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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized by
problems with social interaction, low verbal and non-verbal communication skills, and repetitive
and restricted behavior. People with ASD usually have variable attention levels because they have
hypersensitivity and large amounts of environmental information are a problem for them. Attention
is a process that occurs at the cognitive level and allows us to orient ourselves towards relevant
stimuli, ignoring those that are not, and act accordingly. This paper presents a methodology based on
electroencephalographic (EEG) signals for attention measurement in a 13-year-old boy diagnosed with
ASD. The EEG signals are acquired with an Epoc+ Brain–Computer Interface (BCI) via the Emotiv Pro
platform while developing several learning activities and using Matlab 2019a for signal processing.
For this article, we propose to use electrodes F3, F4, P7, and P8. Then, we calculate the band power
spectrum density to detect the Theta Relative Power (TRP), Alpha Relative Power (ARP), Beta Relative
Power (BRP), Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and Theta/(Alpha+Beta), which are
features related to attention detection and neurofeedback. We train and evaluate several machine
learning (ML) models with these features. In this study, the multi-layer perceptron neural network
model (MLP-NN) has the best performance, with an AUC of 0.9299, Cohen’s Kappa coefficient of
0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of 0.0701. These findings make
it possible to develop better learning scenarios according to the person’s needs with ASD. Moreover,
it makes it possible to obtain quantifiable information on their progress to reinforce the perception of
the teacher or therapist.

Keywords: autism; attention; ASD; learning activities; EEG; BCI; features; artificial intelligence;
machine learning

1. Introduction

Scientists have always been captivated by the brain, and cognitive processes are also
the most intriguing for most people. A fundamental part of these cognitive processes is the
attention process. To obtain knowledge, first, the attention process is needed. Attention is a
cognitive process that enables selecting, focusing on, and sustained information process-
ing [1]. The object of attention can either be an environmental stimulus actively processed
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by sensory systems or associative information and response alternatives generated by the
ongoing cognitive activity. This allows us to orient ourselves towards relevant stimuli,
ignoring those not, and act accordingly. Moreover, it is the basis of learning, and it is neces-
sary to have it, in order to begin the learning process. There have been many measuring
techniques, such as using the response times or the number of clicks given while using par-
ticular software, the eye contact time measured from videos, Magnetic Resonance Imaging
(MRI) or functional Magnetic Resonance Imaging (fMRI) studies, among other techniques.
Autism Spectrum Disorder (ASD) is a neurodevelopmental life condition characterized
by problems with social interaction, low verbal and non-verbal communication skills, and
repetitive and restricted behavior [2,3]. People with ASD usually have variable attention
levels because they have hypersensitivity and large amounts of environmental information
are a problem for them.

There are many methods for measuring attention reported in the literature, such as
eye-tracking/gaze [4,5], fMRI [6,7], using a program [8], biofeedback [9], and electroen-
cephalographic (EEG) signals [10–12], among others. The last one delivers great advantages
over other neuroimaging techniques due to its high temporal resolution [13], neurodevel-
opmental diagnosis accuracy [14], cognitive-related bioelectrical data [15], low cost [16],
and non-invasive application methods [17]. The authors [8] show how the attention of
49 children with ASD and a group of 51 typical children is measured using a mindfulness-
based program (MBP); in other words, this is a computerized attention test. This MBP
software measures the accuracy and reaction times, but they did not directly measure.
Another way to measure attention is by analyzing the facial expressions or measuring the
timing of eye contact from video recordings. The study [5] shows a measuring technique
based on the analysis of video recordings of 1756 toddlers from 12 to 72 months with ASD
while watching selected short videos on an iPhone or an iPad. Their facial expressions are
video-recorded and analyzed as they watch the videos. Reference [18] presents a study
about the concentration measurement of a children group while interacting with an NAO
robot and their teacher. In this case, the eye contact time was measured by analyzing the
video recordings of the sessions obtained with two cameras at the posterior.

The study [19] shows an approach to the joint analysis of EEG and eye-tracking for
children’s ASD evaluation. First, the synchronization measures, information entropy, and
time-frequency features of the multi-channel EEG are derived. Then, a random forest
is applied to the eye-tracking recordings of the same subjects to single out the most sig-
nificant features. A convolutional graph network (GCN) model naturally fuses the two
groups of features to differentiate the children with ASD from the typically developed
(TD) subjects. Reference [20] uses EEG activity (raw EEG and alpha power) to provide a
time-resolved index of attentional orienting towards salient stimuli that either matched or
did not match target-defining properties. In all of the references presented above, the use of
feature extraction techniques helps to obtain information from the signals acquired. These
feature extraction techniques can help us to obtain useful or descriptive information while
eliminating or reducing redundant or unnecessary information, noise, or artifacts. Once the
feature extraction stage has finished, the classification can quantify the signals. This paper
also shows the feature extraction and the classification algorithms most frequently used.

