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Abstract: Several real optimization problems are very difficult, and their optimal solutions cannot
be found with a traditional method. Moreover, for some of these problems, the large number of
decision variables is a major contributing factor to their complexity; they are known as Large-Scale
Optimization Problems, and various strategies have been proposed to deal with them. One of the
most popular tools is called Cooperative Co-Evolution, which works through a decomposition of the
decision variables into smaller subproblems or variables subgroups, which are optimized separately
and cooperate to finally create a complete solution of the original problem. This kind of decomposition
can be handled as a combinatorial optimization problem where we want to group variables that
interact with each other. In this work, we propose a Grouping Genetic Algorithm to optimize
the variable decomposition by reducing their interaction. Although the Cooperative Co-Evolution
approach is widely used to deal with unconstrained optimization problems, there are few works
related to constrained problems. Therefore, our experiments were performed on a test benchmark
of 18 constrained functions under 100, 500, and 1000 variables. The results obtained indicate that
a Grouping Genetic Algorithm is an appropriate tool to optimize the variable decomposition for
Large-Scale Constrained Optimization Problems, outperforming the decomposition obtained by a
state-of-the-art genetic algorithm.

Keywords: Grouping Genetic Algorithm; variable decomposition; Large-Scale Constrained Opti-
mization

1. Introduction

A constrained numerical optimization problem is defined by finding the vector x ∈ RD

that minimizes the objective function Obj(x) subject to inequality gj(x) and equality hk(x)
constraints [1]. This is described by Equation (1).

minimize Obj(x)

subject to

gj(x) ≤ 0, j = 1, . . . , q

hk(x) = 0, k = 1, . . . , r.

(1)

where q and r represent the number of inequality and equality constraints, respectively,
x = (x1, . . . , xD), and the search space S is defined by the lower limits l and upper limits u
(li ≤ xi ≤ ui), while the feasible region is defined as the subset of solutions that satisfy the
constraints of the problem F ⊂ S.

To handle the constrained problem, the constraint violation sum cvs [2], is calculated
by Equation (2).

cvs(x) =
q

∑
j

max(0, gj(x)) +
r

∑
k

max(0, |hk(x)| − ε) (2)
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where |hk(x)| − ε is the transformation of equality constraints into inequality constraints
|hk(x)| − ε ≤ 0 with ε = 1× 10−4.

According to the specialized literature [3,4], a Large-Scale Optimization Problem
consists of 100 or more variables, while benchmark functions for sessions and competitions
on the field include thousands of decision variables. Algorithms that solve Large-Scale
Optimization Problems are usually affected by the curse of dimensionality; i.e., these
problems are more complex to solve when the number of decision variables increases.
One of the best-known approaches to deal with these problems is the one proposed by
Potter and De Jong called Cooperative Co-Evolution (CC) [5], which is based on the divide-
and-conquer strategy. This CC approach works in three stages: (1) first, the problem
is decomposed into subcomponents of less dimension and complexity; then, (2) each
subproblem is optimized separately; and finally, (3) the solutions of each subproblem
cooperate to create the solution of the original problem.

Although many of the approaches to solve Large-Scale Optimization Problems have
implemented the CC approach, the first problem that arises is to find the adequate decom-
position of the subgroups since the interaction among the variables must be taken into
account to divide the problem. In other words, if two or more variables interact with each
other, they must remain in the same subcomponent, just as the variables that do not interact
with others must be part of subcomponents with just one variable. The decomposition of
the subgroups can be evaluated considering definitions of problem separability and partial
separability, as explained in Section 3.2. If the interacting variables are not grouped into the
same subgroup, CC tends to find a solution that is not the optimum of the original problem
but a local optimum introduced by an incorrect problem decomposition [6].

Several strategies have been proposed in the literature to deal with the problem of
creating an adequate decision variable decomposition, ranging from random approaches
to strategies that study the interaction among variables to optimize this decomposition.
When the original problem is decomposed into subproblems, we aim for the interaction
between them to be at minimum. For this reason, we can work with the decomposition
through optimization strategies, where the objective is to group variables that interact with
each other in the same subcomponent.

One of the first works related to the optimization of the variable decomposition for
Large-Scale Constrained Problems was proposed by Aguilar-Justo et al. [7], who presented
a Genetic Algorithm (GA) to handle the interaction minimization in the subcomponents.
This GA and its operators, such as crossover and mutation, work under an integer ge-
netic encoding, which is one of the most popular ways of representing a solution as a
chromosome in this type of algorithm.

In this work, we resort to a Grouping Genetic Algorithm (GGA) to solve the decompo-
sition problem, since these algorithms have proven to be some of the best when it comes
to combinatorial optimization problems where the optimization of elements in groups is
involved [8]. This proposal aims to show the benefits of using a GGA and its group-based
representation, for the creation of subcomponents, compared against a genetic algorithm.
In addition, to the best of the authors’ knowledge, our proposal is the first GGA approach
to handle decomposition in Large-Scale Constrained Optimization Problems.

We chose similar main operators and parameters to the genetic algorithm proposed by
Aguilar-Justo et al. [7] in order to evaluate the impact of the representation schemes for
the decomposition problem and to make a fair comparison of the performance.

Both algorithms were evaluated on a set of 18 test functions proposed by Sayed et al. [3],
which are problems with 1, 2, and 3 constraints with 100, 500, and 1000 variables, re-
spectively. Experimental results show that the proposed GGA obtains a suitable variable
decomposition when compared against the GA of Aguilar-Justo et al. [7] for variable
decomposition in Large-Scale Constrained Optimization Problems, especially where the
separation is more complicated, such as in non-separable problems.

The work continues as follows: in the next section, we show related work regarding
Decomposition Methods and Grouping Genetic Algorithms. In Section 3, we show our
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proposed GGA and describe each of its components in detail. Section 4 contains the
experiments and results of our algorithm compared to a genetic algorithm and a brief
analysis of the performance of the GGA. Finally, in Section 5, we describe the conclusions
and future work corresponding to our research.

2. Related Works
2.1. Decomposition Methods

According to Ma et al. [6], several variable grouping strategies have been proposed in
the specialized literature for variable decomposition to deal with Large-Scale Unconstrained
Optimization Problems. They classify them into the next classes: static variable grouping,
random variable grouping, variable grouping based on interaction learning, variable
grouping based on domain knowledge, overlap and hierarchical variable grouping, and
finally, some hybrids of them. In the next paragraphs, we describe the works related to
each class.

Static variable grouping methods do not rely on any intelligent procedure to create the
variable decomposition. Instead, they preliminarily decompose the decision vector into a
set of low-dimensional subcomponents and fix the variable grouping during the process of
optimization. Among the works that perform static grouping of variables are the works of
Potter and De Jong [5] and Liu et al. [9], which show good performance with fully separable
problems. For non-separable problems, Van den Bergh and Engelbrecht [10] propose a
static sequential decomposition. However, the decomposition process is dependent on
an adequate number of subcomponents that must be adequate from the beginning of the
strategy, and the static decomposition process has poor performance in many problems.

For that reason, several authors proposed random variable grouping strategies, such
as the case of Yang et al. [11], who present random decomposition with a fixed number
of subcomponents. Moreover, the same authors propose in [12] a random decomposi-
tion with a dynamic number of subcomponents. Omidvar et al. [13,14] improve these
random strategies by integrating the probability of interaction between variables in the
grouping technique.

