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Abstract: A method recently advanced as the conformable Euler method (CEM) for the finite differ-
ence discretization of fractional initial value problem Dα

t y(t) = f (t; y(t)), y(t0) = y0, a ≤ t ≤ b,
and used to describe hyperchaos in a financial market model, is shown to be valid only for α = 1. The
property of the conformable fractional derivative (CFD) used to show this limitation of the method is
used, together with the integer definition of the derivative, to derive a modified conformable Euler
method for the initial value problem considered. A method of constructing generalized derivatives
from the solution of the non-integer relaxation equation is used to motivate an alternate definition of
the CFD and justify alternative generalizations of the Euler method to the CFD. The conformable
relaxation equation is used in numerical experiments to assess the performance of the CEM in
comparison to that of the alternative methods.

Keywords: conformable fractional derivative (CFD); conformable Euler method (CEM); modified
conformable Euler method (MCEM); difference quotient representation (DQR); generalized frac-
tional derivative

1. Introduction

Termed the conformable Euler method (CEM), a finite difference discretization method
is adopted in [1] and justified by applying the fractional power series expansion. The
method is proposed to solve equations of the form

Tα
t y(t) = f (t; y(t)), y(t0) = y0, a ≤ t ≤ b (1)

where Tα
t y(t) denotes the conformable fractional derivative (CFD) of order α introduced

in [2], since most differential equations using the CFD do not have exact analytic solu-
tions, so that numerical approximation methods must be developed. The method has the
following form:

α
yk+1 − yk

hα
= f (tk, yk), 0 ≤ k ≤ N, where h =

b− a
N

. (2)

In [1], the method is used to solve conformable fractional differential equation systems
with time delays and in [3], it is used to calculate numerical solutions for testing the
hyperchaos of conformable derivative models for financial systems with market confidence
and ethics risk. The purpose of the present article is to show that, while the CEM (2) clearly
reduces to the ordinary Euler method, it is not valid as a generalization of the standard
forward Euler method to the CFD for 0 < α < 1, and to propose alternative generalizations.
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The CFD was introduced in [2] and is defined as

Tα
t f (t) = lim

ε→0

f
(
t + εt1−α)− f (t)

)
ε

, α ∈ (0, 1]. (3)

Among its basic properties given in [2] is that if both Tα
t f (t) and d

dt f (t) exist, then the
following identity holds:

Tα
t f (t) = t1−α d

dt
f (t). (4)

As stated in [4], “there is a debate among contemporary mathematicians about what it
really means by a fractional derivative . . . as a consequence of introducing” the CFD. While
several mathematical reasons drive this debate, the main one is the identity Equation (4),
which renders questionable the fractionality of the CFD. The following titles capture the
main problem with fractional derivatives and enumerate some of the arguments against
the fractionality of the CFD and its generalizations: What is a Fractional Derivative? [5],
No violation of the Leibniz rule. No fractional derivative [6], Local Fractional Derivatives of
Differentiable Functions are Integer-order Derivatives or Zero [7], No Nonlocality, No Fractional
Derivative [8], The flaw in the conformable calculus: It is conformable because it is not fractional [9]
(see also [10–12]). This has led to the conclusion that “from mathematical point of view the
introduced conformable derivatives does not provide any real improvement to the theory
of fractional calculus in compare with the classical fractional derivatives. Furthermore,
they bring nothing new at least as mathematical advantages in the field of the ordinary
differential equations with fractional derivatives” [10].

Such debate on its nature notwithstanding, the CFD appears to have removed a hurdle
for the use of fractional derivatives, that of being very complex for applications and not easy
to master or use (see [13]) and spurred brisk activity in studies of previously un-explored
phenomena, as is evident from the number of references in for example [12,14]. While the
debate about the “mathematical fractionality” of the CFD continues, the CFD is being used
in applications to arrive at conclusions about, among others, systems with time delays [1],
economic models of financial systems [3], classic games [15], electrical circuits [16,17],
Newtonian [18] and quantum [19] mechanics, HIV therapeutic interventions [20], general
biological modeling [21], and general sub-diffusion processes [14,22]. These continued
uses of the CFD, because of its ease of implementation, to describe various phenomena
considered important make necessary the development of tools for its use. A method has
already been devised as a generalization of the Euler method for the CFD [1] and is being
applied to problems of consequence (e.g., [1,3,15]): it is important therefore that, regardless
of its classification as fractional or not, all methods being developed with such use of
the CFD must be properly examined and benchmarked like any other for all derivative
concepts. It is in this spirit that the work presented in this article offers an assessment of
the CEM and suggests alternative methods for the generalization of the standard forward
Euler method to the CFD.