Nowadays, intelligent systems that incorporate artificial intelligence (AI) frequently
rely on machine learning (ML) [21,22]. ML is a term that refers to a system’s ability to
learn from problem-specific training data in order to automate the process of developing
analytical models and completing associated tasks [23,24]. Deep learning (DL) is a paradigm
in machine learning that is based on the use of artificial neural networks [25,26]. Commonly,
the use of ML algorithms is centered in the diagnosis or detection of ASD, as is presented
in [20]. The authors in [27] used EEG and eye-tracking features to identify children with
ASD. In [28], the authors used deep convolutional architectures to detect ASD. Other
studies [29] reported statistical features for ASD classification. In reference [30], they used
an ML and a DL process for diagnosing ASD from time-frequency spectrogram images of
EEG. The authors in [31] reported that it is possible to evaluate mental stress using DL and



Math. Comput. Appl. 2022, 27, 21 3 of 20

EEG records. There are also studies such as [32], where they used the free artifact signal of
two electrodes to detect ASD. In [33], they used a hybrid light-weighted feature extractor
from signal to spectrogram images.

Recent studies have a focus on the relationship between human and machine behavior,
based on the premise that diverse social and psychological backgrounds correspond in
practice with different modalities of human–computer interaction [34]. In general, EEG
feature extraction techniques have offered strong clinical consistency since the beginning
of their use for assessing and diagnosing different cognitive and neurological domains
in ASD [35], learning difficulties [36], and attention [37]. It is widely accepted that AI
techniques are helpful for automatic diagnosis and rehabilitation procedures in ASD cases.
For example, in [38], a review of DL methods focusing on neuroimaging-based approaches
is presented. Furthermore, the authors report a review of studies based on DL networks
for diagnosing ASD and the challenges in automatized detection and ASD rehabilitation.
Nowadays, there are some DL applications for brain disease diagnoses, such as the ones
presented in [39] , which presents a review of automated multiple sclerosis (MS) detection
methods based on MRI. They notice that the most used architectures for MS detection
are convolutional neural networks (CNNs), autoencoders (AEs), generative adversarial
networks (GANs), and CNN-RNN models. Schizophrenia (Sz) is another brain disease
detected with DL methods using EEG signal processing [40]. The authors compare their
results with the traditional AI methods, such as support vector machine (SVM), k-nearest
neighbors, decision tree, naïve Bayes, random forest, extremely randomized trees, and
bagging. The DL models used are long short-term memories (LSTMs), one-dimensional
convolutional networks (1D-CNNs), and 1D-CNN-LSTMs. Convolutional neural networks
and LSTMs perform best, cross-validated with a k-fold of 5. Moreover, epileptic seizures
are detectable by using EEG signal processing; for example, in [41], the authors present a
novel diagnostic procedure that uses fuzzy theory and DL techniques. They propose an
adaptive neuro-fuzzy inference system (ANFIS) with a breeding swarm optimization (BS)
method. These ANFIS-BS methods present accuracy of 99.74 % in a two-class classification
task. Appendix A summarizes in Tables A1 and A2 the state of the art and shows a
comparison with the proposed method, considering the dataset, data source, preprocessing,
methods/algorithm, main findings, and applications.

The research questions that motivate this paper are: (1) What brain regions activate on
average when attention increases? At what levels? Depending on the type of activity to
be developed? (2) Can the level of the attention span of a person with Autism Spectrum
Disorder be quantified as a feature using time-frequency analysis methods? (3) Is there a
relationship between the increment in the power of electroencephalographic signals and
attention span in a child with Autism Spectrum Disorder?

In this paper, the hypothesis is that measuring and quantifying the brain’s electrical
activity (power spectrum density) makes it possible to assess the level of attention when
performing various cognitive activities and interacting with different software or systems.
Therefore, this article aims to detect when an ASD user has high attention levels while devel-
oping learning activities based on the EEG signals acquired by an Epoc+ Brain–Computer
Interface (BCI). The novelty of this paper is the use of ML algorithms to classify the “Atten-
tion” and “No Attention” states of an ASD user. This research presents a new methodology
based on EEG signals and ML algorithms for classifying the attention of a 13-year-old
boy with ASD. This research formulates a method for processing electroencephalographic
signals to determine attention lapses in people with ASD, tested by performing various
learning activities and interacting with computer programs.

The rest of this paper is organized as follows. Section 2 presents the materials and the
proposed methodology. Section 3 shows the findings of this paper. Section 4 presents the
discussion. Finally, Section 5 summarizes our conclusions.
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2. Materials and Methods

The approval of this research by the Ethics Committee and Research for Pre-Graduates
and Post-Graduates of the Facultad de Ingeniería y Negocios Guadalupe Victoria de la
Universidad Autónoma de Baja California was obtained on 8 October 2020, with the
POSG/020-1-04 register. The EEG signals were acquired with an Epoc+ Brain–Computer
Interface (BCI) [42,43] via the Emotiv Pro platform while the ASD user developed several
learning activities, and data were processed with Matlab 2019a and Emotiv Pro software
using the Student Version.