In addition, if an algorithm can learn the structure of the problem and decompose it,
the difficulty in solving the problem can be significantly reduced (variable grouping based on
interaction learning). Many approaches have been proposed to detect variable interactions,
and we can subdivide them into those based on perturbation, statistical models, distribu-
tion models, approximate models, and linkage adaptation. For example, in some cases, the
interaction is captured by perturbing the decision variables and measuring the change in
fitness caused by the perturbations, like in the work of Xu et al. [15]. Furthermore, Dif-
ferential Grouping (DG) and Differential Grouping version 2 from Odmivar et al. [16,17],
respectively, are based on perturbation as well, which are among the most popular decom-
position algorithms and have been highly studied, which has led to various improvements,
such as recursive decomposition [18–21]. Moreover, Delta Grouping [14] is classified as a
decomposition method based on statistical models, where all variables and the objective
functions are considered as random variables. Statistical analyses of variables or objective
functions are performed first, and then the variables are grouped. In a distribution model,
the set of promising solutions is first used to estimate the variable distributions and vari-
able interactions, and then it is taken to generate new candidate solutions, based on the
learned variable distributions and variable interactions: such is the case of Estimation of
Distribution Algorithm (EDA), as is the case with the work of Sopov [22], where a genetic
algorithm is combined with an EDA for collecting statistical data based on the past search
experience to provide the problem decomposition by fixing genes in chromosomes, as well
as other representatives of such methods [23,24]. As an example of an approximate model,
the fitness evaluation of a Large-Scale Continuous Optimization Problem is converted to
the evaluation of a simpler, partially separable problem in [25]. Linkage adaption methods
use specially designed evolution operators, representations, and mechanisms to divide
variables into groups [26].
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When it comes to overlap and hierarchy variable grouping, which are usually interspersed
in the decision vector, more elaborate strategies have to be used; Goh et al. [27,28] suggested
assigning each variable to several subcomponents, each of which contains more than one
variable, and the subcomponents compete with each other to represent shared variables.
Furthermore, Strasser et al. [29] introduce some overlapping grouping strategies, including
random overlapping grouping, neighbor overlapping grouping, centered overlapping
grouping, and more.

Regarding the variable grouping based on domain knowledge, before CC is implemented
to solve specific real-world problems, domain knowledge can be harnessed to reduce
the complexity of the problems. The conflicting probability of two flights was used by
Guan et al. [30] to learn the variable interaction in solving the flight conflicting avoidance
problem, which is one of several examples of real optimization problems where domain
knowledge can be a good tool.

All the works mentioned above focus on unconstrained problems. One of the first
decomposition methods for solving Large-Scale Constrained Optimization Problems is
an extension of the work of Sayed et al. [25]; this new version is known as the Variable
Interaction Identification Technique for Constrained Problems (VIIC) [3]. This method can
find the interaction between variables in problems of 100, 500, and 1000 dimensions with
inequality constraints. Sayed et al. proposed to measure each decomposition of variables
by minimizing the absolute difference between the full evaluation and the sum of each
evaluated subgroup based on the definition of the separability and partial separability
of a function. The approach was tested at a new benchmark and compared to Random
Grouping (RG), and the results showed that VIIC outperformed RG. Later, Aguilar-Justo
and Mezura-Montes [31] improved the performance of the VIIC to achieve adequate
decomposition for a fixed number of subgroups. They transformed the constrained problem
into an unconstrained problem and used a neighborhood heuristic to guide the search
by their proposed decomposition and then optimize it (called VIICN). After that, they
proposed an improvement to their work where the principles of VIIC and VIICN are used
to build a genetic algorithm that performs a dynamic decomposition which they called
DVIIC, without establishing a fixed number of subcomponents [7]. Recently, Vakhnin and
Sopov [32] proposed a method based on CC that increases the size of groups of variables at
the decomposition stage (called iCC), working with a fixed number of subcomponents.

Intending to improve the existing methods for the decomposition of variables, we
propose a genetic algorithm with a genetic encoding based on groups, better known as
the Grouping Genetic Algorithm, to optimize the variables decomposition. Experimental
results demonstrate the benefits of using a group-based encoding scheme for this problem
and its advantages over the genetic algorithm with an integer-based encoding scheme
(DVIIC [7]).

2.2. Grouping Genetic Algorithms

As we have mentioned before, the variable decomposition problem is an optimization
problem because we search for the best decomposition, in the sense of the variable inter-
action; that is, given a set X = x1, x2, . . . , xD of D variables, we want to decompose said
set into m disjoint groups, so that the variables within each group do not interact with the
variables of the other groups. Therefore, we see our problem as a grouping problem.

According to the literature [8], grouping problems are a type of combinatorial opti-
mization problem where a set X of D items is usually partitioned into a collection of m
mutually disjoint subsets (groups) Gj, so that X = ∪m

j=1Gj, and Gj ∩ Gk = ∅, j 6= k. In this
way, an algorithm designed to solve a grouping problem seeks the best possible distribution
of the D items of the set X in m different groups (1 ≤ m ≤ D), such that each item is exactly
in one group.

Kashan et al. [33] organized the grouping problems in three categories, using as criteria
the number of groups, the type of groups, and the dependence on the order of the groups.
First, using the number of groups as the criterion, grouping problems can be classified
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as either constants or variables. In this sense, if the number of groups required is known,
the problem is constant. On the other hand, if the number of groups is unknown, the
problem is variable. Second, these problems can be divided into identical and non-identical
groups, considering the characteristics of their groups. In this classification, if the quality
of a solution is modified by exchanging all the items of two groups, that problem belongs
to the non-identical grouping class. Otherwise, the problem is part of the identical category.
Finally, grouping problems are called order-dependent when the solution quality depends
on the groups’ order. Consequently, grouping problems without this dependency belong
to the not order-dependent class. Thus, we can say that the decomposition problem is a
variable, identical, and not order-dependent grouping problem.

Grouping problems are very difficult to solve. Most of them are NP-hard, which
implies there is no algorithm capable of finding an optimal solution for every instance
in polynomial time [34]. There are several NP-hard grouping problems, such as the Bin
Packing Problem, Job Shop Scheduling Problem, etc. Ramos-Figueroa et al. [8] studied in
their work the strategies that work with most problems like the ones mentioned before.
They concluded that the best and the most popular strategies to solve such problems are
the Grouping Genetic Algorithms or GGAs.

The GGA was designed in 1992 by Falkenauer [35] and is an extension to the traditional
GA with the difference of using a group-based solutions representation scheme and varia-
tion operators working together with such solution encoding. Ramos-Figueroa et al. [36]
remark that the encoding of a grouping problem solution into a chromosome is a key issue
for obtaining good GGA performance; the authors also comment on the importance of
integrating crossover and mutation operators adapted to work at the group level. They
present a survey of different variation operators designed to work with GGAs that use
different types of encoding, as well as their advantages to solve grouping problems.

The state-of-the-art [8] indicates that some of the best results when solving NP-hard
grouping problems have been obtained by GGAs that combine grouping encoding schemes
and special operators adapted to work with these genetic encodings. Moreover, GGAs
have been highly studied for grouping problems that have similarities with the variable
decomposition problem, which is also due to the exploration and exploitation of the search
space that is given by the nature of the elements of evolutionary algorithms [37]. In this
work, we propose, to the best of the authors’ knowledge, the first GGA for the variable de-
composition problem in Large-Scale Constrained Optimization Problems. A comparative
study is conducted to evaluate the performance of our Grouping Genetic Algorithm versus
the genetic algorithm DVIIC [7] on the decomposition of variables for Large-Scale Con-
strained Optimization Problems. To promote a fair comparison, we implement similar
operators and equivalent parameter settings. The experiments were carried out using
18 test functions each with 100, 500, and 1000 variables. The obtained results allow us to
validate the advantages of the group-based encoding over the integer-based encoding.

