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Abstract: Providing uninterrupted response service is of paramount importance for emergency
medical services, regardless of the operating scenario. Thus, reliable estimates of the time to the
critical condition, under which there will be no available servers to respond to the next incoming
call, become very useful measures of the system’s performance. In this contribution, we develop
a key performance indicator by providing an explicit formula for the average time to the shortage
condition. Our analytical expression for this average time is a function of the number of parallel
servers and the inter-arrival and service times. We assume exponential distributions of times in
our analytical expression, but for evaluating the mean first-passage time to the critical condition
under more realistic scenarios, we validate our result through exhaustive simulations with lognormal
service time distributions. For this task, we have implemented a simulator in R. Our results indicate
that our analytical formula is an acceptable approximation under any situation of practical interest.

Keywords: first-passage time; Markov chain; queueing theory; simulation; OR in health services;
KPI
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1. Introduction

The problem of assigning resources to respond to a stochastic demand is a ubiqui-
tous topic in operational research. The trade-off between service quality and operational
efficiency is a crucial aspect of the Emergency Medical Services (EMS), where the lives
of patients depend on the timeliness of care. Thus, the development of Key Performance
Indicators (KPIs) to objectively quantify the performance across the operational, clinical
and financial departments is a current demand of an industry that is becoming increasingly
data-driven. KPIs are the basic tools for planners, and the nature of each KPI selects a
particular feature of the system and determines its data gathering strategy.

Among the most intuitive and used operational KPIs in EMS are the successive times
involved in the service cycle: call reception, patient triage, dispatch, ambulance turnout,
travel from the base to the emergency site, paramedic care, eventual transfer of the patient
to a hospital and return of the ambulance to its base. Response time (the interval between
the reception of an emergency call and the arrival of a paramedic at the scene of the event)
is a common operational metric of EMS, and it is considered a good indication of the
quality offered by the service [1]. One reason for its popularity as a KPI resides in the
fact that it is directly quantifiable and easily understood by the public and policy makers.
Additionally, the EMS industry has the goal of providing care within eight minutes for
cardiac arrest [2] and major trauma [3]. However, there is evidence that exceeding that
response time criterion does not affect patient survival after a traumatic impact injury [4,5].
Moreover, solutions that only focus on shortening the response time are cost prohibitive
and put the safety of patients, attendant crew and the public at risk [6]. A rational approach
to the ambulance business process should simultaneously consider multiple metrics and
operational trade-off between administrator-oriented and patient-centered KPIs [7].
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One of the most important aspects of emergency medical management is avoiding
the oversaturation of the system. Therefore, in this work, we consider the First-Passage
Time (FPT) [8] to the critical condition, under which there will be not available servers to
respond to the next incoming call. Criticality prediction is of special interest for the quality
of the medical service (response time off-target) as well as for the financial management
of the service, given that, as we will see, the critical condition strongly depends on the
number L of ambulances simultaneously in service and because queueing a call may
involve transferring it to another EMS. Any system operating under fixed conditions with
a given number of servers and a First-Come First-Served (FCFS) discipline is a discrete
one-dimensional stochastic process over the occupation states of servers. Therefore, the
first-passage time to the state of oversaturation, in which there are no available servers,
is finite. The question is how long is that time. Thus, the mean first-passage time (MFPT)
becomes a relevant key performance indicator for the operational condition in EMS.

In urban emergency services logistics, there are two distinct fields: capacity planning
and location analysis. Both fields are interrelated in the districting problem or how the
region should be partitioned into areas of primary responsibility (districts) [9,10]. Here,
MFPT can be applied to an operational subarea or district, preferably intended to be
independently served by a subset of ambulances (intradistrict dispatches). In this case,
MFPT gives us the average time to request an ambulance from another operational zone
to answer the next emergency call when the primary equipment is busy (interdistrict
dispatches). MFPT can also be a useful KPI in the decision-making process of emergency
departments [11,12], where MFPT provides the average time to a shortage of intensive
therapy beds when the FCFS discipline is used after the patient’s triage.