Figure 1 depicts the electrode location (left) and the Emotiv Epoc+ headset (right).
According to the coherence analysis in attention [44,45], the selected electrodes were F3, F4,
P7, and P8.

The proposed methodology and the simulations were performed on a personal com-
puter with the following specifications: Intel(R) Core i5-8250U CPU @ 1.60 GHz, 1800 Mhz,
4 Cores, 8 Logical Processors, and 8 GB in RAM.

AF3

F7
F3

AF4

F4

FC5 FC6

T7 T8

CMS DRL

P7 P8

O1 O2

P3 P4

F8
FP1 FP2

Figure 1. Electrode location (left side) of the Epoc+ headset (right side) of the Emotiv Inc., taken
from Emotiv website https://emotiv.gitbook.io/epoc-user-manual/, accessed on 29 December 2021.

The signal was sampled at 2048 Hz, filtered with a dual-notch filter at 50 Hz and 60 Hz
and a low-pass filter at 64 Hz, and then downsampled to 128 Hz for transmission. It was
necessary to multiply the signal by 0.51 µ to convert it to a voltage.

The proposed data acquisition process is as follows:

Step 1. Place the headset with the electrodes hydrated on the test subject.
Step 2. Start the video recording and the EEG data acquisition.
Step 3. Give the worksheet to the test subject and the instructions.
Step 4. Let the test subject start the activity, and give him additional instructions if neces-

sary, as in a regular school session.
Step 5. When the activity is over, stop video recording and data acquisition.

Figure 2 shows the EEG acquisition process and how the boy worked with the activity
sheets using the Epoc+ headset.

https://emotiv.gitbook.io/epoc-user-manual/
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Figure 2. Data acquisition process with the Emotiv Epoc+. The EEG recordings start once the
localization of the headset is correct, and the signal quality, and the electrode contacts are verified and
in green level. Pictures are from http://imagentv.uabc.mx/videos/electro-encefalograf%C3%ADas-
y-autismo-uabc-no-se-detiene-imago, accessed on 29 December 2021.

2.1. Activity Sheets

Figures 3 and 4 depict examples of other activity sheets provided by the child’s
teachers, according to his knowledge and abilities. Figure 3 shows an activity sheet about
reading, following instructions, and drawing. Figure 4 is a counting animal activity sheet.
The school for children with ASD Eduke (https://www.facebook.com/EDUKE-123602
824381330, accessed on 29 December 2021), located in Tijuana, Baja California, México,
provided all the activity sheets used in this research.

Figure 3. Example of reading, following instructions, and drawing activity sheet. This activity
requires the child to read and follow instructions. The activity sheets are from https://familiaycole.
com/, accessed on 29 December 2021.

http://imagentv.uabc.mx/videos/electro-encefalograf%C3%ADas-y-autismo-uabc-no-se-detiene-imago
http://imagentv.uabc.mx/videos/electro-encefalograf%C3%ADas-y-autismo-uabc-no-se-detiene-imago
https://www.facebook.com/EDUKE-123602824381330
https://www.facebook.com/EDUKE-123602824381330
https://familiaycole.com/
https://familiaycole.com/
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Figure 4. Example of counting animals activity sheet. This activity requires the child to identify,
classify, count the animals, and write the number in the white square. The activity sheets are from
https://www.actividadesdeinfantilyprimaria.com/, accessed on 29 December 2021.

2.2. Signal Processing Procedure

Figure 5 depicts the block diagram of the procedure used for signal processing. The
first step is preprocessing the EEG signal, and then the power spectrum density of signals
is calculated and separated into bands. Next, we obtain the features presented in Table 1
and validate them. With these features, we train the machine learning algorithms. In the
next section, we give more information about these steps.

EEG
preprocessing

Band power
separation Feature extraction

Feature validationMachine learning  
training

Attention
classification

Figure 5. Block diagram of the proposed method. The first stage is signal preprocessing, after the
band power separation, and then the feature extraction stage. Next is the feature validation process,
the machine learning training stage, and finally, the attention quantification result.

https://www.actividadesdeinfantilyprimaria.com/


Math. Comput. Appl. 2022, 27, 21 7 of 20

2.2.1. Preprocessing of EEG Signal

The Emotiv software gives the recordings in a .csv file with integer numbers. It is
necessary to convert the EEG signal acquired by the Epoc+ to its voltage equivalent by
multiplying it by the factor 0.51 × 10−6.