3. A Grouping Genetic Algorithm for the Variable Decomposition Problem

The variable decomposition problem can be classified as a grouping problem. We seek
to optimize the separation into groups of the decision variables of the Large-Scale Problem;
that is, to create the best partition of the decision variables into a collection of m mutually
disjoint groups so that the variables belonging to each group have no interaction with the
variables of another group.

To study the importance of the solution encoding in a genetic algorithm to solve the vari-
able decomposition problem, we decided to develop a GGA with operators and parameters
with similar features to the genetic algorithm DVIIC (proposed by Aguilar-Justo et al. [7]) so
that the comparison is as fair as possible. The main difference between the two algorithms
is the genetic encoding. The proposal of Aguilar-Justo et al. [7] includes an integer-based
representation, where a chromosome has a fixed length that is equal to the number of
variables, and each gene represents a variable and indicates the group where the variable is
set. On the other hand, our GGA includes a group-based representation, where a chromo-
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some can have a variable length, equal to the number of subcomponents, and each gene
represents a subcomponent and indicates the variables that belong to this subset.

In Algorithm 1, we show the general steps of the GGA proposed in this work. The
precise details are shown in the following subsections. The process begins by generating an
initial population P of pop_size individuals created by the population initialization strategy
(Line 1). After that, each of the individuals in the population is evaluated, and the best
solution for the population is obtained (Line 2). Then, we iterate through a max_gen number
of generations or until we find a value equal to zero in the decomposition evaluation. Within
this cycle, the individuals to be crossed will be selected, and the offspring will be created
through the grouping crossover operator (Lines 4–5). Similarly, the population is updated
by the mutation of some individuals in the population (Lines 6–7). Finally, the population
is evaluated again to update the population and the best global solution found so far
(Lines 8–9).

Algorithm 1: Grouping Genetic Algorithm for variable decomposition algorithm.

1 Generate an initial population P
2 Evaluate population and save best_solution
3 while generation ≤ max_gen and grpsdi f f 6= 0 do
4 Select n pairs of individuals for crossover
5 Apply grouping crossover operator
6 Select n individuals for mutation
7 Apply grouping mutation operator
8 Evaluate offspring and update best_solution
9 Apply replacement strategy of the population

10 Return best_solution

In the following subsections, we detail the components and operators of our GGA.

3.1. Genetic Encoding

One of the most important decisions to make while implementing a genetic algorithm
is to decide the representation to use to represent the solutions. It has been observed that
improper representation can lead to poor performance of the GA. Our GGA works with
group-based representation, which is the main characteristic of the GGAs.

Each individual in the population is represented by the groups of variables. Figure 1
shows an example of an individual that represents a problem with 10 variables num-
bered from 0 to 9 randomly assigned to four subcomponents or groups. The groups
of variables (genes) according to this individual are the following: grps1 = {x3, x6, x8},
grps2 = {x1, x2, x7}, grps3 = {x0, x4}, and grps4 = {x5, x9}. Note that the number V of
variables in each subcomponent is variable and can be between 1 and D; in addition, the
number of subcomponents m is between 1 and D.

3, 6, 8 1, 2, 7 0, 4 5, 9

Figure 1. Group-based chromosome, where each gene represents a subcomponent (set of variables).

3.2. Decomposition Evaluation

Each individual is evaluated to determine its fitness and to discover which one is the
best within the population.

Sayed et al. [3] proposed a decomposition evaluation inspired by the definitions of
problem separability [38] and partial separability [39]. The definition of problem separa-
bility states that a fully separable problem that has D variables can be written in the form
of a linear combination of subproblems of the decision variables, where the evaluation
of the complete problem, F(x), is the same as the aggregation of the evaluation of the
subproblems, f (xi), which means F(x) = ∑D

i=1 f (xi). Additionally, a partially separable



Math. Comput. Appl. 2022, 27, 23 7 of 18

problem is defined as one which has D variables and that can be decomposed into m
subproblems, where the summation of all subproblems equals the solution of the complete
problem F(x) such that F(x) = ∑m

k=1 fk(xv), v = [1 + V × (k− 1), V × k], where m is the
number of subproblems and V is the number of variables in the k-th subproblem. Sayed
et al. proposed to measure each decomposition of variables by minimizing the absolute
difference between the full evaluation and the sum of each evaluated subgroup.

Algorithm 2 shows the decomposition evaluation procedure. First (in Line 1), we
obtain f itallc1

and f itallc2
through the evaluations of Equations (3) and (4), where all the

variables take the constant value c1 and c2, respectively. After that, both evaluations are
added and multiplied by the number of subgroups in the problem (m) to obtain f itallc1c2

,
and then we initialize f itgrpsc1c2

as 0 (Lines 2–3). Afterwards, we start a loop from k = 1
to the number of subgroups m in the individual (Lines 4–10), Within this loop, we create
two arrangements of D variables in which each variable belonging to group k takes the
value c1, while the remaining variables take the value c2 to evaluate this arrangement and
obtain f itgrpsk,c1

. On the other hand, to obtain f itgrpsk,c2
, the variables in the k-th group

take the value of c2, and the remaining ones take the value of c1 (Lines 5–8) according
to Equations (5) and (6). After that, we calculate f itgrpsk,c1c2

as the sum of the previously
calculated f itgrpsk,c1

and f itgrpsk,c2
(Line 9). Thus, to end the loop, we update f itgrpsc1c2

as
the sum of f itgrpsc1c2

and f itgrpsk,c1c2
. Finally, we obtain the evaluation of the decomposition

by calculating the absolute difference grpsdi f f shown in Line 11.

Algorithm 2: Decomposition evaluation.
Input: m, and c1 > 0, c2 > 0 random numbers
Output: grpsdi f f

1 Evaluate f itallc1
and f itallc2

according to Equations (3) and (4)
2 Calculate f itallc1c2

= m× [ f itallc1
+ f itallc2

]

3 f itgrpsc1c2
= 0

4 for k = 1 to m do
5 Create arrangement xk,c1 according to Equation (5)
6 Calculate f itgrpsk,c1

= Obj(xk,c1) + cvs(xk,c1)

7 Create arrangement xk,c2 according to Equation (6)
8 Calculate f itgrpsk,c2

= Obj(xk,c2) + cvs(xk,c2)

9 Calculate f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2

10 Update f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2

11 Calculate grpsdi f f = | f itallc1c2
− f itgrpsc1c2

|

f itallc1
= Obj(x) + cvs(x), xi = c1, ∀i ∈ [1, D] (3)

f itallc2
= Obj(x) + cvs(x), xi = c2, ∀i ∈ [1, D] (4)

xk,c1 =

{
c1 ∀xi ∈ grpsk
c2 otherwise

(5)

xk,c2 =

{
c2 ∀xi ∈ grpsk
c1 otherwise

(6)

To clarify the decomposition evaluation procedure, we present an example below. Let
Obj(x) + cvs(x) = f (x) = x1x2 + x3x4 be the problem to decompose, and according to the
arrangement decomposition given by grps1 = {x1}, grps2 = {x2, x4}, and grps3 = {x3},
we have m = 3. Suppose c1 = 1 and c2 = 2. In the first step, we calculate f itallc1

and f itallc2
.