Queueing theory has been widely applied in health care in the last 70 years [13].
Since Larson’s seminal article [9], quite a few queueing models have been developed to
incorporate the intrinsic probabilistic nature of urban EMS derived from the Poisson nature
of the call arrival process and the variability in service times. Multiple queueing systems
have been developed that respond with different emphasis on the KPIs selected in each
case. In this contribution, we use a birth–death process to properly analyse the dependence
of MFPT on the number of servers and the rest of the system’s operational parameters. The
birth–death process is basic to queueing models involving exponential inter-arrival and
service time distributions. In the Kendall–Lee notation, we have M/M/L/FCFS/∞/∞ [8].
Thus, our analytical model is based only on two average times: TC, the mean inter-arrival
time, and TS, the mean service time of a single server, that is, the time it takes for an
ambulance to complete a trip from the instant a call is assigned until the release of this server.
Several analytical results are well known in operational research under that assumption [8].

However, experimental evidence from an emergency service indicates that service time
distributions are well fitted by lognormal distributions [12,14–16]. Hence, our objective is
also to numerically evaluate the deviation between analytical and simulated results for
MFPT. Thus, we present an R-simulator for a system of L servers in parallel with general
distributions for inter-arrival and service times and FCFS discipline: GI/G/L/FCFS [8].
This tool allows the user to calculate the key performance indicators of direct interest
in the industry beyond the known analytical results, which are limited to exponential
distributions. Particularly, we show our work on Mean First-Passage Time (MFPT) to
system critical condition.

In this way, the motivation of our work is two-fold. On the one hand, we provide
an explicit analytical expression for the MFPT to the critical condition, and, on the other
hand, under more realistic conditions, we analyse the validity of our assumptions through
exhaustive simulations. In Section 2, we provide our analytical expression for MFPT and
explore the generic nature of the method, postponing detailed mathematical derivations
to the appendices. Additionally, in that section, we describe the simulation framework
for experimentation. Section 3 deals with the numerical results, and last, in Section 4, we
discuss the importance of our contribution.
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2. Model and Simulator

In this section, we develop an analytical closed-form solution for the MFPT and
present a simulation framework based on discrete events.

2.1. Markov Chain Model for Servers in Parallel

We consider a stochastic continuous-time birth–death process [8] that describes the
time evolution of the occupation state of a set of L servers in parallel. Changes in the state
of the Markov chain imply the release of a server or putting one into action (if at least one
is available). The state with occupation n corresponds to n received calls not completely
served yet. Thus, when n = 0, all the servers are free, and there are neither trips in process
nor calls in queue. For 0 < n ≤ L, there are no waiting calls, and n servers are in course
of action. In an equivalent way, we can say that n calls are simultaneously being served.
Particularly, when n = L, the system is saturated, that is, all servers are occupied. Even
though there is not any call in the waiting queue, all servers have been assigned to calls,
and consequently, there are not any servers available to process the next eventual incoming
call. For n > L, the system is oversaturated, and there are n− L calls in the waiting queue.
At any time, the system can change its state of occupation between its nearest neighbours.
Therefore, we denote the transition rate from the state n to n + 1 by ω+

n , whereas the
transition rate toward the lower occupation state (n→ n− 1) is ω−n . We assume that the
time between calls is an exponential random variable with the mean number of calls per
unit time λ = 1/TC. On the other hand, the service time is also an exponential variable
with the rate or mean number of services per unit time and per server µ = 1/TS. Thus,
random call arrival times and service times consumed in each trip are generated from
continuous time distributions. TC and TS are the average inter-arrival and service time,
respectively. In our particular problem with L servers, the transition probabilities rates of
the birth–death process are defined by [17]

ω+
n = λ ∀n ,

ω−n =

{
n µ for n ≤ L ,
L µ for n ≥ L .

(1)

In this manner, ω+
n results constant and only ω−n depends on the state of the system. Then,

all the experimental information needed to characterize our theoretical model are the
average times TC and TS.