2.2.2. Band Power Separation

In EEG signal processing, it is common to separate the power spectrum density into
the following bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz),
and Ram (or Gamma) (30–50 Hz), depicted in Figure 6. These band powers [46] are the
basis for calculating relative powers and ratios in the feature extraction stage. The Emotiv
software gives the power of each band, except for the Delta band, and it gives the Beta
band separated into Low Beta and High Beta powers [47]. For this research, we add both
Beta band powers.

Figure 6. Band power separation example, Welch power spectral density estimate (illustrative figure).

The Emotiv software uses two-second windows to calculate the power spectrum
density in absolute values, with units µV2/Hz, and then separates it into bands. The
two-second window involves 256 samples [47,48].

Figure 7 shows an example of band power separation. For this paper, we use the
electrodes F3, P7, F4, and P8 because they show high coherence in attention tasks [44,45].
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Figure 7. Band power separation example from F4 electrode. (a) Theta band power, (b) Alpha band
power, (c) Beta band power, (d) Total band power.
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2.2.3. Feature Extraction

To detect the Theta–Beta Ratio (TBR) and the Theta–Alpha Ratio (TAR), it is necessary
first to calculate the band power spectrum density (PSD) of the EEG signal in two-second
windows and for each channel or electrode. It is common to use the TBR features in attention
detection and neurofeedback and the Theta Relative Power Beta and Theta/(Alpha + Beta),
known as TBAR [48].

Table 1 presents the features calculated and their equations [48]. The next step is to use
these features to train several machine learning models and evaluate their performance.

Table 1. Feature equations for attention detection.

Feature Equation

Theta Relative Power TRP = θ
T

Alpha Relative Power ARP = α
T

Beta Relative Power BRP =
β
T

Theta–Beta Ratio TBR = θ
β

Theta–Alpha Ratio TAR = θ
α

Theta
Alpha + Beta TBAR= θ

β+α

T = θ + α + β is the total power [48].

Figure 8 depicts the Theta, Alpha, and Beta relative powers (R.P.) obtained for the
F4 electrode using the equations presented in Table 1. These R.P. values change with
the time and function of the activity performance. Figure 9 shows the Theta–Beta Ratio,
Theta–Alpha Ratio, and Theta/(Alpha–Beta Ratio) for the same F4 electrode.

Figure 8. Example of relative powers obtained from F4 electrode. (a) F4 Theta relative power, (b) F4
Alpha relative power, and (c) F4 Beta relative power.
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Figure 9. Example of ratios obtained from F4 electrode. (a) Theta–Beta Ratio, (b) Theta–Alpha Ratio,
(c) Theta/(Alpha–Beta Ratio).

2.2.4. Dataset Preparation

The dataset consists of 24 features, 6 features for each electrode, with four electrodes
(F3, F4, P7, and P8) and two classes: “Attention” and “No Attention”. The dataset has
33,936 samples; it has 16,968 samples for each class to conserve balance. Figure A1 from
Appendix B shows a fragment of the created dataset with 24 features acquired through
the processing of EEG signals when the user is performing didactic activities and paying
attention and when he is not paying attention to his learning process.

The Supplementary Materials dataset included six different Attention activities (count-
ing, forming words, completing words, looking for differences between two figures, reading
text, and answering simple questions from the reading), taken in 6 different moments. There
are also No Attention samples recorded in non-learning activities such as watching cartoons,
echolalia, doing nothing, and just sitting awake, trying to be as relaxed as possible.

2.2.5. Machine Learning Algorithm Training

In this paper, we chose eight ML algorithms to evaluate the classification of attention
through the EEG signals of an ASD user. The chosen ML algorithms were naive Bayes
(N.B.), stochastic gradient descent (SGD), decision trees (D.T.), support vector machine
(SVM)-RBF, k-nearest neighbors (KNN), multi-layer perceptron neural network (MLP-
NN), random forest (R.F.), and extra trees (E.T.). These ML models are part of the Scikit
Learn library [49]. Figure 10 shows the flowchart to perform the training test of the ML
algorithms. First, it is necessary to import the libraries or toolboxes required, such as Scikit
Learn, Pandas, and Seaborn. Then, the features dataset is loaded; subsequently, separating
the input data (features) from the output data is necessary. Next, we randomly divide the
dataset, 80% for training and 20% for tests. Then, the data are scaled between 0 and 1 to
obtain optimized results. Then, the machine learning model is trained. Then, we perform
the scoring of the ML model, i.e., using the confusion matrix and performance metrics to
evaluate the ML models.
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Begin

Import libraries

Load dataset

Separe inputs
(features) and

outputs

Split dataset, 80% for
training and 20% for testing

Scale the data
between 0 and 1

Train the M-L
algorithm

Test the M-L model

Evaluate the  
M-L model

End
1

1

Figure 10. Flowchart for training and testing of ML algorithms.