According to Equations (3) and (4),

f itallc1
= f (xi = c1) = 1 ∗ 1 + 1 ∗ 1 = 2
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f itallc2
= f (xi = c2) = 2 ∗ 2 + 2 ∗ 2 = 8

Then, continuing with step 2,

f itallc1c2
= m× [ f itallc1

+ f itallc2
] = 3× [2 + 8] = 30

In step 3, we initialize f itgrpsc1c2
= 0. Then, we start the for loop. At this point in the

process, we have to create arrangement xk,c1 according to Equation (5) in step 5 and evaluate
it in step 6. Similarly, the process is performed for c2 in steps 7 and 8. To calculate f itgrpsk,c1
the variables of the k-th group will be evaluated in c1, and the rest in c2; for k = 1, the
group is grps1 = {x1}, so x1 = 1 and x2, x3, x4 = 2. A similar calculation is performed with
f itgrpsk,c2

, but evaluating the variables of the k-th group in c2 and the rest in c1. Therefore,
following the steps into the loop,

For k = 1, grps1 = {x1}:

f itgrpsk,c1
= fgrpsk,c1

= 1 ∗ 2 + 2 ∗ 2 = 6

f itgrpsk,c2
= fgrpsk,c2

= 2 ∗ 1 + 1 ∗ 1 = 3

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 6 + 3 = 9

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 0 + 9 = 9

For k = 2, grps2 = {x2, x4}:

f itgrpsk,c1
= fgrpsk,c1

= 2 ∗ 1 + 2 ∗ 1 = 4

f itgrpsk,c2
= fgrpsk,c2

= 1 ∗ 2 + 1 ∗ 2 = 4

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 4 + 4 = 8

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 9 + 8 = 17

For k = 3, grps3 = {x3}:

f itgrpsk,c1
= fgrpsk,c1

= 2 ∗ 2 + 1 ∗ 2 = 6

f itgrpsk,c2
= fgrpsk,c2

= 1 ∗ 1 + 2 ∗ 1 = 3

f itgrpsk,c1c2
= f itgrpsk,c1

+ f itgrpsk,c2
= 6 + 3 = 9

f itgrpsc1c2
= f itgrpsc1c2

+ f itgrpsk,c1c2
= 17 + 9 = 26

Finally,
grpsdi f f = | f itallc1c2

− f itgrpsc1c2
| = |30− 26| = 4

The purpose of the problem decomposition is to create the best decomposition; that is,
to create independent subcomponents, as well as to minimize the difference grpsdi f f . There-
fore, we have adopted a similar evaluation to the one proposed by Aguilar-Justo et al. [7],
which is defined next: to maximize the number of subproblems, the grpsdi f f is updated as
follows: (1) if the number of subgroups is one, then the grpsdi f f takes an extreme greater
value; (2) if the grpsdi f f is zero, this means that the decomposition is perfect, and it is
rewarded by subtracting the number of subgroups (m) of the individual; (3) in another
case, the grpsdi f f value does not change. Since the use of the previous evaluation function
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benefits a decomposition with a high number of subcomponents, in some cases, a complete
decomposition (as many groups as numbers of variables) would be presented as optimal
when in reality it is not the case. For this reason, a modification in the evaluation function
is necessary (avoiding the benefit to a high number of groups). Therefore, the evaluation
function has been modified in our algorithm. This change is summarized in Equation (7).

grpsdi f f =

{
in f inite if m = 1
grpsdi f f otherwise (7)

3.3. Population Initialization

The initial population in most GGAs is generally generated by obtaining random
partitions of the elements to group. In our GGA, to create a new chromosome, a random
number between 1 and the dimension of the problem (D) is generated—i.e., m ∈ [1, D]—
which represents the number of subcomponents m, and then each variable is randomly
assigned to one of these groups. First, we ensure that each group contains at least one
variable, and this is done by shuffling the variables and assigning the first m of them to
each group. After that, the remaining variables are randomly assigned to one of the created
groups. This is done because in the genetic algorithm DVIIC [7], a random number is
chosen to determine the number of groups, and each variable is randomly assigned to a
group (under the integer-based representation).

3.4. Grouping Crossover Operator

After choosing the individuals that are subject to the crossover operator, each pair of
these individuals, called parents, will create two new individuals (offspring) through a
mating strategy. There are several crossover operators for GGAs; however, for comparison
purposes, we have chosen the two-point crossover operator that is analogous to the one
used in the genetic algorithm DVIIC [7]. This operator works as follows: two crossing
points (a and b) between 1 and the number of genes in the individual minus one (m− 1) are
selected randomly to define the crossing section of both parents (P1 and P2). In this way, the
first child (C1) is generated with a copy of P1, injecting and replacing the groups between the
crossing points (a and b) of P2. Next, the groups copied from P1 with duplicated items are
identified, removing the groups and releasing the remaining variables (missing variables),
among which are also those elements that were lost when eliminating the groups from the
crossing section and were not in the inserted groups. It is important to note that the injected
groups remain intact. Finally, the missing variables are re-inserted into a random number
of new groups (between 1 and the number of missing variables) to form the complete
individual. The second child (C2) is generated with the same process but changing the role
of the parents.

In Figure 2, we can see an example of crossover for two individuals with 10 variables.
The crossing points a and b are marked in step (1); then, in step (2), the section between
a and b of parent P1 is inserted and replaced in the other parent (P2) and vice versa. In
step (3), we have the free variables that result from the groups eliminated for having
repeated variables, such as, in the first child, the free element 8 that was in the group with
3 and 6, which were repeated elements, and the elements 2 and 4 that were lost variables
(elements). Finally, in step (4), we have the offspring with the free elements re-inserted.
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5, 9 0, 7 1, 3, 6  2  4, 83, 6, 8 1, 2, 7 0, 4 5, 9

3, 6, 8 0, 7 1, 3, 6 5, 9 5, 9 1, 2, 7 0, 4  2  4, 8

5, 9 1, 2, 7 0, 4 3, 6, 80, 7 1, 3, 6 5, 9 2, 8 4

P2P
1 

C1 C2

a b a b

(1)

(2)

(3)

(4)

0, 7 1, 3, 6 5 ,9 5, 9 1, 2, 7 0, 4
Incomplete solution

Free elements Free elements
Incomplete solution

Figure 2. Two-point crossover operator.

3.5. Grouping Mutation Operator

The mutation operator used in the genetic algorithm DVIIC [7] is called uniform
mutation, in which once an individual is selected to mutate, one of its genes is randomly
selected and is changed from the group to which it belongs. Therefore, to take a similar
operator, we have chosen to implement the group-oriented elimination mutation operator
for GGAs. This operator works by eliminating a random group of the individual. Later,
the deleted elements are re-inserted by adding a random number of groups between 1 and
the number of free variables, with the variables randomly assigned to them (similar to
how an individual is created). Figure 3 shows an example of the elimination operator. In
step (1), the group marked in gray is the eliminated one; then, their elements pass to the
free group of elements shown in step (2). Finally, the elements are re-inserted in step (3)
with the aforementioned strategy.

4

0, 7 1, 3, 6 5, 9 2, 8 4

    1, 3, 6 

(1)

(2)

(3)

Incomplete solution

Free elements

42, 8

3

0, 7 5, 9

0, 7 5, 9 2, 8 1, 6

Figure 3. Elimination operator.

