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Abstract: The Korteweg–de Vries equation (KdV) is a mathematical model of waves on shallow water
surfaces. It is given as third-order nonlinear partial differential equation and plays a very important
role in the theory of nonlinear waves. It was obtained by Boussinesq in 1877, and a detailed analysis
was performed by Korteweg and de Vries in 1895. In this article, by using multi-linear estimates in
Bourgain type spaces, we prove the local well-posedness of the initial value problem associated with
the Korteweg–de Vries equations. The solution is established online for analytic initial data w0 that
can be extended as holomorphic functions in a strip around the x-axis. A procedure for constructing
a global solution is proposed, which improves upon earlier results.

Keywords: KdV equation; radius of spatial analyticity; approximate conservation law

1. Introduction and Main Results

The study of Korteweg–de Vries (KdV) type equations in Bourgain type spaces is an
important task, both from a theoretical point of view (existence and uniqueness of solution
theorems) and from the point of view of applications. In this research, we consider the
nonlinear Cauchy problem:

∂tw + ∂3
xw + ηLw + ∂x(w)4 = 0, (x, t) ∈ R2,

w(x, 0) = w0(x),
(1)

where the function w is real-valued, and η is a positive constant, w(x, t) ∈ R.
We define the linear operator L via the Fourier transform by

L̂ f (ζ) = −φ(ζ) f̂ (ζ). (2)

We denote by φ the phase function

φ(ν) =
n

∑
j=0

2m

∑
i=0

ci,jν
i|ν|j, ci,j ∈ R, c2m,n = −1, (3)

where φ(ζ) < c for some constant c.
Generally, this equation is an evolution type equation. We recall one of this type,

which is the Korteweg–de Vries–Kuramoto–Sivashinsky equation:
∂tu + ∂3

xu + η(∂2
xu + ∂4

xu) + u∂xu = 0

u(x, 0) = u0(x),
(4)
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which is known as a model for long waves in a viscous fluid flowing down an inclined
plane; see [1–8]. It is considered as a particular case of the Benney–Lin equation:

∂tu + ∂3
xu + η(∂2

xu + ∂4
xu) + β∂5

xu + u∂xu = 0

u(x, 0) = u0(x),
(5)

when β = 0 (please see [8,9]).
We mention a second example related to the Korteweg–de Vries–Burgers equation:

∂tu + ∂3
xu− η∂2

xu + u∂xu = 0

u(x, 0) = u0(x),
(6)

considered in [10]. The authors showed that problem (6) admits a local solution for some
given data in Hs, s > 1.

For other problems, close results were obtained in the generalized Ostrovsky–
Stepanyams–Tsimring equation for x ∈ R, t ≥ 0, k ∈ Z+


∂tu + ∂3

xu− η(H∂xu +H∂3
xu) + uk∂xu = 0

u(x, 0) = u0(x),
(7)

whereH denotes the Hilbert transform; please see [11–13].
An effective method for studying lower bounds on the radius of analyticity, including

this type of problem, was introduced in [14] for 1D Dirac–Klein–Gordon equations. It was
applied in [15] to the modified Kawahara equation and in [16] to the non-periodic KdV
equation. (For more details, please see [17–20].)

This article is a continuation of a number of previous works that were previously
published in the same direction [15,16]. The main aim in the present paper is to treat
the question of the well-posedness of (1), where w0(x) is analytic on the line and can
be extended as holomorphic functions in a strip around the x−axis. The most suitable
analytic function spaces in this case are the analytic Gevrey spaces Gθ,s(R) introduced
in [21], defined as

Gθ,s(R) =
{

f ∈ L2(R); ‖ f ‖Gθ,s(R) < ∞
}

, (8)

where

‖ f ‖2
Gθ,s(R) =

∫
R

e2θ|ξ|〈ζ〉2s| f̂ (ζ)|2dζ,

for s ∈ R, θ ≥ 0 and 〈·〉 := (1 + | · |2) 1
2 , if θ = 0, the space Gθ,s coincides with the standard

Sobolev space Hs.
For all 0 < θ′ < θ and s, s′ ∈ R, we have

Gθ,s(R) ⊂ Gθ′ ,s′(R), i.e., ‖ f ‖Gθ′ ,s′ (R) ≤ cs,s′ ,θ,θ′‖ f ‖Gθ,s(R), (9)

which is the embedding property of the Gevrey spaces.