For fixed values of TC and TS, the Markov process always reaches the state L + 1, that
is, the critical condition in which the incoming call could not be served. Therefore, we
focus our interest in the first-passage time (FPT) to the state L + 1. That is the time needed
by the system to reach the critical situation (first call is derived to the waiting queue) given
an initial state without queue (0 ≤ n ≤ L). Following previous experience [18], the MFPT,
T(n), from the initial state n = 0, . . . , L, can be written as

T(0) = TC

(
L + 1 +

L−1

∑
k=0

γ−k

k!

L

∑
i=k+1

i! γi

)
,

T(1) = T(0)− TC ,

T(n) = T(0)− TC

(
n +

n−2

∑
k=0

γ−k

k!

n−1

∑
i=k+1

i! γi

)
for 2 ≤ n ≤ L ,

(2)

where the parameter γ = µ/λ = TC/TS is the inverse of Erlang’s rate [8]. The derivation
and mathematical details of Equation (2) are worked out in Ref. [18] and Appendix A. In
this way, knowing γ and TC, the expressions of Equation (2) can be numerically evaluated
in a very direct way.

The average involved at this stage is over realizations of the stochastic process. Under
actual operating conditions, where the dispatcher knows the system stress in real-time,
Equation (2) makes it possible to predict the MFPT to respond accordingly. However, if we
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want to predict the MFPT under prospective stress conditions, we request for a quantity
independent of the initial state in order to define a performance measure. Therefore, we
need an average over n = 0, . . . , L. For this purpose, we define

< T >=
L

∑
n=0

P(n) T(n) , (3)

where P(n) is the probability of residence in the state n. To perform this calculation, we
need to know the conditional probability of being at state n at time t given the initial state
m, P(n|m)(t). In order to simplify the problem, we propose to calculate P(n) in the steady
state regime, which is independent of the initial condition [8]: P(n) = limt→∞ P(n|m)(t).
Moreover, given that we are interested in the FPT to the critical condition (first jump to state
L + 1), we will approximate P(n) by working with the finite Markov chain with reflecting
boundaries at sites 0 and L. It is important to note that the steady state probabilities of the
finite chain are approximately the same as the residence probabilities of our unbounded
chain, since in the lapse before FPT there are no calls in the queue. Under these assumptions,
we obtain

P(n) =
1
S

γ−n

n!
, for 0 ≤ n ≤ L , (4)

where S is given by the normalization condition, S =
L

∑
n=0

γ−n

n!
. The mathematical deriva-

tion of these expressions is relegated to the Appendix B. The truncated Poisson distribution
given in Equation (4) is known as the Erlang B-formula, and it has been proven that this
equilibrium distribution of the number of occupied servers is independent of the form
of the service time distribution [19]. Moreover, the Erlang B-formula is also valid for
heterogeneous servers, provided however, that all servers have equal mean service times
TS [20].

Equation (3) plus Equations (2) and (4) provide us with a closed form expression for
calculating the MFPT averaged on initial states.

2.2. Simulation Framework

To compare and analyse the prediction of Equations (2) and (4) with realistic situations,
we have developed a flexible discrete-event simulator (DES) [21] with a process-oriented
approach that implements several features inherent to EMS management.

The architecture of our simulator is outlined in Figure 1. The input parameters config-
ure the statistical distributions and set the number of servers (L). The proposed simulator
consists of three main modules. The first module, called simserveRs, is the simulator
kernel. Each thread of the simulation is triggered with a new call arrival. Using a pseudo-
random number generator (RNG), it draws a call time, summing an exponential random
value to the time of the previous call, and compares it with the release times of busy servers.
Then, the kernel iteratively puts the older calls in the queue in service, whereas the release
times are less than the last call time (FCFS discipline) [22]. Afterward, if there are no
available servers, the incoming call is derived to the waiting queue; otherwise, the call is
dispatched to a server, picking it at random among the free ones. At last, simserveRs as-
signs a service time drawn from the desired distribution. Thus, at each event, the simulation
engine updates the system state composed by the servers and the queue.

The module simcritical launches simserveRs with the wanted initial condition and
stops the execution when the first call is derived to the queue. Then, the average given
by Equation (3) is calculated, and the aggregation over simulations is performed. The last
module reckons the MFPT from each initial condition using the analytical expressions
given by Equation (2).
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Figure 1. Architecture scheme of the discrete-event simulator.