3. Results

To evaluate the ML models, we rely on the metrics of the Scikit Learn library [49].
The metrics used to evaluate the scoring of the ML models are the confusion matrix (true
positives, true negatives, false positives, false negatives), accuracy, F1 score, precision,
sensitivity/recall, and specificity.

Table 2 shows the scoring parameters obtained for the ML models tested in this paper.
The first four parameters correspond to the results of the confusion matrix. Naive Bayes
with an accuracy of 0.7628, SGD with 0.8619, decision tree with 0.8697, SVM-RBF with
0.8940, KNN with 0.8968, MLP-NN with 0.9298, random forest with 0.9291, and finally extra
trees with an accuracy of 0.9270. Therefore, the extra trees model has the best accuracy score.

Regarding the F1 score parameter, it is observable that naive Bayes, SGD, decision
trees, and SVM-RBF obtained a score lower than 0.90. Meanwhile, the KNN, MLP-NN,
random forest, and extra trees models obtained a score greater than 0.90, with extra trees
achieving the highest score. Regarding the specificity/precision, we observed that the
naive Bayes model was the lowest, while the extra trees and MLP-NN models were the
highest, with 0.8896 and 0.9155, respectively. Regarding the sensitivity/recall score, all the
models obtained a result greater than 0.90, except decision trees with 0.8720, and the extra
trees model achieved the best result with 0.9738.

Table 3 shows the performance metrics obtained for each ML model. The metrics used
to evaluate the performance of the ML models were the Area Under the Curve (AUC),
the Cohen’s Kappa coefficient, Hamming loss, and the Matthews correlation coefficient.
Regarding the AUC metric, we notice that the naive Bayes, stochastic gradient descent, and
decision trees models are the lowest, with 0.7642, 0.8624, and 0.8697, while the support
vector machine (SVM)-RBF, KNN, extra trees, MLP-NN, and random forest (R.F.) models
are the ones that obtained the best AUC, with 0.8944, 0.8972, 0.9274, 0.9299, and 0.9294,
respectively, with the MLP-NN model obtaining a better AUC. This measure compares
labelings by different human annotators, not a classifier versus ground truth, regarding
Cohen’s Kappa coefficient. The Kappa score is a number between −1 and 1. Scores
above 0.8 indicate good agreement; zero or lower means no agreement (practically random
labels). We observe that the naive Bayes, stochastic gradient descent, decision trees, support
vector machine (SVM)-RBF, and KNN models obtained a Kappa coefficient less than
0.80 but greater than zero. However, the extra trees, MLP-NN, and random forest (R.F.)
models obtained Kappa coefficients of 0.8542, 0.8597, and 0.8583, respectively, which
are more significant than 0.80. Therefore, it means that these ML models have good
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agreement. We notice that the model MLP-NN is the one that obtained the highest Cohen’s
Kappa coefficient.

Table 2. Scoring parameters of the ML algorithms evaluated in this study.

Machine-Learning Algorithm

Scoring Parameters Naive
Bayes SGD Decision

Trees
(SVM)-

RBF KNN MLP-NN Random
Forest (RF)

Extra
Trees

True positive 1984 2720 2967 2874 2892 3126 3039 3013

True negative 3194 3131 2937 3195 3196 3186 3268 3280

False positive 1436 700 453 546 528 294 381 407

False negative 174 237 431 173 172 182 100 88

Accuracy 0.7628 0.8619 0.8697 0.8940 0.8968 0.9298 0.9291 0.9270

F1 Score 0.7986 0.8698 0.8691 0.8988 0.9012 0.9304 0.9314 0.9278

Specificity/Precision 0.6898 0.8172 0.8663 0.8540 0.8582 0.9155 0.8955 0.8896

Sensitivity/Recall 0.9483 0.9296 0.8720 0.9486 0.9489 0.9459 0.9703 0.9738

Table 3. Performance metrics of the eight ML algorithms evaluated in this study.

Performance Metrics

Machine Learning
Algorithm AUC Cohen’s Kappa

Coefficient Hamming Loss
Matthews

Correlation
Coefficient

Naive Bayes 0.7642 0.5269 0.2371 0.5674

Stochastic Gradient
Descent 0.8624 0.7241 0.1380 0.7310

Decision Trees 0.8697 0.7395 0.1302 0.7395

Support Vector
Machine (SVM)-RBF 0.8944 0.7883 0.1059 0.7931

KNN 0.8972 0.7939 0.1031 0.7983

Extra Trees 0.9274 0.8542 0.0729 0.8580

MLP-NN 0.9299 0.8597 0.0701 0.8602

Random Forest (RF) 0.9294 0.8583 0.0708 0.8613

Regarding the Hamming loss, this Hamming loss should be zero; that is, the closer it
is to zero, the model tends to be perfect or ideal. In this case, the extra trees, MLP-NN, and
random forest (R.F.) models have the lowest Hamming loss. The MLP-NN model has the
lowest Hamming loss, with 0.0701. We use in machine learning the Matthews correlation
coefficient (MCC) or phi coefficient as a measure of the quality of binary (two-class) clas-
sifications, introduced by biochemist Brian W. Matthews [50]. In this case, the three best
models are extra trees, MLP-NN, and random forest (R.F.), with 0.8580, 0.8602, and 0.8613,
respectively, with random forest being the best (R.F.).