Motivated in part by dismissals of the CFD as referenced above and the reality that
phenomena are being described with methods employing the CFD, the exact spectral deriva-
tive discretization finite difference (ESDDFD) method was introduced in [23], wherein
fractionality is determined by wave type behavior of processes under study and locality is
defined by the relaxation pattern as follows:

• The Euler (ordinary) exponential function ez ≡
∞
∑

k=0

zk

k! is local, whereas the Mittag-

Leffler generalized exponential function Eα(z) ≡ Eα,1(z) =
∞
∑

k=0

zk

Γ(αk+1) is non-local

(see, e.g., [24]).
• Debye exponential wave patterns, described by Φ(t) = Φ(t0) exp(−ct) and are not

fractional, whereas Kohlrausch–Williams–Watts (KWW) stretched exponential wave
patterns, described by Φ(t) = Φ(t0) exp(−cαtα) and Φ(t) = Φ(t0)Eα(−cαtα) are
fractional (see, e.g., [25]).
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In that viewpoint, the generalized Caputo derivative can be expressed in terms of
the generalized CFD, just as the Caputo derivative can be expressed in terms of the CFD
(see, e.g., [26]). Further, the generalized RL derivative can be expressed in terms of the
generalized Caputo derivative (which is parallel to the case for the classic Caputo and RL
derivatives (see, e.g., [27]), as well as their Atangana–Baleanu extensions [28], and a parallel
RL extension of the CFD can also be constructed [23]. The ESDDFD method of constructing
generalized non-integer derivatives (NIDs) from the solution of the non-integer relaxation
equation (NIRE), wherein fractionality is determined by wave type behavior as stated
above and the CFD serves as a foundation for NIDs of both Caputo and RL types, is used
in this article to motivate and justify the suggested alternatives for the generalization of the
Euler method for the CFD.

The rest of this article is organized as follows. In the next section, the derivation of the
CEM from [1] is recalled and it is shown that the CEM is valid only for α = 1. In Section 3,
the relationship (4) is used to describe the ordinary Euler method (OEM) for the IVP (1)
and to derive a modified CEM (MCEM). Section 4 recalls the ESDDFD method, and the
exact discretization of the conformable relaxation equation (CRE) is used to justify the
MCEM as well as to motivate an ESDDFD Euler method (EDM). Numerical experiments
are presented in Section 5 assessing the accuracy, against the analytic solution of the CRE,
of the CEM, MCEM, EDM, and OEM. A discussion in Section 6 of the theoretical and
experimental results presented, as well as of recommendations based on those results,
conclude the article.

2. The Conformable Euler’s Method

In this section, the derivation of the CEM is recalled and its validity is discussed.

2.1. Derivation of the Conformable Euler’s Method

The method (2), referred to in [1,3,15] as the conformable Euler’s method for (3), is
obtained from truncation of a power series expansion as follows. Since h = tk+1 − tk, it is
assumed that there exist θk where 0 < θk < 1 is such that

y(tk+1)− y(tk) =
1
α

hα(Dα
t y)(tk) +

1
2α2 h2α

(
D2α

t y
)
(tk + θkh). (5)

Letting y(tk+1)− y(tk) −→ yk+1 − yk and substituting (Dα
t y)(tk) = f (tk, yk) into (5)

results in
yk+1 − yk =

1
α

hα f (tk, yk) +
1

2α2 h2α
(

D2α
t y

)
(tk + θkh),

or, equivalently

α
yk+1 − yk

hα
= f (tk, yk) +

1
2α

hα
(

D2α
t y

)
(tk + θh). (6)

For small enough h, ignoring the second term on the right-hand side of (6) yields the
conformable Euler’s method (2):

α
yk+1 − yk

hα
= f (tk, yk), (7)

which reduces to the usual Euler’s method for α = 1.