The software is implemented in R, and it is available as open source (see details in
Ref. [23]). The simulator can be simply adapted to incorporate most of the features of an
actual EMS operator, such as disaggregating the service time into its components (e.g.,
preparation of ambulance at base, transit time, attention time and transit time to hospital)
and implementing dispatching policies with distance or traffic time criteria. Additionally,
the extensions of the simulator to any kind of distributions for inter-arrival times (e.g.,
Erlang) and service times (e.g., gamma or lognormal) are direct. Our simulator was
developed in the second half of 2017 for a project related to process optimization in EMS
management. The comparison between our simulation outputs and the historical data
from an EMS operator showed a satisfactory statistical agreement in several operating
scenarios. Over time, several generic DES frameworks for queueing systems have been
developed, which deliver such functionalities and implement more efficient methods (see
Ref. [24] and references therein). However, for the practical reason of evaluating the results
of Section 2.1, the open source version of our simulator becomes an appropriate tool.

3. Results

In Figure 2, we show the non-linear behaviour of < T > as a function of TC and TS
and its strong dependence on L, as they are derived from Equations (2)–(4).
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Figure 2. Average MFPT as function of TC and TS for three values of L.

The non-linear nature of < T > is given by the powers of γ in Equation (2) and
implies a sensitive dependence of the time to the critical condition on its variables. Thus,
on the scale of the figure, variations in the order of one minute in TC or TS may represent
variations of tens to thousands of minutes in < T >. The value of L determines the number
of terms in Equations (2) and (3). Therefore, adding or removing a server, with the same
values of TC and TS, can make a substantial change in the value of the average MFPT, as
can be seen in Figure 2. The sensitivity of our problem on its parameters is very difficult to
grasp intuitively and to predict from past experiences in practice.

The main reason for using the birth and death queueing model (M/M/L) is the fact
that we can derive the closed-form result given in Section 2. However, the analytical
prediction of any performance measure needs to be contrasted with numerical outputs
from more realistic scenarios. As an illustration, we take values of inter-arrival and
service times measured by the EMS Sistema de Urgencias del Rosafe (URG) [25] in Córdoba,
Argentina. URG is one of several private EMS operators in a city of about 1.39 million
inhabitants. In 2016, URG operated a fleet of nine ambulances that were usually stationed
in predefined parking spots scattered throughout the metropolitan zone. The operating
scenario distinguishes several daily time bands within which the mean values TC and TS
are relatively constant, although these, in turn, show seasonal changes throughout the year.

In Figure 3, we show histograms of real data corresponding to 2568 calls received
by URG between May 1 and October 31, 2016, late evening (20:00 to 23:00 h). In this
time period, we found good stationary statistics in the data, and no critical condition was
reported in which there were no ambulances available to serve a call. The service time
value measures the time elapsed from dispatch until the ambulance is released. Very low
service times correspond to situations that were quickly resolved at scenes close to the
ambulance base, whereas the distribution tail involves complex cases with the transfer of
the patient to a hospital.
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Figure 3. Histograms of real data corresponding to 2568 calls: (a) inter-arrival times; (b) service times.
Solid lines are the best fits: (a) exponential; (b) lognormal. The insets show the fitting parameters.

From the figure, we can see that the inter-arrival times fit perfectly with an exponential
distribution (TC = 12.85 min, goodness-of-fit tests: Kolmogorov–Smirnov p-value = 0.73,
Cramer–von Mises p-value = 0.75), but the best fit for service times is with a lognormal
distribution (TS = 44.1 min, goodness-of-fit tests: Kolmogorov–Smirnov p-value = 0.017,
Cramer–von Mises p-value = 0.052). Thus, in this case, it is apparent that the main
limitation of our analytical model is the assumption that the distribution of service times
is exponential.

The input traffic to a call centre is a nonstationary Poisson process [7,14,26]. However,
the arrival rate function λ(t) is roughly constant over periods of a few hours [11,14,16,27].
Lognormal distributions for service times have already been reported in the
literature [12,14–16]. The fact that the distribution of the sum of a few independent, but
not necessarily identical, lognormal random variables could be approximated by a log-
normal distribution [28] may explain the experimental findings when we only use two
fitting parameters.