Figure 11 depicts the ROC curve of the top five ML models trained for attention
classification using EEG data. The ROC curve shows the trade-off between sensitivity (TPR)
and specificity (1-FPR). Classifiers that give curves closer to the top-left corner indicate
better performance. The closer the curve comes to the 45-degree diagonal of the ROC space,
the less accurate the test is. The SVM-RBF and KNN models are closer to the 45-degree
diagonal, resulting in less accuracy. On the other hand, the random forest, extra trees,
and MLP-NN models are closest to the upper left. Therefore, they are the ones with the
best performance.
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Figure 11. The receiver operating characteristic curve (ROC) of the top five ML models trained for
attention classification using EEG data.

Figure 12 depicts the training time of the eight ML models tested in this study. The
N.B., SGD, KNN, and D.T. models have the shortest training time. However, according to
the results shown in Tables 2 and 3, they have the lowest performance metrics. In contrast,
the SVM-RBF, R.F., and MLP-NN models have a longer training time of 17.01, 21.14, and
73.10 s, with the MLP-NN model having a longer training time. However, the model
also has better performance metrics, as shown in Tables 2 and 3. Therefore, the classifier
designer must conduct a cost–benefit analysis in terms of accuracy and processing time. In
most cases, programmers prefer better accuracy, sacrificing training time since this process
(training) is only done once and only uses the trained model. For this reason, in this study,
it would be more convenient to choose the MLP-NN model.
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Figure 12. Training time of the eight ML models evaluated in this study.

4. Discussion

In this research, we observed that the power spectrum density (PSD) is helpful for
attention detection, as proposed in the hypothesis. The features based on band PSD, such
as Relative Theta Power (RTP), Relative Alpha Power (RAP), Relative Beta Power (RBP),
Theta–Beta Ratio (TBR), Theta–Alpha Ratio (TAR), and the TBAR are good features for
attention classification. With these features, the multi-layer perceptron neural network
model (MLP-NN) achieved the best performance, with an AUC of 0.9299, Cohen’s Kappa
coefficient of 0.8597, Matthews correlation coefficient of 0.8602, and Hamming loss of
0.0701. Nevertheless, MLP-NN requires a longer training time of up to 73.1 s. However,
the results presented in Tables 2 and 3 and Figures 11 and 12 show that the random forest
and extra trees models have good performance metrics and a training time of 21.14 and
2.21, respectively. Therefore, the classifier designer must perform a cost–benefit analysis
in terms of accuracy and processing time. In most cases, designers prefer better accuracy,
sacrificing training time since this process (training) is only performed once, and then only
the trained model is used. For this reason, in this study, it would be more convenient to
choose the MLP-NN model.
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Furthermore, feature extraction improves the acquisition of relevant information for
accuracy for diagnosis and has been widely applied to different neuropsychological and
neurophysiological fields [51]; the type of waveforms and definition of the morphology of
EEG patterns increases the amount of available information for clinical decision making
from brain dysfunction [52] to cognitive impairment [53]. Particular interest has been
historically directed to the frontal areas in attention measurement, as they correspond
to the brain regions responsible for activity direction and orientation. Classification of
features may help to describe cortical connectivity, particularly for attentional deficits
associated with frontal theta in children [36]. Other research refers to frontal bilateral theta
waves in resting EEG in children with learning difficulties and an association with bilateral
synchronous frontal theta waves [37], which closely relates to techniques for brain activity
description in this study.

Limitations of the Study

One of the limitations of this research is that a BCI is required. The ASD user should
not have much hair. The BCI must be pleasant and tolerated by them. Moreover, the
electrodes must be kept hydrated with saline solution. It also depends on the battery life of
the BCI. The emotional state of the ASD user is essential because good measurements will
not be obtained if altered. Activities should be done in a scenario with learning conditions
without distractions, such as a classroom.

5. Conclusions

In this paper, a methodology for the classification of attention by EEG signals of an
ASD user was presented. The EEG data acquisition was performed while the ASD user
performed some didactic learning activities. In addition, our dataset was created for the
post-processing of the information and training of the ML algorithms. To create the dataset,
it was necessary to perform preprocessing, filtering, and feature extraction. The proposed
features can be used to train and evaluate several ML models to classify attention using
EEG signals.