3.6. Selection and Replacement Strategies

In a Genetic Algorithm, we have to select the members of the population that will be
candidates for crossover and mutation. A selection scheme decides which individuals are
allowed to pass on their genes to the next generation, either through cloning, crossover,
or mutation. Generally, selection schemes from the literature can be classified into three
classes: proportional selection, tournament selection, and ranking selection. Usually, the
selection is according to the relative fitness using the best or random individuals [40,41].

Several strategies have been proposed for the parent selection (individuals for crossover).
In our GGA, we use a selection scheme similar to that included in the genetic algorithm
DVIIC [7], and we carry out a shuffling of the population; for each pair of parents, a random
number between 0 and 1 is created. This number determines if the pair of individuals is
subject to crossover. That is, the crossover of both individuals is applied when the number
is less than or equal to pc.

In the same way, the selection of individuals to mutate has been studied, and there are
various selection techniques for mutation. In this case, the selection method for mutation
is similar to the selection method of the genetic algorithm DVIIC [7]. Given a mutation
probability pm, for each individual in the population, a random number between 0 and 1 is
generated, and when this number is less or equal than pm, the individual will be mutated.

In addition to the selection scheme, there must also be a criterion under which the
population will be replaced in each generation. Generally, the replacement strategies can
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be split into three classes: age-based, fitness-based, and random-based (deleting the oldest,
worst, or random individuals, respectively) [42]. Similar to the strategy of the genetic
algorithm DVIIC [7], in our GGA, after crossover, the offspring replace the parents, and
after the mutation, the mutated individuals replace the original ones. Elitism is adopted to
always maintain the best solution of the population, replacing the worst individual of the
new population.

4. Experiments and Results

In order to study the benefits of using a group-based against an integer encoding in a
genetic algorithm, we compared our proposal with the decomposition strategy proposed
by Aguilar-Justo et al. [31]. Therefore, we chose the same set of test functions the authors
used. It is the first set for Large-Scale Constrained Optimization Problems and it was
proposed by Sayed et al. in 2015 [3]. This test set has different separability complexity
degrees, which are described in Table 1. It can be tested over three numbers of variables
(100, 500, and 1000). These 18 functions were created by combining 6 objective functions
with 1, 2, or 3 constraints. The 6 objective functions are based on 2 problems in the literature
that have been used, for example, in the CEC 2008 benchmark problems [4], which are the
Rosenbrock’s function, which is multimodal and nonseparable, and the Sphere function,
which is unimodal and separable. In addition, in Table 2, we can see the components of
these 18 test functions; that is, the objective function and the constraints that make up each
function. The details of the mathematical expression of each function can be consulted in
the work of Sayed et al. [3].

Table 1. Characteristics of the objective functions and constraints.

Description

Obj1 Completely separable

Obj2 Partially nonseparable

Obj3 Partially nonseparable

Obj4 Partially nonseparable and overlapping variables

Obj5 Spliced nonseparable and overlapping variables

Obj6 Spliced nonseparable and overlapping variables

g1 Separable groups of 5 variables

g2 Nonseparable groups of 3 variables

g3 Spliced nonseparable pairs

We have compared the results of our GGA against the Dynamical Variable Interaction
Identification Technique for Constrained Problems (DVIIC), in which Aguilar et al. [7]
proposed a genetic algorithm for the decomposition of the 18 test functions. We computed
25 independent runs per each benchmark function, in 3 different numbers of variables (100,
500, and 1000). The parameters of our algorithm were set similarly as in the DVIIC work,
to compare under equal conditions and perform the same number of function evaluations.
These are as follows:

• Population size of 100 individuals;
• Crossover probability pc = 0.9;
• Mutation probability pm = 0.1;
• 10,000 function evaluations—i.e., 100 generations.

Such a configuration implies that the same number of evaluations is carried out by having
100 individuals in each generation for 100 generations, which is equal to 10,000 evaluations.
These experiments were conducted on an Intel(R) Core(TM) i5 CPU with 2.50 GHz, Python 3.4,
and Microsoft Windows 10.
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In the following tables, we show the results of the execution of our proposed GGA
and the genetic algorithm DVIIC. Both were executed for each of the 18 functions, 25 times
in each dimension. Furthermore, each of the tables shows the results of the Wilcoxon Rank
Sum test for each of the functions (column W). A checkmark (X) means that there are
significant differences in favor of the GGA; in addition, an equality symbol (=) represents
there are no significant differences between both algorithms.

Table 2. Components of the 18 test functions.

Function Objective g1 g2 g3

F1 ×
F2 Obj1 × ×
F3 × × ×

F4 ×
F5 Obj2 × ×
F6 × × ×

F7 ×
F8 Obj3 × ×
F9 × × ×

F10 ×
F11 Obj4 × ×
F12 × × ×

F13 ×
F14 Obj5 × ×
F15 × × ×

F16 ×
F17 Obj6 × ×
F18 × × ×

First, Table 3 contains the results according to the evaluation of the best individual for
the 25 runs in the 18 functions under 100 variables. The best, median, and the standard
deviation registered of the evaluation function (grpsdi f f ) value are shown. We can observe
that the GGA improves the decomposition evaluation function value in all of the cases
compared to DVIIC. As we can see, unlike DVIIC, the GGA reaches the value of 0 in the
best result in most cases. Furthermore, the median and standard deviation values obtained
by the GGA are smaller in all cases. Such values equal to zero indicate that our algorithm
found the best value for the evaluation function (grpsdi f f = 0) in the 25 runs for functions
1 to 12. Finally, the Wilcoxon Rank Sum Test reveals that there are significant differences in
favor of the GGA in all cases.

Second, Table 4 shows the results of our algorithm to solve the same 18 functions,
now with 500 variables. The GGA obtained the smallest values in most cases for the best,
median, and standard deviation when compared against DVIIC. In a similar way as in
Table 3, the standard deviation and median values equal to zero indicate that our algorithm
found the best value for the evaluation function (grpsdi f f = 0) in the 25 runs for functions 1
to 12. Moreover, in the other test functions, the best, median, and standard deviation values
are smaller when compared to DVIIC. On the other hand, the Wilcoxon Rank Sum test
shows that there are no significant differences between the two algorithms in function 1 and
shows significant differences in favor of the GGA in the remaining 17 functions. According
to this test, in functions 2 to 18, the Wilcoxon Rank Sum test rejects the hypothesis that the
DVIIC approach is as effective as the proposed GGA approach, and F1 is trivial to solve by
the two algorithms.
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Table 3. Statistical results in dimension 100. Best results shown in boldface.