In Table 1, we show a comparison between analytical results given by Equation (2)
and simulated MFPT from each initial state of a system with seven servers to the critical
condition. The simulations were performed using the fitted distributions in Figure 3 and
also using an exponential distribution for service times with a mean value equal to that of
the fitted distribution in the right panel.
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Table 1. Comparison among analytic and simulated values of MFPT (in minutes) for a system with
seven servers. The simulated values are reported with its standard error for 10,000 simulations.
In both cases, the mean service time is TS = 44.1 min, whereas, in the first case, the probability
distribution of service time is exponential, and in the second case, it is lognormal with meanlog = 3.6867
and sdlog = 0.4465. The percentage errors are that of the simulated values with respect to the
analytical predictions.

TC = 5 min
Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 67.6 67.2 ± 0.4 0.6 49.8 ± 0.3 35.7
1 62.6 62.2 ± 0.4 0.5 44.8 ± 0.3 39.7
2 57.1 56.7 ± 0.4 0.7 39.8 ± 0.3 43.5
3 50.8 50.5 ± 0.4 0.6 34.7 ± 0.3 46.4
4 43.7 43.4 ± 0.4 0.7 29.4 ± 0.2 48.6
5 35.4 35.1 ± 0.3 0.9 23.7 ± 0.2 49.4
6 25.8 25.4 ± 0.3 1.6 17.1 ± 0.2 50.9
7 14.2 14.1 ± 0.2 0.7 9.3 ± 0.2 52.7

TC = 10 min
Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 315.2 310.9 ± 2.5 1.4 244.2 ± 2.1 29.1
1 305.2 300.7 ± 2.5 1.5 234.2 ± 2.1 30.3
2 292.9 288.4 ± 2.5 1.6 223.9 ± 2.1 30.8
3 277.3 272.7 ± 2.5 1.7 212.0 ± 2.1 30.8
4 256.7 252.3 ± 2.5 1.7 197.7 ± 2.1 29.8
5 228.1 224.3 ± 2.5 1.7 176.9 ± 2.0 28.9
6 185.6 182.1 ± 2.4 1.9 145.6 ± 2.0 27.5
7 117.7 115.2 ± 2.0 2.2 92.1 ± 1.7 27.8

TC = 15 min
Initial Exponential Lognormal
State Analytic Simulated ε% Simulated ε%

0 1378.4 1380 ± 13 0.1 1201 ± 12 14.8
1 1363.4 1365 ± 13 0.1 1186 ± 12 15.0
2 1343.3 1345 ± 13 0.1 1169 ± 12 14.9
3 1314.6 1317 ± 13 0.2 1147 ± 12 14.6
4 1270.4 1272 ± 13 0.1 1114 ± 12 14.0
5 1195.1 1198 ± 13 0.2 1056 ± 12 13.2
6 1052.2 1058 ± 12 0.5 937 ± 12 12.3
7 745.4 751 ± 12 0.7 670 ± 11 11.3

The analytical predictions agree perfectly with the simulations for the exponentially
distributed service times in all cases. For the lognormal distribution of service times, the
deviations between the prediction and simulation are about 50% in the worst situations.
However, these cases are of little practical interest. Given a fixed number of servers, low
values of TC imply very low MFPT values that are incompatible with EMS response times,
while situations with very high values of MFPT are often related with idle infrastructure,
which are also avoided in practice.

In order to study the differences in the values of FPT under different service time
distributions, in Figure 4, we superimpose two histograms of simulated values for a system
with seven servers. Both cases correspond to an initial condition with four occupied servers
and the same exponential inter-arrival time distribution, but we use two different service
time distributions with the same mean value. The FPT distribution with exponential
service times is broader than the lognormal counterpart. Therefore, the MFPT under these
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conditions is shorter for the lognormal service time distribution (also see entry for initial
state equal to 4 in Table 1).

Figure 4. Histograms of FPT to a critical condition based on 5000 simulations from an initial state
with 4 of 7 servers occupied. We compare two service time distributions with the same value of TS:
exponential (parameter = 1/TS) and lognormal (meanlog = 3.6867 and sdlog = 0.4465).