Proposition 1. (Paley–Wiener Theorem, [22]) Let θ > 0, s ∈ R. Then, f ∈ Gθ,s if and only if it
is the restriction to the real line of a function F, which is holomorphic in the strip {x + iy : x, y ∈
R, |y| < θ} and satisfies

sup
|y|<θ

‖F(x + iy)‖Hs
x < ∞.
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In view of the Paley–Wiener theorem, it is natural to take initial data in Gθ,s and obtain
a better understanding of the behavior of solutions as we try to extend it globally in time.
This means that, given w0 ∈ Gθ,s for some initial radius θ > 0, we want to estimate the
behavior of the radius of analyticity θ(T) over time.

The next theorem is related to the local well-posedness.

Theorem 1. Let θ > 0 and s > −1/6. Then, for any w0 ∈ Gθ,s, there exists T = T(‖ w0 ‖Gθ,s) >
0 and a unique solution w of (1) on (−T, T) such that

w ∈ C
(
[−T, T], Gθ,s

)
.

which depends on w0, where
T =

c0

(1+ ‖ w0 ‖3
Gθ,s)

β
, (10)

for some constants c0 > 0 and β > 1 depending only on s. Furthermore, the solution w satisfies

‖w‖XT
θ,s,b
≤ 2C‖w0‖Gθ,s+p(b−1/2) 1/2 < b < 1, (11)

XT
θ,s,b will be introduced below, with constant C > 0 depending only on s and b.

The second result for problem (1) is given in the next theorem.

Theorem 2. Let s > −1/6 and θ0 > 0. Assume that w0 ∈ Gθ0,s; then, the solutions in Theorem 1
can be extended to be global in time, and, for any T′ > 0, we have

w ∈ C
(
[−T′, T′], Gθ(T′),s

)
with θ(T′) = min

{
θ0, C1T′(6−σ0)

}
,

where σ0 > 0 can be taken as arbitrarily small and C1 > 0 is a constant depending on w0, θ0, s and
σ0. (Here, ”T′” has nothing to do with the time derivative.)

The novelty is due to the embedding property (9) of analytic Gevrey spaces and the
lemmas from [23] to obtain the existence in the most suitable analytic function spaces—
in this case, in the analytic Gevrey spaces. It will be very interesting to consider the
generalization for θ > 0, where the space will be larger than in the present paper and
the one considered [23,24]. This subject is an open problem and will be the focus of our
next work.

In Section 2, we define the function spaces, linear estimates and bilinear estimates.
In Section 3, we prove Theorem 1, using the bilinear estimate and the linear estimate,
together with the contraction mapping principle. In Section 4, we prove the existence of a
fundamental approximate conservation law. In the concluding Section 5, Theorem 2 will
be proven using the approximate conservation law.

2. Function Spaces and Preliminary Estimates
2.1. Function Spaces

Now, we introduce the analytic Gevrey–Bourgain spaces associated with the KdV equation.
First, we consider the linear Kdv equation:

vt + vxxx = 0, x, t ∈ R

v(x, 0) = v0.
(12)

The solutions to (12) are given by v(x, t) = [W(t)v0](x), where

Ŵ(t)v0(ζ) = eitξ3
v̂0(ζ). (13)
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The completion of the Schwartz class S(R2) is given by Xθ,s,b(R2) = Xθ,s,b, with
respect to the

‖v‖Xθ,s,b(R2) = ‖Av‖Xs,b ≡ ‖W(−t)Av‖Hs,b = ‖〈ρ〉b〈ζ〉s ̂W(−t)Av(ζ, ρ)‖Lζ,ρ

= ‖eθ|ζ|〈ρ− ζ3〉b〈ζ〉sv̂(ζ, ρ)‖Lζ,ρ

=

(∫
R2

e2θ|ζ|
〈

ρ− ζ3
〉2b
〈ζ〉2s | v̂(ζ, ρ) |2 dζdρ

) 1
2
,

(14)

where the operator A, defined by

Âv
x
(ζ, t) = eθ|ζ|v̂x(ζ, t). (15)

Âv
x

is the Fourier transform in the spatial variable.
For θ = 0, the spaces X0,s,b coincide with the Bourgain spaces Xs,b.