GGA DVIIC

D = 100 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.18× 10−11 2.96× 10−11 X

F2 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.35× 104 1.20× 104 X

F3 0.00 × 100 0.00 × 100 0.00 × 100 1.38× 105 1.38× 105 6.77× 104 X

F4 0.00 × 100 0.00 × 100 0.00 × 100 4.29× 104 8.57× 104 1.69× 104 X

F5 0.00 × 100 0.00 × 100 0.00 × 100 1.27× 104 1.78× 104 2.48× 103 X

F6 0.00 × 100 0.00 × 100 0.00 × 100 8.97× 105 1.44× 106 2.36× 105 X

F7 0.00 × 100 0.00 × 100 0.00 × 100 2.51× 105 1.01× 106 2.62× 105 X

F8 0.00 × 100 0.00 × 100 0.00 × 100 6.70× 105 8.38× 105 9.84× 104 X

F9 0.00 × 100 0.00 × 100 0.00 × 100 2.13× 103 3.20× 103 3.58× 102 X

F10 0.00 × 100 0.00 × 100 0.00 × 100 5.36× 105 1.07× 106 2.05× 105 X

F11 0.00 × 100 0.00 × 100 0.00 × 100 4.12× 102 5.84× 102 9.04× 101 X

F12 0.00 × 100 0.00 × 100 0.00 × 100 9.28× 103 1.76× 104 3.20× 103 X

F13 0.00 × 100 0.00 × 100 2.31 × 104 6.31× 105 1.09× 106 1.08× 105 X

F14 0.00 × 100 0.00 × 100 5.35 × 102 1.55× 107 1.93× 107 1.72× 106 X

F15 4.66 × 10−10 4.66 × 10−10 2.60 × 102 5.42× 106 8.72× 106 9.33× 105 X

F16 1.79 × 104 5.38 × 104 1.72 × 104 4.93× 105 6.81× 105 7.26× 104 X

F17 1.07 × 105 4.28 × 105 9.52× 104 4.83× 105 6.99× 105 8.07 × 104 X

F18 1.63 × 105 4.88 × 105 1.40 × 105 1.80× 106 2.62× 106 2.94× 105 X

Table 4. Statistical results in dimension 500. Best results shown in boldface.

GGA DVIIC

D = 500 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 =

F2 0.00 × 100 0.00 × 100 0.00 × 100 4.66× 10−10 4.43× 104 1.16× 104 X

F3 0.00 × 100 0.00 × 100 0.00 × 100 3.59× 104 7.19× 104 1.23× 104 X

F4 0.00 × 100 0.00 × 100 0.00 × 100 1.17× 106 1.24× 106 2.98× 104 X

F5 0.00 × 100 0.00 × 100 0.00 × 100 7.20× 106 8.73× 106 5.68× 105 X

F6 0.00 × 100 0.00 × 100 0.00 × 100 3.34× 106 4.12× 106 2.09× 105 X

F7 0.00 × 100 0.00 × 100 0.00 × 100 5.19× 104 1.13× 105 1.94× 104 X

F8 0.00 × 100 0.00 × 100 0.00 × 100 8.79× 105 9.75× 105 4.19× 104 X

F9 0.00 × 100 0.00 × 100 0.00 × 100 5.58× 104 1.67× 105 3.46× 104 X

F10 0.00 × 100 0.00 × 100 0.00 × 100 9.69× 106 1.19× 107 5.03× 105 X

F11 0.00 × 100 0.00 × 100 0.00 × 100 1.95× 106 2.58× 106 1.80× 105 X

F12 0.00 × 100 0.00 × 100 0.00 × 100 3.50× 106 3.84× 106 1.10× 105 X

F13 0.00 × 100 0.00 × 100 2.56 × 104 9.61× 105 1.26× 106 7.07× 104 X

F14 0.00 × 100 0.00 × 100 6.86 × 104 9.10× 105 1.35× 106 1.08× 105 X

F15 0.00 × 100 5.96 × 10−8 1.27 × 105 7.97× 106 9.88× 106 4.48× 105 X

F16 8.13 × 102 3.25 × 103 7.04 × 102 1.38× 107 1.69× 107 7.77× 105 X

F17 7.96 × 104 1.59 × 105 1.75 × 104 2.26× 107 2.43× 107 1.48× 107 X

F18 3.83 × 105 7.66 × 105 1.46 × 105 2.78× 107 3.63× 107 2.05× 106 X
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Finally, Table 5 contains the results for the 18 functions with both algorithms imple-
mented on 1000 variables. In this experiment, we observed that, in a similar way to the
experiment with 500 variables, our GGA obtained the smallest best, median, and standard
deviation values in most cases. On the other hand, the behavior of the median and standard
deviation values allows us to see that we obtained the zero value in the 25 independent
runs for the first 12 functions. Moreover, the Wilcoxon Rank Sum test results show that
there are no significant differences between the two algorithms in function 1 and indicate
significant differences in favor of the GGA in the remaining 17 functions. In a similar
way as in the results with 500 variables, the Wilcoxon Rank Sum test determines that F1
is a trivial case and rejects the hypothesis that the DVIIC approach is as effective as the
proposed GGA approach for the other 17 remaining functions.

Table 5. Statistical results in dimension 1000. Best results shown in boldface.

GGA DVIIC

D = 1000 Best Median Std Best Median Std W

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 =

F2 0.00 × 100 0.00 × 100 0.00 × 100 4.18× 103 1.25× 104 5.39× 103 X

F3 0.00 × 100 0.00 × 100 0.00 × 100 2.42× 102 2.90× 102 1.98× 101 X

F4 0.00 × 100 0.00 × 100 0.00 × 100 3.93× 106 4.86× 106 2.33× 105 X

F5 0.00 × 100 0.00 × 100 0.00 × 100 1.33× 106 1.73× 106 1.19× 105 X

F6 0.00 × 100 0.00 × 100 0.00 × 100 1.05× 106 1.36× 106 7.85× 104 X

F7 0.00 × 100 0.00 × 100 0.00 × 100 1.10× 106 1.61× 106 1.28× 105 X

F8 0.00 × 100 0.00 × 100 0.00 × 100 4.16× 106 4.91× 106 1.82× 105 X

F9 0.00 × 100 0.00 × 100 0.00 × 100 4.56× 106 4.92× 106 1.09× 105 X

F10 0.00 × 100 0.00 × 100 0.00 × 100 2.16× 106 2.47× 106 8.18× 104 X

F11 0.00 × 100 0.00 × 100 0.00 × 100 1.99× 105 2.13× 105 4.33× 103 X

F12 0.00 × 100 0.00 × 100 0.00 × 100 2.93× 105 3.18× 105 8.43× 103 X

F13 0.00 × 100 0.00 × 100 3.51 × 104 3.36× 107 3.98× 107 1.49× 106 X

F14 0.00 × 100 0.00 × 100 5.49 × 103 4.60× 107 1.76× 108 6.74× 107 X

F15 0.00 × 100 0.00 × 100 2.00 × 105 1.02× 105 3.49× 107 1.55× 107 X

F16 4.07 × 105 8.15 × 105 1.27 × 105 7.71× 107 8.72× 107 2.37× 106 X

F17 4.32 × 104 8.63 × 104 2.52 × 104 7.71× 106 1.15× 107 1.05× 106 X

F18 4.20 × 105 8.41 × 105 1.20 × 105 3.03× 107 4.39× 107 3.07× 106 X

Given the previous tables, we observe that our algorithm presents better performance
than DVIIC, obtaining better grpsdi f f values in all cases (in comparison with the mentioned
algorithm). An interesting behavior is observed in these experiments; it seems to be more
difficult for our algorithm to find the minimum decomposition evaluation in the 18 test
functions as the dimension decreases. Zero best, median, and standard deviation values of
the 25 independent runs indicate a stable behavior of our algorithm in each execution of
the first 12 functions of the benchmark (in the three experiments). However, these values
increase with the complexity of the functions, and in the end, functions 16, 17, and 18 do
not reach the minimum in any of the experiments.

Analyzing the Performance of the GGA

Due to the behavior observed in the previous experiments, a detailed study of the
algorithm is necessary to improve it in future work. For this reason, we decided to make a
brief study of the convergence of our algorithm.