Now, we investigate what happens with the residence probabilities in the long time
limit. The analytical result given by the Erlang formula has been proven for systems
without queue or M/G/L blocking systems [19,20]. That is, if every server is busy when a
call arrives, the call is lost; however, it is instructive to analyse the situation of a system
with queue. The probability of residence in the queue, P(n > L), is equivalent to the
probability absorbed in the site L + 1 of the Markov chain. From Equation (A11), we can
see that the probabilities in Equation (4) are the renormalized residence probabilities of a
system with a queue in the interval [0, L]. To find out if this is also the case for lognormal
service time distributions, we run our simulator 107 min in order to visit each state several
times. In the first column of Table 2, we show the analytic result of Equations (A11)–(A13)
and compare this prediction with the simulated values using four different service time
distributions: an exponential and three different lognormal service time distributions—all
of these with the same value TS = 44.1 min (TC = 10 min in all cases). The value sdlog =
0.25 corresponds to the almost symmetric case of the lognormal distribution, and sdlog = 1
corresponds to the more asymmetric situation (see Figure 6b). The exponential distribution
is the case completely asymmetric, where the distribution does not have a maximum value.
For comparison, we also introduce the middle value sdlog= 0.625.
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Table 2. Comparison among analytic and simulated long-run probabilities of residence in each state of
a system with seven servers, where q denotes the state with queued calls. All simulations correspond
with a simulated running time of 1× 107 min. In all cases, TC = 10 min and TS = 44.1 min, but the pa-
rameters in of the lognormal distributions are given by the pairs (meanlog, sdlog): (a) (3.75521, 0.25),
(b) (3.59115, 0.625) and (c) (3.28646, 1.0). See Figure 6b.

State Analytic Exponential Lognorm (a) lognorm (b) lognorm (c)
0 0.012 0.011 0.011 0.011 0.012
1 0.051 0.050 0.049 0.050 0.052
2 0.112 0.112 0.109 0.111 0.113
3 0.165 0.165 0.164 0.164 0.165
4 0.182 0.182 0.184 0.182 0.181
5 0.160 0.160 0.167 0.163 0.158
6 0.118 0.118 0.127 0.122 0.115
7 0.074 0.074 0.085 0.081 0.075
q 0.126 0.127 0.104 0.114 0.130

The difference among analytical and simulated values are less than 5% in all states
with the exception of the queue. The analysed case with queue is a worse situation than the
finite chain with both reflecting ends, used in the derivation of Equation (4), because of the
probability of residence in the queue may be greater than the saturated state. Therefore, we
find it is valid to use the analytic result of Equation (4) for taking the average in Equation (3)
and also in the simulation of MFPT with lognormal service time distributions in a system
with queue.

In Figure 5, we show the plots of MFPT averaged over the initial conditions, < T >,
as a function of the mean inter-arrival time TC using the probabilities given by Equation (4).
We have sketched a characteristic situation for the service time, and we considered several
numbers of servers L = 5, . . . , 9. The curves clearly show the non-linear behaviour of
< T > and allow us to evaluate the quality of the fit for the simulated situations achieved
with our analytical expression.

Figure 5. Analytic (red) and simulated (blue) average MFPT with (a) exponential and (b) lognormal
distributed service times (meanlog = 3.6867 and sdlog = 0.4465). In both cases, TS = 44.1 min.
Simulated values for each value of TC correspond to an average based on 1000 executions.

Again, in the left panel, we find excellent agreement among the analytical predictions
and the simulations for exponentially distributed service times. In contrast, in the right
panel, for lognormal distributed service times, we see that the analytical curves always run
over the corresponding simulation. This fact has just been seen in Figure 4, where the FPT
distribution has a longer tail in the case of service times distributed exponentially with
respect to lognormal service times. Thus, the mean value of the FPT distribution (MFPT)
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is higher for exponential service times. Therefore, the analytic model underestimates the
number of necessary servers under a given stress condition. Drawing a horizontal line in
Figure 5b, when we move in the direction of increasing demand (that is, lowering TC), we
first cross the blue (simulated) curves in all the considered cases. This is an important fact
to keep in mind if we want to use the analytical model to find the best number of servers
in a particular operational scenario. However, the discrepancies observed between the
simulations and the closed form expression for the average MFPT are not significant enough
to cause a considerable effect in the estimation of the optimal number of servers, given the
separation among the curves for different values of L. Thus, for example, from Figure 5b,
we can see that to obtain an average MFPT of 6 hs, given TC = 14 min, six servers are
needed, whereas for TC = 10 , eight servers are needed under the same service conditions.