2.2. Validity of the Conformable Euler’s Method

Since the CFD satisfies property (4), substituting (Dα
t y)(tk) = (tk)

1−α dy
dt (tk) into (5)

results in
yk+1 − yk =

1
α

hα(tk)
1−α dy

dt
(tk) +

1
2α2 h2α

(
D2α

t y
)
(tk + θkh),
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or, equivalently

α
yk+1 − yk

hα
= (tk)

1−α dy
dt

(tk) +
1

2α
hα
(

D2α
t y

)
(tk + θh). (8)

For small enough h, ignoring the second term on the right-hand side of (8) yields

α
yk+1 − yk

hα
= (tk)

1−α dy
dt

(tk),

and therefore
α

hα−1
yk+1 − yk

h
= (tk)

1−α yk+1 − yk
h

,

from which it follows that
αh1−α = (tk)

1−α. (9)

Next, let us consider separately the cases of (9) (a) t0 = 0 and (b) t0 6= 0

(a) If t0 = 0, then tk = kh, so that

αh1−α = (tk)
1−α = (kh)1−α = k1−αh1−α,

from which we conclude that
α = k1−α,

whose only constant solution is α = 1.

(b) If t0 6= 0, then tk = t0 + kh, so that

αh1−α = (tk)
1−α = (t0 + kh)1−α = h1−α

(
t0

h
+ k

)1−α

,

from which we conclude that

α =

(
t0

h
+ k

)1−α

, (10)

whose only constant solution is α = 1. Note that, if α < 1 is assumed on the right-hand
side of (10), then for fixed t0, k, and writing the left-hand side as α(h), results in α(h)→ ∞
as h→ 0 , a contradiction.

Since (9) holds if, and only if, both (2) and (4) hold, we conclude therefore that both (2)
and (4) hold if, and only if, α = 1.

3. The Ordinary Euler’s and Modified Conformable Euler’s Methods

Next, the ordinary Euler method (OEM), obtained by re-writing the CFD in terms of
the integer-order derivative, and a modified Euler method proposed in [29] are described.

3.1. The Ordinary, Integer-Order Euler’s Method

As mentioned in the introduction, one of the main reasons for the dismissal of the
CFD as an NID is the property (4), which may be used to re-write Equation (1) in the
following form,

d
dt

y(t) = tα−1 f (t; y(t)), y(t0) = y0, a ≤ t ≤ b. (11)

However, because of the singularity at t = 0, the re-written problem (11) is ill-posed
and its ordinary Euler method (OEM) representation,

yk+1 − yk
h

= tα−1
k f (tk, yk), (t0, y0), (12)
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cannot be implemented on any interval of the form [0, b] without input additional to that
of the given IVP (1). It can therefore be argued that the problem solved by implementing
(12) with such additional information, such as

yk+1 − yk
h

= tα−1
k f (tk, yk), (t0, y0), (t1, y1), (13)

which is used in Section 4, is not the same as (12).

3.2. The Modified Conformable Euler’s Method

In [29], a method consistent with the definition of the CFD and property (4) is obtained
by rewriting t1−α as a derivative and then using the α = 1 definition of the derivative as
follows:

Tα
t y(t) = t1−α d

dt y(t) =
(

d
dt y(t)

)
/
(

1
α

d
dt (t

α)
)

= lim
h→0

(
y(t+h)−y(t)

h

)
/
(

1
α
(t+h)α−tα

h

)
= αlim

h→0

(
y(t+h)−y(t)
(t+h)α−tα

)
.