The spaces XT
θ,s,b denote the restriction of Xθ,s,b onto finite time interval [−T, T], T > 0 and

equipped with the norm

‖v‖XT
θ,s,b

= inf
{
‖ V ‖Xθ,s,b(R2): V ∈ Xθ,s,b, v(t) = V(t) f or− T ≤ t ≤ T

}
.

Now, we consider the IVP associated with the linear parts of (1):
vt + vxxx + ηLv = 0, x, t ∈ R

v(0) = v0.
(16)

The solutions to (16) are given by v(x, t) = [S(t)v0](x), where

Ŝ(t)v0(ζ) = eitζ3+η|t|φ(ζ)v̂0(ζ), (17)

the semigroup S(t) can be written as S(t) = W(t)U(t), where Û(t)u0(ζ) = eη|t|φ(ζ)u0(ζ),
and W(t) is the unitary group associated with the KdV equation.

2.2. Linear Estimates

To prove our main results, we need some multi-linear estimate in the analytic Gevrey–
Bourgain spaces. Note that the spaces Xθ,s,b are continuously embedded in C

(
R, Gθ,s(R)

)
,

provided b > 1/2.
The proofs of the next lemmas, for θ = 0, are developed in [16], for θ > 0, using

operator A in (15).

Lemma 1. Let b > 1
2 , s ∈ R and θ ≥ 0. Then, Xθ,s,b ⊂ C

(
R, Gθ,s(R)

)
and

sup
t∈R
‖w(t)‖Gθ,s ≤ C‖w‖Xθ,s,b , (18)

where C depends only on b.

Lemma 2. Let s ∈ R, θ ≥ 0 and − 1
2 < b1 ≤ b′1 < 0. Then, ∀T > 0, and we have

‖w‖XT
θ,s,b1
≤ CTb′1−b1‖w‖XT

θ,s,b′1
, (19)

in (19), and the constant C depends only on b and b′.
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Lemma 3. Let s ∈ R, θ ≥ 0, − 1
2 < b < 1

2 and T > 0. Then, for any time interval I ⊂ [−T, T],
we have

‖χI(t)w‖Xθ,s,b ≤ C‖w‖XT
θ,s,b

, (20)

where χI(t) is the characteristic function of I, and C depends only on b.

Next, consider the linear Cauchy problem (1), for given G(x, t) and w0(x),
∂tw + ∂3

xw + ηLw = G, k = 2, 4

w(x, 0) = w0(x).
(21)

By Duhamel’s principle, the solution can be then written as

w(t) = S(t)w0 −
∫ t

0
S(t− µ)

(
∂xw4(µ)

)
dµ. (22)

Lemma 4. Let s ∈ R, b > 1/2, −1/2 < b′ ≤ 0, θ ≥ 0, p = 2m + n and 0 < T ≤ 1; then, there
is a constant C > 0, such that

‖S(t)w0‖Xθ,s,b ≤ C‖w0‖Gθ,s+p(b−1/2) . (23)

If 1/2 < b ≤ b′/3 + 2/3, then∥∥∥ ∫ t

0
S(t− µ)F(µ)dµ

∥∥∥
Xθ,s,b
≤ C‖F‖Xθ,s,b′

. (24)

Proof. The proof is similar to that in [23] when using the operator A.