We also analyse the effect of asymmetry in the service time distribution on average
MFPT. For this purpose, we simulate the average MFPT for a whole family of service
time distribution with fixed TS but changing the parameter sdlog in the interval [0.25, 1],
where the minimum value corresponds to the almost symmetric case and the maximum
corresponds to the more asymmetric situation. The average MFPT as a function of the
sdlog parameter is shown in Figure 6.

Figure 6. (a) Analytic (red) and simulated (blue) average MFPT with lognormal distributed ser-
vice times with fixed TS = 44.1 min (sdlog ∈ [0.25, 1] and meanlog = ln(TS) − sdlog2/2) and
TC = 10 min. Simulated points for each value of sdlog are averages based on 1000 runs. (b) Sketches
of lognormal densities corresponding to the extreme values (black and blue) and to the middle value
(red) of sdlog in panel (a).

In all cases, the analytical prediction gives an acceptable approximation for the simu-
lated data.

Finally, in the left panel of Figure 7, we plot the probability that one or more servers
are available at the instant of a emergency call, P(n < L) [27], as a function of the time
between calls for a fixed mean service time. We are using Equation (4) for the calculation
of this probability. In the right panel, we plot the average MFPT as a function of this
availability probability for the same values of TC given in the left panel. We can observe a
very strong sensitivity of the average MFPT to the availability probability for high values
of system availability. Thus, only controlling the availability of the system is not enough
to assure a long enough time to the critical condition. A dispatcher observing a high
availability probability value might conclude that the system is running unreasonably
idle; however, the time to critical condition may be shorter than the expectation. More
interesting, however, is that the function < T > vs. P(n < L) is practically independent of
the number of servers.
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Figure 7. (a) The probability of one or more servers are free vs TC. (b) Average MFPT as a function of
the probability of servers’ availability for TC ∈ [8, 15]min. In both panels, TS = 44.1 min.

4. Concluding Remarks

MFPT is a useful KPI that allows estimating the running operative lapse of a system,
under a given stress condition, before a service disruption. In this work, we have presented
a closed-form expression to calculate the MFPT for a system of servers in parallel, and we
also provide a simulation framework for the MFPT. Our formula, based on a birth–death
process, only uses the average time between demands and the average service time. Our
results make it possible to predict the MFPT given the stress of the system at a particular
moment or to analyse the servers shortage time under generic operating conditions by
averaging over the initial states of the system. The main limitation of our results, as is
often with analytical exact results in queueing theory, is the assumption of an exponential
distribution for service times. The impact of this limiting assumption is confronted with
results of simulations using more realistic service distributions. Our results indicate that our
analytical formula is an acceptable approximation under practical situations. Interesting
potential future work may be to consider the implementation of accurate approximations
for the M/G/L problem [29] to the MFPT calculation. In addition, our simulation scheme
allows us to evaluate the MFPT in any GI/G/L/FCFS server configuration.
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Appendix A. MFPT

For a birth–death process with asymmetric and site-dependent transition probabilities
(w+

k 6= w−k ), the analytical expression for the MFPT with a reflecting boundary condition at
origin and an absorbing one at L + 1 is given by

T(0) =
L

∑
k=0

1
w+

k
+

L−1

∑
k=0

1
w+

k

L

∑
i=k+1

i

∏
j=k+1

w−j
w+

j
,

T(1) = T(0)− 1
w+

0
,

T(n) = T(0)−
n−1

∑
k=0

1
w+

k
−

n−2

∑
k=0

1
w+

k

n−1

∑
i=k+1

i

∏
j=k+1

w−j
w+

j
for 2 ≤ n ≤ L .