On the other hand, with these findings, therapists, teachers, and psychologists can
develop better learning scenarios according to the cognitive needs of ASD users. In addi-
tion, diagnosis accuracy can be improved by acquiring individual EEG features, which
provide relevant information for differential clinical neurodevelopmental symptomatology
classification. Furthermore, with the proposed methodology, one can obtain quantifiable
information about the performance of ML models when an ASD user performs didac-
tic/learning activities, the above with the purpose of reinforcing the perception of the
teacher or therapist.

The future work will involve implementing the proposed method on a real-time
embedded system—for example, a stand-alone version using an edge device, novel deep
learning methods, and internet of things (IoT). It is possible to explore the feasibility of a
mobile-based platform that links with a BCI, instead of a computer. Furthermore, future
replication of this methodology is needed to approach a broad spectrum of attention
processes and standard estimation.
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Appendix A. Comparison of the Proposed Method with the State of the Art

Table A1. State of the art, part 1.

Reference Dataset Data Source Preprocessing Method/Algorithm Main Findings Application

Ref. [20] 12 ASD users and 12 typical children EEG N/A Trial-averaged phase-
locking value (PLV) ap-
proach and cubic support
vector machine (SVM)

95.8% Accuracy, 100% Sensitivity, and 92%
Specificity

ASD Classification/Detection

Ref. [27] 97 children aged from 3 to 6 EEG, eye-
tracking tests
individually
on own-race
and other-
race stranger
faces stimuli.

Data were band-pass filtered between 0.5 and 45 Hz. To improve com-
puting speed, EEG data were then down-sampled to 250 Hz. Power
line noise in EEG was removed by a notch filter centered at 50 Hz.
Artifacts in EEG were removed using an ICA approach (EEGLab).

SVM, minimum-
redundancy-maximum-
relevance (MRMR).

Classification Accuracy from combining two
types of data reached a maximum of 85.44%,
AUC 0.93, when 32 features were selected.

ASD Classification/Detection

Ref. [28] 10 typically developing children (6 Male
and 6 Female) and 10 autistic children (6
Male and 4 Female).

Natus Ni-
hon Ohden
MEB9000 ver-
sion 05–81.

22 channels, sampling frequency of 500 Hz and filtered with a low
pass filter and a high pass filter at a frequency range of [0.53, 70] Hz.
After filtering out the signal at a frequency range of 0.53 to 70 Hz, the
ocular artifacts in the EEG signal were removed by thresholding. The
threshold was set based on the average value of the amplitude of the
eye blink signal. The eye blink signal was observed for 10 seconds
with the eye open and eye close event.

ResNet50 Average Accuracy of 81% ASD Classification/Detection

Ref. [29] N/A EEG Wavelet Transform, reduction of dimensionality, removal of irrelevant
data.

K-Nearest Neighbour
(KNN), A Correlation-
based Feature Selection
(CFS), Minimum Redun-
dancy Maximum Relevance
(MRMR) and the Informa-
tion Gain (IG).

N/A ASD Classification/Detection

Ref. [30] Dataset from King Abdulaziz University
(KAU) Hospital, Saudi Arabia. It is a pub-
lic available dataset found in Sixteen sub-
jects with twelve from ASD group (3 girls
and 9 boys, age 6–20 years old) and four
subjects from control group (all boys, 9–
13 years old).

Spectrogram
of EEG

Artifacts were removed from raw EEG data with re-referencing, filter-
ing and normalization. Common average referencing (CAR) is used
for re-referencing. IIR filter is used to low pass filter the signal at 40
Hz cut off frequency and finally the filtered signals from each elec-
trode is normalized to the interval [−1, 1]. signals are segmented into
3.5 second window frames for each subject to the dataset. Using Short-
Time Fourier Transform (STFT) for each of the above segments, the
spectrogram plot is generated in the last step and saved as image.

NB, LDA, RF, kNN, LR and
SVM. Ten-fold cross valida-
tion. Three different CNN
models.

The proposed DL based model achieves
higher accuracy (99.15%) compared to the ML
based model (95.25%) on an ASD EEG dataset
and also outperforms existing methods.

ASD Classification/Detection

Ref. [31] 5 Neurotypical and 8 ASD. EEG High-pass filtered at 1 Hz to remove slow trends and subsequently
low-pass filtered at 50 Hz to remove line noise. The routine clinical
bandwidth for EEG is from 0.5 to 50 Hz.

ML classifiers, namely sup-
port vector machine (SVM)
and deep learning meth-
ods.

Multiclass two-layer LSTM RNN deep learn-
ing classifier is capable of identifying mental
stress from ongoing EEG with an overall accu-
racy of 93.27%.

ASD Mental Stress

Ref. [32] Study 1, 15 teenagers. Study 2, 20 subjects
diagnosed with ASD and 20 subjects diag-
nosed with other neuropsychiatric disor-
ders.