2.3. Multi-Linear Estimate

Corollary 1 ([25]). Let θ ≥ 0 and s > −1/6. ∃γ ∈ (1/2, 1), r(s) > 0 and if b, b′ are two
numbers such that 1/2 < b ≤ b′1 + 1 < γ and b′1 + 1/2 ≤ r(s), then, for w ∈ Xθ,s,b, we have

‖ ∂x(w4) ‖Xθ,s,b′1
≤ C ‖ w ‖4

Xθ,s,b
, (25)

3. Proof of Theorem 1

Now, we are ready to estimate all terms in (22) by using the multi-linear estimate in
the above lemmas. Let θ > 0, s− p(b− 1/2) > −1/6, and w0 ∈ Gθ,s, with b = 1/2 + ε,
b′1 = −1/2 + 4ε and 0 < ε� 1, satisfying

0 < ε < min
{

s + 1/6
p

,
1
4
(γ− 1

2
),

r(s)
4

}
, (26)

where p = 2m + n′ γ and r(s) are as in Corollary 1.

3.1. Existence of Solution

We construct local solution w of (1); to this end, we proceed by an iteration argument
in the space XT

θ,s,b.
Let {w(n)}∞

n=0 be the sequence defined by
∂tw(0) + ∂3

xw(0) + ηLw(0) = 0,

w(0)(0) = w0,
(27)
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and for n ∈ {1, 2, · · ·}, we have
∂tw(n) + ∂3

xw(n) + ηLw(n) = −(∂xw(n−1))4,

w(n)(0) = w0.
(28)

Based on Lemma 4, we have

w(0)(x, t) = S(t)w0(x),

and

w(n)(x, t) = S(t)w0(x)−
∫ t

0
S(t− µ)∂x

(
w(n−1)(x, µ)

)4
dµ.

Then, from Lemma 4, Lemma 2 and Corollary 1, we have

‖w(0)‖XT
θ,s−p(b−1/2),b

≤ C‖w0‖Gθ,s

‖w(n)‖XT
θ,s−p(b−1/2),b

≤ C‖w0‖Gθ,s + CTb′1−b1‖∂x

(
w(n−1)

)4
‖XT

θ,s−p(b−1/2),b′1

≤ C‖w0‖Gθ,s + CTb′1−b1‖w(n−1))‖4
XT

θ,s−p(b−1/2),b′1

,

(29)

with 1/2 < b ≤ b′1 + 1 < γ and b′1 + 1/2 ≤ r(s). Then, by induction, we have

‖w(n)‖XT
θ,s−p(b−1/2),b

≤ 2C‖w0‖Gθ,s , ∀n ∈ N. (30)

The constant T ∈ (0, 1] will be chosen to be so small that

T ≤ 1

(29C4‖w0‖3
Gθ,s)

1
b′1−b1

. (31)

Using Corollary 1 together with (30) and (29), we obtain

‖w(n) − w(n−1)‖XT
θ,s−p(b−1/2),b

≤ CTb′−b
∥∥∥∂x

[(
w(n−1)

)4
−
(

w(n−2)
)4
]∥∥∥

XT
θ,s−p(b−1/2),b′

≤ CTb′−b‖ f ‖XT
θ,s−p(b−1/2),b

‖w(n−1) − w(n−2))‖XT
θ,s,b

≤ 1
2
‖w(n−1) − w(n−2))‖XT

θ,s−p(b−1/2),b
,

where

f =
(

w(n−1)
)3

+
(

w(n−2)
)3

+
(

w(n−1)
)(

w(n−2)
)2

+
(

w(n−2)
)(

w(n−1)
)2

.

3.2. Continuous Dependence on the Initial Data

Suppose that w and v are two solutions to problem (1) with w0, v0, respectively. Then,
with T and for any T′ such that 0 < T′ < T, we obtain

‖ w− v ‖XT′
θ,s−p(b−1/2),b

≤ C ‖ w0 − v0 ‖Gθ,s +
1
2
‖ w− v ‖XT′

θ,s−p(b−1/2),b
, (32)

provided that ‖ w0− v0 ‖Gθ,s is sufficiently small. This ends the proof of continuous dependence.
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4. Approximate Conservation Law

We will now show an approximate conservation law for a solution to our problem (1)
owing to the conservation of the L2(R) norm of the solution in Theorem 3.