(14)

For small enough h, therefore, and making the identifications

t −→ tk, t + h −→ tk+1 , y(t + h) −→ yk+1, y(t) −→ yk (15)

in (14) result in the following discrete representation of C
0 Tα

t y(t):

Tα
t y(t) = αlim

h→0

(
y(t + h)− y(t)
(t + h)α − tα

)
→ α

yk+1 − yk

(tk+1)
α − (tk)

α .

Based on the above, it is claimed in [29] that the modified conformable Euler’s method
for (1) is therefore given by

α
yk+1 − yk

(tk+1)
α − (tk)

α = f (tk, yk), (16)

valid for 0 < α ≤ 1, which is also a generalization of the Euler method for α = 1.

4. Alternative Definition of the CFD and Justification of the MCEM
4.1. An Alternative Definition of the CFD from the ESDDFD Method

The second derivation of a modified CEM is based on the exact discretization of the
initial value problem for the conformable relaxation equation, obtained from the following
results from [23], in which it is generally assumed that the IVP (1) is being discretized on
intervals of the form [0, b].

Theorem 1. For a given definition of an NID, let (t, α; y0) denote the analytic solution of initial
value problem for the relaxation equation:

Dα
t y(t) = −y(t), y(0) = y0, 0 ≤ t ≤ b; 0 < α ≤ 1. (17)

Thus, a corresponding difference quotient representation (DQR) of Caputo type con-
sistent with that derivative is

GC
0 ∆α

t y(t) =
y(t + h)− y(t)

(1− (t + h, α; y0)/(t, α; y0))
. (18)

Assuming y0 = 1 and using the solution of (17) for the CFD,

(t, α) = exp
(
− 1

α
tα

)
, (19)
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which describes behavior consistent with local, fractional, KWW wave patterns, in Equation
(18) leads to the following DQR for the CFD:

CFD
0 ∆α

t y(t) =
y(t + h)− y(t)(

1− e
−1
α ((t+h)α−tα)

) . (20)

Taking the limit as h→ 0 in Equation (20) yields the following alternative definition
of the CFD:

Definition 1. Given a real-valued function on [0, ∞), the conformable fractional derivative has
the following alternative definition:

Tα
t f (t) = C

0 Tα
t f (t) ≡ lim

h→0
CFD
0 ∆α

t f (t) = αlim
h→0

f (t + h)− f (t)
(t + h)α − tα

,

where C
0 Tα

t f (0) is understood to mean C
0 Tα

t f (0) = lim
t→0+

C
0 Tα

t f (t).

The following result regarding the basic properties of C
0 Tα

t above has elementary proofs
that follow directly from Definition 1 and are omitted here; it is the same as Theorem 2.2
of [2] and is a particular case of Theorem 2.1.6 of [23].

Theorem 2. Let α ∈ (0, 1] and the functions f , g be α-differentiable at a point t ∈ [0, ∞). Then,
for all real-valued constants A, B, K, p, the following properties hold:

1. C
0 Tα

t (A f + Bg) = AC
0 Tα

t ( f ) + BC
0 Tα

t (g)
2. C

0 Tα
t ( f g) = gC

0 Tα
t ( f ) + f C

0 Tα
t (g)

3. C
0 Tα

t

(
f
g

)
= 1

g2

(
gC

0 Tα
t ( f )− f C

0 Tα
t (g)

)
4. C

0 Tα
t (t

p) = ptp−α

5. C
0 Tα

t (K) = 0

6. If f (t) is first order differentiable, then it also holds that C
0 Tα

t ( f (t)) = t1−α d f (t)
dt

Direct application of Definition 1 yields the following values for some common
functions, which are identical to those obtained in [2], for p, k ∈ R:

1. C
0 Tα

t (t
p) = ptp−α

2. C
0 Tα

t (1) = 0

3. C
0 Tα

t

(
ekt

)
= kt1−αekt

4. C
0 Tα

t (sinkt) = kt1−αcoskt
5. C

0 Tα
t (coskt) = −kt1−αsinkt

6. C
0 Tα

t (t
α) = 1

7. C
0 Tα

t

(
e

1
α tα

)
= e

1
α tα

8. C
0 Tα

t

(
sin 1

α tα
)
= cos 1

α tα

9. C
0 Tα

t

(
cos 1

α tα
)
= −sin 1

α tα

Remark 1. Since the alternative definition of the conformable fractional derivative, Definition 1,
has the same basic properties and derivative values as the conformable fractional derivative, it is
the same as the CFD, that is, C

t0
Tα

t [ f (t)] = Tt0
α ( f )(t), where the right-hand side uses the notation

in [9]. It should therefore be noted that, as recently pointed out in [30], the alternative definition
shows that the conformable derivative for differentiable functions results from the integer-order
derivative with the fractional change of variable u = (t− t0)