In order to understand the on-line behavior of our algorithm, we carried out some
plots of the GGA convergence for the most difficult functions of the benchmark. Figure 4
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shows the convergence in functions F16, F17, and F18 through 100 generations for three
dimension values.
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Figure 4. Convergence plots of 100 generations for functions F16, F17, and F18 with 100, 500, and
1000 variables.

Three convergence behaviors are shown in each of the graphs within Figure 4. First,
we shown the convergence of the worst individual in the population—that is, the indi-
vidual with the highest decomposition evaluation value (red color). After that, we show
the behavior across the 100 generations of the average decomposition evaluation of the
100 individuals in the population (green color). Finally, we show the convergence across
the 100 generations of the best individual in the population in terms of their decomposition
evaluation value (blue color).

Figure 4a–c shows the convergence in the experiment with 100 variables from one of
the 25 GGA runs. We can observe similar behavior in the three functions, with decompo-
sition evaluation values below 4.0× 107 in all three cases (best, worst, and average). It is
important to note that the behavior of the best individual presents an early convergence in
the three functions and how the decomposition evaluation of the worst individuals remains
stable over the generations.
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Regarding the convergence of the functions with 500 variables (Figure 4d–f), we can
observe that function F18 shows the highest values of the decomposition evaluation for
the three values (best, worst, and average), unlike the other functions. Similar to those
functions with 100 variables, we see that this value does not converge to zero in any of the
cases, and the best individual has a quick convergence. We can also induce, according to
the graphs, that several individuals of the population do not converge in the neighborhood
of the best solution.

In the case of the functions evaluated with 1000 variables (Figure 4g–i), we see a fast
convergence of the best individual in the population. As in the previous graphs, the value
of the decomposition evaluation in the worst individual has a continuous behavior, without
converging to zero during the 100 generations, and the best value has a quick convergence.

The above discussed best, worst, and average values’ convergence behaviors in the
functions with spliced nonseparable and overlapping variables suggest that the included
strategies in the GGA do not appear to lead to better solutions. We can see from the
plots in Figure 4 that not the entire population converges to the neighborhood of the best
solution, due to the low selective pressure of the selection and replacement strategies.
We also observe that the GGA produces good solutions in the early stages but leads to
the premature convergence of the best individual. This behavior can be related to the
crossover and mutation operators that promoted the creation of new groups, which does
not seem to be a suitable strategy for nonseparable functions. All these observations
indicate that, although our algorithm performs well, it can still be further improved by
analyzing its components.

5. Conclusions and Future Work

In this paper, we have proposed a Grouping Genetic Algorithm (GGA) to deal with
the decomposition of variables in Large-Scale Constrained Optimization Problems to create
subproblems of the original problem and thus reduce the dimension. To evaluate the
impact of the representation scheme on the performance of a genetic algorithm, our GGA
was designed in a similar way to a state-of-the-art genetic algorithm that works with the
decomposition of variables and which includes an integer-based representation. The main
difference between the two algorithms was the genetic encoding. The experiments were
carried out in a benchmark of 18 functions with different complexity characteristics, and
these functions were tested in 100, 500, and 1000 dimensions.

The obtained results confirm that the use of a group-based genetic encoding allows our
GGA to obtain good and robust decompositions on test functions with different features
and separability complexity degrees, outperforming in all the benchmark functions the
results obtained by a genetic algorithm with an integer-based encoding.

We are aware that there are still test functions with spliced nonseparable and over-
lapping variables that show a high degree of difficulty; for these functions, the included
strategies in the GGA do not appear to lead to better solutions. However, the GGA pre-
sented in this work does not include the state-of-the-art grouping genetic operators.

Future work will consist of studying the parameters of the GGA as well as the effect
of each of the methods used in the crossover and mutation operators to identify the best
strategies that work together with the grouping encoding scheme and the features of the
functions. Furthermore, it is necessary to implement an efficient reproduction technique
with a balance in selective pressure and population diversity to avoid the premature
convergence of the best individuals and increase the algorithm’s performance.

The introduction of a new decomposition method opens up an interesting range of
possibilities for future research. Currently, we are working on including our GGA in
the decomposition step of two Cooperative Co-Evolution methods that include different
strategies for the optimization and cooperation of the subcomponents, with the respective
feasibility and computational complexity analysis.
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Finally, although the set of test functions analyzed in this work is varied concerning
the characteristics of the functions, we would explore the proposal in other Large-Scale
Constrained Optimization benchmarks.

Author Contributions: Conceptualization, G.C.-A., M.Q.-C. and E.M.-M.; methodology, M.Q.-C.;
software, G.C.-A.; validation, M.Q.-C. and E.M.-M.; formal analysis, M.Q.-C.; investigation, G.C.-A.,
M.Q.-C. and E.M.-M.; resources, G.C.-A.; writing—original draft preparation, G.C.-A.; writing—
review and editing, G.C.-A., M.Q.-C. and E.M.-M.; visualization, G.C.-A. and M.Q.-C.; supervision,
M.Q.-C.; project administration, M.Q.-C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Deb, K. Optimization for Engineering Design: Algorithms and Examples; PHI Learning Pvt. Ltd.: New Delhi, India, 2012.
2. Smith, A.E.; Coit, D.W.; Baeck, T.; Fogel, D.; Michalewicz, Z. Penalty functions. In Handbook of Evolutionary Computation; CRC

Press: Boca Raton, FL, USA, 1997.
3. Sayed, E.; Essam, D.; Sarker, R.; Elsayed, S. Decomposition-based evolutionary algorithm for large-scale constrained problems.

Inf. Sci. 2015, 316, 457–486. [CrossRef]
4. Tang, K.; Yáo, X.; Suganthan, P.N.; MacNish, C.; Chen, Y.P.; Chen, C.M.; Yang, Z. Benchmark Functions for the CEC’2008 Special

Session and Competition on Large Scale Global Optimization; Nature Inspired Computation and Applications Laboratory, USTC:
Hefei, China, 2007; pp. 1–18.

5. Potter, M.A.; De Jong, K.A. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel
Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1994; pp. 249–257.

6. Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z. A survey on cooperative co-evolutionary algorithms. IEEE Trans.
Evol. Comput. 2018, 23, 421–441. [CrossRef]

7. Aguilar-Justo, A.E.; Mezura-Montes, E.; Elsayed, S.M.; Sarker, R.A. Decomposition of large-scale constrained problems using a
genetic-based search. In Proceedings of the 2016 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC), Ixtapa, Mexico, 9–11 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

8. Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Schütze, O. Metaheuristics to solve grouping problems: A
review and a case study. Swarm Evol. Comput. 2020, 53, 100643. [CrossRef]

9. Liu, Y.; Yao, X.; Zhao, Q.; Higuchi, T. Scaling up fast evolutionary programming with cooperative coevolution. In Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), San Francisco, CA, USA, 7–11 July 2001; IEEE:
Piscataway, NJ, USA, 2001; Volume 2, pp. 1101–1108.

10. Van den Bergh, F.; Engelbrecht, A.P. A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8,
225–239. [CrossRef]

11. Yang, Z.; Tang, K.; Yao, X. Differential evolution for high-dimensional function optimization. In Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 3523–3530.

12. Yang, Z.; Tang, K.; Yao, X. Large-scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178, 2985–2999.
[CrossRef]

13. Omidvar, M.N.; Li, X.; Yang, Z.; Yao, X. Cooperative co-evolution for large-scale optimization through more frequent random
grouping. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 1–8.

