8 37.9 37.9 37.7

Setup time (s) 5.5 7.7 12.9 16.5 19.9 23.8 27.4 30.8
Efficiency without setup − 98.5% 100.5% 95.5% 92.4% 87.2% 77.1% 70.3%

3.9. High Wave Number Strong Scalability and Timing Results for H-GenEO

To conclude our numerical results, we consider the use of H-GenEO within a high wave
number example and explore timings and the overall strong scalability of the approach.
To this end, we consider the original homogeneous wave guide, as outlined in Figure 2,
with a wave number of k = 186.0 and mesh width h−1 = 3200, giving a total problem
size of 10,246,401 dofs. To solve, we use METIS to give a non-uniform decomposition into
subdomains and again utilise the ARCHIE-WeSt supercomputing facility to assign one core
per subdomain.

Results are tabulated in Table 12, in which we detail the run time (in seconds) and the
percentage of time spent by the eigensolver and coarse factorisation. The run times are
further used to determine the parallel efficiency based on the smallest run on N = 80 cores.
Timing results are also displayed graphically in Figure 6, where we show that the bulk
of the computation is spent in the eigensolves and factorisation of the coarse problem; as
such, while the METIS decomposition is sequential, we do not separate out the setup time
here, given that it is comparatively rather small. From Table 12, we see that the iteration
counts show good scalability, increasing only very mildly as we increase the number of
subdomains fivefold. This is also seen in the run times, which decrease as we use more
cores, and hence more subdomains, to solve the problem. In particular, we see that the
parallel efficiency remains over 100%, showing the strong scalability of the approach, in
part due to the fact that as N increases, we have to solve smaller eigenproblems, and so the
percentage of time spent by the eigensolver drops significantly as we increase N. Overall,



Math. Comput. Appl. 2022, 27, 35 20 of 23

these provide promising results that the H-GenEO method can be effective for the solution
of high wave number problems in 2D.

Table 12. Strong scaling results and timings for the homogeneous problem when using ORAS with
H-GenEO ( 1

2 ) and a varying number of subdomains for k = 186.0 and h−1 = 3200, giving a total of
10,246,401 dofs. A non-uniform decomposition into N subdomains is used, given by METIS. The
average local eigenproblem size is given approximately as the number of dofs divided by N.

N 80 120 160 200 240 280 320 360 400

Iteration count 14 16 15 16 17 17 18 19 19
Coarse space size 16,014 19,018 21,348 23,747 25,560 27,270 28,793 30,357 31,773
Total run time (s) 1214.4 614.6 404.4 279.3 217.3 195.0 159.4 154.0 147.6
Parallel efficiency − 132% 150% 174% 186% 178% 190% 175% 165%

Eigenproblem size (approx.) 128,080 85,387 64,040 51,232 42,693 36,594 32,020 28,462 25,616
Average no. of eigenvectors 200.2 158.5 133.4 118.7 106.5 97.4 90.0 84.3 79.4

Eigensolve time 68.6% 70.1% 66.8% 62.7% 53.7% 52.3% 41.6% 39.3% 37.3%
Coarse factorisation time 29.6% 27.8% 30.8% 34.4% 42.8% 44.3% 54.0% 56.3% 58.3%

80 120 160 200 240 280 320 360 400
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Figure 6. Timings for the homogeneous problem when using ORAS with H-GenEO ( 1
2 ) and a varying

number of subdomains for k = 186.0 and h−1 = 3200, giving a total of 10,246,401 dofs. A non-uniform
decomposition into N subdomains is used, given by METIS.

4. Conclusions

In this work, we have developed and explored a GenEO-type coarse space for additive
Schwarz methods that is appropriate for the heterogeneous Helmholtz problem. We have
conducted extensive numerical tests to show how this approach behaves on a 2D model
test problem of a wave guide discretised using finite elements on a pollution-free mesh,
comparing our method with the DtN coarse space. We find that only our H-GenEO
approach is robust to heterogeneity and increasing wave number k and further provides
good scaling such that iteration counts of right-preconditioned GMRES are only mildly
dependent on the number of subdomains. This dependence is strongest for lower wave
numbers on many subdomains and reduces as k grows. Furthermore, convergence does
not deteriorate with increasing wave number, albeit at the cost of a coarse space that grows
as k increases. This is achieved consistently for non-uniform partitioning into subdomains
and in the presence of strong heterogeneity. These results show promise that H-GenEO can
be used as an effective coarse space for challenging heterogeneous problems.

Finally, we discuss how these findings differ from that in the companion paper [40],
where none of the approaches (including the spectral coarse spaces explored in detail here)
are seen to be clearly favourable over a wide range of problem settings. A key difference
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is that well-resolved pollution-free meshes are used in the present work, while the more
realistic benchmark problems examined in [40] use under-resolved meshes with a fixed
number of points per wavelength, as is typical in engineering practice. As well as the more
complex test cases considered, another contributing factor to the difference in studies is
that in [40], a fixed number of eigenvectors was taken per subdomain (limiting the size
of the coarse space), whereas here, eigenvalue thresholding was employed to provide
a more robust approach, at the cost of a potentially larger coarse space. As such, the
present study can be thought of as investigating the extent of what can be achieved in terms
of a robust method in the ideal case, while [40] presents a viewpoint within the regime
of more challenging practical problems. Identifying coarse spaces that can bridge this
gap and provide a consistently robust approach even for the most demanding real-world
applications remains an open area of research.
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