(A1)

For details and derivation of Equation (A1), see Section 6 in Ref. [18]. In our model with
L servers, using Equation (1) and the parameter γ defined in the text, we can recast the
products in Equation (A1) as

i

∏
j=k+1

w−j
w+

j
= γi−k

i

∏
j=k+1

j = γi−k i!
k!

. (A2)

Thus, we can also recast the sums in Equation (A1) as

n−1

∑
i=k+1

i

∏
j=k+1

w−j
w+

j
=

γ−k

k!

n−1

∑
i=k+1

i! γi , (A3)

and
n−2

∑
k=0

1
w+

k

n−1

∑
i=k+1

i

∏
j=k+1

w−j
w+

j
=

1
λ

n−2

∑
k=0

γ−k

k!

n−1

∑
i=k+1

i! γi . (A4)

Replacing the last expression in Equation (A1), we obtain in a direct manner Equation (2)
in Section 2.1.

Appendix B. Steady State

Following Ref. [8], we can construct the steady state for the problem of a Markov chain
with a reflecting boundary condition at the origin. In the long-run, the time-independent
probability of residence at state n, πn, must satisfy

ω−1 π1 −ω+
0 π0 = 0 ,

ω−n+1 πn+1 + ω+
n−1 πn−1 − (ω+

n + ω−n )πn = 0 , for n ≥ 1 .
(A5)

Thus, we can prove by induction that

πn =
ω+

n−1 . . . ω+
0

ω−n . . . ω−1
π0 =

n

∏
j=1

ω+
j−1

ω−j
π0 , for n ≥ 1 . (A6)

From the normalization condition,
∞

∑
n=0

πn = 1, results π0 = 1/Sπ , where

Sπ = 1 +
∞

∑
n=1

n

∏
j=1

ω+
j−1

ω−j
. (A7)

The existence of the steady state is then determined by the convergence of the series in
Equation (A7).
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For the model given by Equation (1), the products in Equation (A6) and (A7) can be
written as,

n

∏
j=1

ω+
j−1

ω−j
=



(
λ

µ

)n n

∏
j=1

1
j
=

γ−n

n!
, for 0 ≤ n ≤ L ,

(
λ

µ

)n L

∏
j=1

1
j

n

∏
j=L+1

1
L
=

γ−n

L!
1

Ln−L , for n ≥ L .

(A8)

Substituting Equation (A8) into Equation (A7), we obtain

Sπ =
L

∑
n=0

γ−n

n!
+

LL

L!

∞

∑
n=L+1

(L γ)−n . (A9)

The convergence of the series in the last expression only occurs if L γ > 1. In this case,

∞

∑
n=L+1

(L γ)−n =
(L γ)−L

L γ− 1
. (A10)

Substituting Equations (A8)–(A10) into Equation (A6), we obtain

πn =
1

Sπ


γ−n

n!
, for 0 ≤ n ≤ L ,

LL

L!
(L γ)−n , for n ≥ L ,

(A11)

where

Sπ =
L

∑
n=0

γ−n

n!
+

γ−L

L! (Lγ− 1)
. (A12)

In this manner, the long-term probability of having the system with calls in the waiting queue
results in

πq =
∞

∑
n=L+1

πn =
γ−L

Sπ L! (Lγ− 1)
. (A13)

The last expression is also is known as Erlang C-formula.
We now consider the case of a finite Markov chain with reflecting boundaries at the

origin and at site L. The time-independent probabilities of residence, P(n), in the each state
n satisfy Equation (A5) but are supplemented with the additional reflecting condition at L,

ω−1 P(1)−ω+
0 P(0) = 0 ,

ω−n+1 P(n + 1) + ω+
n−1 P(n− 1)− (ω+

n + ω−n ) P(n) = 0 , for n ≥ 1 ,

ω+
L−1 P(L− 1)−ω−L P(L) = 0 .

(A14)

Following the above procedure, we find the first line of Equation (A8) again, which directly
leads to Equation (4) in Section 2.1, where S is the normalization on the interval [0, L].
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