14. Omidvar, M.N.; Li, X.; Yao, X. Cooperative co-evolution with delta grouping for large-scale non-separable function optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ,
USA, 2010; pp. 1–8.

15. Xu, B.; Zhang, Y.; Gong, D.; Guo, Y.; Rong, M. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic
multi-objective optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 15, 1877–1890. [CrossRef] [PubMed]

16. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative co-evolution with differential grouping for large-scale optimization. IEEE
Trans. Evol. Comput. 2013, 18, 378–393. [CrossRef]

17. Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A faster and more accurate differential grouping for large-scale black-box
optimization. IEEE Trans. Evol. Comput. 2017, 21, 929–942. [CrossRef]

18. Sun, Y.; Kirley, M.; Halgamuge, S.K. A recursive decomposition method for large-scale continuous optimization. IEEE Trans. Evol.
Comput. 2017, 22, 647–661. [CrossRef]

http://doi.org/10.1016/j.ins.2014.10.035
http://dx.doi.org/10.1109/TEVC.2018.2868770
http://dx.doi.org/10.1016/j.swevo.2019.100643
http://dx.doi.org/10.1109/TEVC.2004.826069
http://dx.doi.org/10.1016/j.ins.2008.02.017
http://dx.doi.org/10.1109/TCBB.2017.2652453
http://www.ncbi.nlm.nih.gov/pubmed/28092573
http://dx.doi.org/10.1109/TEVC.2013.2281543
http://dx.doi.org/10.1109/TEVC.2017.2694221
http://dx.doi.org/10.1109/TEVC.2017.2778089


Math. Comput. Appl. 2022, 27, 23 18 of 18

19. Sun, Y.; Omidvar, M.N.; Kirley, M.; Li, X. Adaptive threshold parameter estimation with recursive differential grouping for
problem decomposition. In Proceedings of the Genetic and Evolutionary Computation Conference, Ser. GECCO ’18, Kyoto, Japan,
15–19 July 2018; ACM: New York, NY, USA, 2018; pp. 889–896.

20. Sun, Y.; Li, X.; Ernst, A.; Omidvar, M.N. Decomposition for large-scale optimization problems with overlapping components.
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 326–333.

21. Yang, M.; Zhou, A.; Li, C.; Yao, X. An Efficient Recursive Differential Grouping for Large-Scale Continuous Problems. IEEE Trans.
Evol. Comput. 2020, 25, 159–171. [CrossRef]

22. Sopov, E. Large-Scale Global Optimization Using a Binary Genetic Algorithm with EDA-Based Decomposition; Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham,
Switzerland, 2016; Volume 9712; pp. 619–626.

23. Valdez, S.I.; Hernández, A.; Botello, S. A Boltzmann based estimation of distribution algorithm. Inf. Sci. 2013, 236, 126–137.
[CrossRef]

24. Mühlenbein, H.; Paaß, G. From recombination of genes to the estimation of distributions I. Binary parameters. In International
Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1996; pp. 178–187.

25. Sayed, E.; Essam, D.; Sarker, R. Dependency identification technique for large-scale optimization problems. In Proceedings of the
2012 IEEE Congress on Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; IEEE: Piscataway, NJ, USA, 2012;
pp. 1–8.

26. Schaffer, J.D.; Morishima, A. An adaptive crossover distribution mechanism for genetic algorithms. In Genetic Algorithms and Their
Applications: Proceedings of the Second International Conference on Genetic Algorithms; Lawrence Erlbaum Associates, Inc.: Hillsdale,
NJ, USA, 1987; pp. 36–40.

27. Goh, C.K.; Tan, K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans.
Evol. Comput. 2008, 13, 103–127.

28. Goh, C.K.; Tan, K.C.; Liu, D.S.; Chiam, S.C. A competitive and cooperative co-evolutionary approach to multi-objective particle
swarm optimization algorithm design. Eur. J. Oper. Res. 2010, 202, 42–54. [CrossRef]

29. Strasser, S.; Sheppard, J.; Fortier, N.; Goodman, R. Factored evolutionary algorithms. IEEE Trans. Evol. Comput. 2016, 21, 281–293.
[CrossRef]

30. Guan, X.; Zhang, X.; Wei, J.; Hwang, I.; Zhu, Y.; Cai, K. A strategic conflict avoidance approach based on cooperative coevolution-
ary with the dynamic grouping strategy. Int. J. Syst. Sci. 2016, 47, 1995–2008. [CrossRef]

31. Aguilar-Justo, A.E.; Mezura-Montes, E. Towards an improvement of variable interaction identification for large-scale constrained
problems. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; IEEE
Press: Piscataway, NJ, USA, 2016.

32. Vakhnin, A.; Sopov, E. Investigation of the iCC framework performance for solving constrained LSGO problems. Algorithms 2020,
13, 108. [CrossRef]

33. Kashan, A.H.; Akbari, A.A.; Ostadi, B. Grouping evolution strategies: An effective approach for grouping problems. Appl. Math.
Model. 2015, 39, 2703–2720. [CrossRef]

34. Garey, M.R. A Guide to the Theory of NP-Completeness. Computers and Intractability; WH Freeman and Company: New York, NY,
USA, 1979.

35. Falkenauer, E. A new representation and operators for genetic algorithms applied to grouping problems. Evol. Comput. 1994, 2,
123–144. [CrossRef]

36. Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Kharel, R. Variation Operators for Grouping Genetic Algorithms:
A Review. Swarm Evol. Comput. 2020, 60, 100796. [CrossRef]

37. Eiben, A.E.; Schippers, C.A. On evolutionary exploration and exploitation. Fundam. Inform. 1998, 35, 35–50. [CrossRef]
38. Mosk-Aoyama, D.; Shah, D. Fast distributed algorithms for computing separable functions. IEEE Trans. Inf. Theory 2008, 54,

2997–3007. [CrossRef]
39. Ray, T.; Yao, X. A cooperative coevolutionary algorithm with correlation-based adaptive variable partitioning. In Proceedings of

the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; IEEE: Piscataway, NJ, USA, 2009;
pp. 983–989.

40. Blickle, T.; Thiele, L. A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 1996, 4, 361–394.
[CrossRef]

41. Zhang, B.T.; Kim, J.J. Comparison of selection methods for evolutionary optimization. Evol. Optim. 2000, 2, 55–70.
42. Smith, J. On replacement strategies in steady state evolutionary algorithms. Evol. Comput. 2007, 15, 29–59. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2020.3009390
http://dx.doi.org/10.1016/j.ins.2013.02.040
http://dx.doi.org/10.1016/j.ejor.2009.05.005
http://dx.doi.org/10.1109/TEVC.2016.2601922
http://dx.doi.org/10.1080/00207721.2014.966282
http://dx.doi.org/10.3390/a13050108
http://dx.doi.org/10.1016/j.apm.2014.11.001
http://dx.doi.org/10.1162/evco.1994.2.2.123
http://dx.doi.org/10.1016/j.swevo.2020.100796
http://dx.doi.org/10.3233/FI-1998-35123403
http://dx.doi.org/10.1109/TIT.2008.924648
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1162/evco.2007.15.1.29

	Introduction
	Related Works
	Decomposition Methods
	Grouping Genetic Algorithms

	A Grouping Genetic Algorithm for the Variable Decomposition Problem
	Genetic Encoding
	Decomposition Evaluation
	Population Initialization
	Grouping Crossover Operator
	Grouping Mutation Operator
	Selection and Replacement Strategies

	Experiments and Results
	Conclusions and Future Work
	References