Theorem 3. Let κ ∈ [0, 1/6) and T be as in Theorem 1; there exist C > 0, b ∈ (1/2, 1) such that
∀θ > 0 and, for any solution w ∈ XT

θ,0,b to the problem (1) on the time interval [0, T],

sup
t∈[0,T]

‖w(t)‖2
Gθ,0 ≤ ‖w(0)‖2

Gθ,0 + Cθκ‖w(0)‖5
Gθ,p(b−1/2) . (33)

We need the following estimate.

Lemma 5 ([25]). Given κ ∈ [0, 1/6), there exist C > 0, b ∈ (1/2, 1) such that ∀T > 0 and
u ∈ Xθ,0,b; we have

‖G‖X0,b−1 ≤ Cθκ‖w‖4
Xθ,0,b

, (34)

where G = ∂x
[
(Aw)4 − A(w)4] and the operator A given by (15).

Proof. (Of Theorem 3) Let V(t, x) = Aw(t, x), which is real-valued since the multiplier A
is even and u is real-valued. Applying A to (1), we obtain

∂tV + ∂3
xV + ηLV + 4V3∂xV = G, (35)

where

G = ∂x

[
(Aw)4 − A(w)4

]
,

then ∫
R

V∂tVdx +
∫
R

V∂3
xVdx + η

∫
R

VLVdx + k
∫
R

Vk∂xVdx =
∫
R

VGdx.

Noting that ∂
j
xV(x, t) goes to 0 as |x| goes to ∞ (see [16]), by using the integration by

parts, we obtain

1
2

∂t

∫
R

V2dx =
∫
R

VGdx. (36)

Integrating (36) with respect to t ∈ [0, T], we obtain∫
R

V2(T, x)dx =
∫
R

V2(0, x)dx + 2
∫
R2

χ[0,T](t)VGdxdt.

Thus,

‖w(T)‖2
Gθ,0 = ‖w(0)‖2

Gθ,0 + 2
∫
R2

χ[0,T](t)VGdxdt.

By using Holder’s inequality, Lemma 3, Lemma 5 and since 1− b < b, b > 1/2, we have∣∣∣ ∫
R2

χ[0,T](t)VGdxdt
∣∣∣ ≤ ‖χ[0,T](t)V‖X0,1−b‖χ[0,T](t)G‖X0,b−1

≤ ‖V‖XT
0,1−b
‖G‖XT

0,b−1

≤ CTκ‖w‖5
XT

θ,0,b
.
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5. Proof of Theorem 2

Let θ0 > 0, s > ak, κ ∈ (0,−ak) be fixed and w0 ∈ Gθ0,s. Since the invariance property
of the KdV-type equation under the reflection (t, x)→ (−t,−x), we can restrict it to t > 0.
Then, we need to prove that the solution w of (1) satisfies

w ∈ C
(
[0, T′], Gθ(T′),s

)
, (37)

where
θ(T′) = min

{
θ0, C1T′−1/κ

}
, f or all T′ > 0,

and C1 > 0 is a constant depending on w0, θ0, s and κ. By Theorem 1, there is a maximal
time T∗ = T∗(w0, θ0, s) ∈ (0, ∞] such that

w ∈ C
(
[0, T∗], Gθ0,s

)
.

If T∗ = ∞, it is done.
If T∗ < ∞, as we assume henceforth, it remains to prove

w ∈ C
(
[0, T′], GC1T′−1/κ ,s

)
, f or all T′ ≥ T∗. (38)

5.1. The Case s = 0

Fix T′ ≥ T∗. We will show that, if θ > 0 and is sufficiently small

sup
t∈[0,T′ ]

‖w(0)‖2
Gθ,0 ≤ 2‖w(0)‖2

Gθ0,0 . (39)

In this case, by Theorem 1 and Theorem 3 with

T =
c0

(1 + 2 ‖ w(0) ‖3
Gθ0,0)

β
, (40)

the smallness conditions on θ will be

θ < θ0 and
2T′

T
Cθκ2

5
2 ‖ w(0) ‖3

Gθ0,0≤ 1, C > 0. (41)

Here, C is the constant in Theorem 3. By induction, we check that

sup
t∈[0,T]