Artifact-free
EEG data.

Raw EEG time-series were analyzed with a features extraction algo-
rithm to extract 794 quantitative features (TSFRESH Python package).

TWIST, Sine-net ANN and
Back Propagation ANN.

Sine-net ANN reached the best predictive ca-
pability in distinguishing autistic cases from
typicals in study 1, Accuracy of 100%. Back
Propagation ANN reached the best predictive
capability in distinguishing autistic cases from
subjects affected by other neuropsychiatric dis-
orders in study 2 with an overall accuracy of
94.95%.

ASD Classification/Detection
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Table A2. State of the art, part 2.

Reference Dataset Data Source Preprocessing Method/Algorithm Main Findings Application

Ref. [33] 122 subjects. EEG to image con-
verted

Spectrogram image genera-
tion model is presented using
a combination of 1D_LBP and
STFT.

Decision Tree (DT) , Discriminant
Analysis (DA), Logistic Regression
(LR), SVM, K-Nearest Neighbor
(kNN).

SVM classifier reached 96.44% Accuracy ASD Classification/Detection

Ref. [38] The disorder group comprises of 8 boys (10–
16 years), and the normal group consists of
10 boys (9–16 years). Neuroimaging: ABIDE-
I and ABIDE-II, which encompasses sMRI, rs-
fMRI, and phenotypic data. ABIDE-I: a total of
1112 datasets, 539 individuals with ASD and
573 healthy individuals (ages 64–7). ABIDEII:
1114 datasets from 521 individuals with ASD
and 593 healthy individuals (ages 5–64).

Neuroimaging,
fMRI, MRI, EEG

Several preprocesing applied
to all signals.

Supervised learning, unsupervised
learning, and reinforcement learn-
ing (RL).

Presents challenges and performances of
DL techniques

ASD Classification/
Rehabilitation

Ref. [39] MICCAI 2008, MICCAI 2016, ISBI 2015, and
eHealth Lab.

MRI Low level and high level pre-
processing methods in MRI.

Most popular DL architectures for
MS detection: convolutional neu-
ral networks (CNNs), Autoencoders
(AEs), generative adversarial net-
works (GANs), and CNN-RNN
models.

The inaccessibility of huge sMRI datasets
belonging to a diverse population and
lack of access to fMRI modalities are
among the most important dataset-related
challenges which are discussed in detail.
Moreover, DL-related challenges include
researchers’ lack of access to powerful
hardware resources for MS diagnosis re-
search.

Multiple Sclerosis Detec-
tion

Ref. [40] Dataset of the Institute of Psychiatry and Neu-
rology in Warsaw.

EEG EEG signals were divided into
25 s time frames and then nor-
malized by z-score or norm
L2.

EEG signals Classification: support
vector machine, k-nearest neigh-
bors, Decision Tree, Naive Bayes,
Random Forest, extremely random-
ized trees, and bagging. DL models:
long short-term memories (LSTMs),
one-dimensional convolutional net-
works (1D-CNNs), and 1D-CNN-
LSTM.

CNN-LSTM model accuracy of 99.25%. Schizophrenia/Diagnosis

Ref. [41] Bonn University dataset with six classification
combinations and the Freiburg dataset.

EEG Tunable-Q wavelet transform
(TQWT) for EEG signal de-
composition. Feature extrac-
tion, 13 different fuzzy en-
tropies calculated from TQWT.
Six layers Autoencoder (AE)
for dimensionality reduction.

Classification: Adaptive neuro-
fuzzy inference system (ANFIS),
and also its variants with grasshop-
per optimization algorithm (ANFIS-
GOA), particle swarm optimization
(ANFIS-PSO), and breeding swarm
optimization (ANFIS-BS).

ANFIS-BS two classes classification Accu-
racy: 99.74%; an Accuracy of 99.46% in
ternary classification on the Bonn dataset,
and 99.28% on the Freiburg dataset.

Detection of epileptic
seizures

Proposed method 1 Subject, 33936 samples EEG and BCI Scaling, 2 seconds Band Power
Separation. Features: TRP,
ARP, BRP, TBR, TAR, and
Theta/(alpha+beta).

Naive Bayes, Stochastic Gradient
Descent, Decision trees, SVM, KNN,
MLP-NN, RF, Extra trees.

(MLP-NN) with Accuracy 92.98%, Sensi-
tivity 94.59%, F1 Score 93.04%, Specificity
91.55%, AUC of 0.9299, Cohen’s Kappa co-
efficient of 0.8597, Matthews correlation
coefficient of 0.8602, and Hamming loss of
0.0701.

ASD Attention Classifica-
tion
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Appendix B. Fragment of the Dataset Created for This Study

Figure A1. Fragment of the dataset created for this study.
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