‖w(t)‖2
Gθ,0 ≤ ‖w(0)‖2

Gθ,0 + nCθκ2
5
2 ‖w(0)‖5

Gθ0,0 , (42)

and
sup

t∈[0,T]
‖w(t)‖2

Gθ,0 ≤ 2‖w(0)‖2
Gθ0,0 , (43)

for n ∈ {1, . . . , m + 1}, where m ∈ N is chosen, so that T′ ∈ [mT, (m + 1)T), this m exists.
By Theorem 1 and the definition of T∗, we have

T <
c0

(1+ ‖ w(0) ‖3
Gθ0,0)

β
< T∗, hence T < T′.
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In the first step, we cover the interval [0, T], and by Theorem 3, we have

sup
t∈[0,T]

‖w(t)‖2
Gθ,0 ≤ ‖w(0)‖2

Gθ,0 + Cθκ‖w(0)‖5
Gθ,p(b−1/2)

≤ ‖w(0)‖2
Gθ,0 + Cθκ‖w(0)‖5

Gθ1,0

≤ ‖w(0)‖2
Gθ,0 + Cθκ‖w(0)‖5

Gθ0,0 ,

since θ < θ1 ≤ θ0, we used
‖w(0)‖Gθ,0 ≤ ‖w(0)‖Gθ0,0 ,

and
‖w(0)‖Gθ,p(b(1/2−ε) ≤ C‖w(0)‖Gθ1,0 ≤ C‖w(0)‖Gθ0,0 .

This verifies (42) for n = 1 and, now, (43) follows using again ‖w(0)‖Gθ,0 ≤ ‖w(0)‖Gθ0,0

as well as Cθκ‖w(0)‖3
Gθ0,0 ≤ 1.

Suppose now that (42) and (43) hold for some n ∈ {1, . . . , m} and we show that it
holds for n + 1.

We have to estimate

sup
t∈[nT,(n+1)T]

‖w(t)‖2
Gθ,0 ≤ ‖w(nT)‖2

Gθ,0 + Cθκ‖w(nT)‖5
Gθ,p(b−1/2)

≤ ‖w(nT)‖2
Gθ,0 + Cθκ2

5
2 ‖w(0)‖5

Gθ1,0

≤ ‖w(nT)‖2
Gθ,0 + Cθκ2

5
2 ‖w(0)‖5

Gθ0,0

≤ ‖w(0)‖2
Gθ,0 + nCθκ2

5
2 ‖w(0)‖5

Gθ0,0 + Cθκ2
5
2 ‖w(0)‖5

Gθ0,0 ,

verifying (42) with n replaced by n + 1. To obtain (43) with n replaced by n + 1, it is then
enough to have

(n + 1)Cθκ2
5
2 ‖w(0)‖3

Gθ0,0 ≤ 1,

but this holds by (41), since n + 1 ≤ m + 1 ≤ T′
T + 1 < 2T′

T .
Finally, we easily conclude that condition (41) is satisfied for θ ∈ (0, θ0) such that

2T′

T
Cθκ2

5
2 ‖ w(0) ‖3

Gθ0,0= 1.

Thus, θ = C1T′−
1
κ , where

C1 =

 c0

C2
7
2 ‖ w(0) ‖3

Gθ0,0 (1 + 2 ‖ w(0) ‖3
Gθ0,0)

β

 1
κ

.

5.2. The General Case

For all s, by (9), we have w0 ∈ Gθ0,s ⊂ Gθ0/2,0.
For case s = 0, it is proven that there is a T1 > 0, such that

w ∈ C
(
[0, T1), Gθ0/2,0

)
,

and
w ∈ C

(
[0, T′], G2σT′−1/κ ,0

)
, f or T′ ≥ T1,
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where σ > 0 depends on w0, θ0 and κ. Using again the embedding (9), we can conclude that

w ∈ C
(
[0, T1), Gθ0/4,s

)
,

and
w ∈ C

(
[0, T′], GσT′−1/κ ,s

)
, f or T′ ≥ T1,

which imply (38). The proof of Theorem 2 is now completed.
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