α/α, which can be easily seen. To
see the equivalence of the CFD and this change of variable, assume f is differentiable. Then, since
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C
t0

Tα
t f (t) = Tt0

α f (t)(t) = (t− t0)
1−α d

dt f (t) and du(t)
dt = (t− t0)

α−1, direct substitution in
identity (4) and the chain rule yield

C
t0

Tα
t f (t) = (t− t0)

1−α d f (t)
dt

= (t− t0)
1−α d f (u)

du
du(t)

dt
= (t− t0)

1−α d f (u)
du (t− t0)

α−1

= d f (u)
du

4.2. Justification of and an Alternative to the Modified Conformable Euler’s Method

The identifications (15) applied in Equation (18) yield the following discretization rule
for Dα

t y(t) as a corollary to Theorem 1.

Corollary 1. Let (t, α; y0) be as in Theorem 1. Then the following is a consistent discrete represen-
tation of Dα

t y(t):

Dα
t y(t) −→ GC

0 ∆α
tk

yk ≡
yk+1 − yk

(1− (tk+1, α; y0)/(tk, α; y0))
.

The denominator is a complex function of both the step size, h = tk+1 − tk, and lattice
point, tk, and is described in [23] as a generalization of the nonstandard finite difference
(NSFD) denominator [31]. Similarly applying the identifications (15) in Definition 1 and
using (t, α) as given by Equation (19) in Corollary 1 therefore results in the following
discrete representations of the CFD:

Modified Conformable Euler : C
0 Tα

t y(t) = αlim
h→0

(
y(t + h)− y(t)
(t + h)α − tα

)
→ α

yk+1 − yk

(tk+1)
α − (tk)

α .

NSFD Conformable EDM : C
0 Tα

t y(t) = αlim
h→0

y(t + h)− y(t)(
1− e−

1
α ((t+h)α−tα)

) → α
yk+1 − yk(

1− e−
1
α ((tk+1)

α−(tk)
α)
) .

A clear corollary to the foregoing are the following Euler discretization rules for the
IVP (1), which provide justification of, and an alternative to, the MCEM as extensions of
the Euler method to the CFD:

Corollary 2. The following discrete representations are generalizations of the (forward) Euler
method for the CFD valid for α ∈ (0, 1]:

Modified Conformable Euler : α
yk+1 − yk

(tk+1)
α − (tk)

α = f (tk, yk)

ESDDFD-based Conformable Euler : α
yk+1 − yk(

1− e−
1
α ((tk+1)

α−(tk)
α)
) = f (tk, yk).

5. Comparisons of Discrete Models of the Conformable Relaxation Equation

To demonstrate that the CEM is not a viable extension of the Euler method to the
CFD for α ∈ (0, 1) and to validate the suggested alternatives, comparisons against the
analytic solution are presented in graphical and tabular form for the following discrete
representations of the CRE obtained from the conformable Euler, ordinary Euler, modified
conformable Euler, and ESDDFD-based Euler methods (respectively, CEM, OEM, MCEM,
and EDM):

CEM : yk+1 = yk − 1
α hαyk,

OEM : yk+1 = yk − htα−1
k yk,

MCEM : yk+1 = yk − 1
α

(
(tk+1)

α − (tk)
α)yk

EDM : yk+1 = yk − 1
α

(
1− e−

1
α ((tk+1)

α−(tk)
α)
)

yk
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5.1. Tabular Comparisons of Actual and Relative Errors

In Table 1 relative error comparisons are given for various values of α at tk = 1.00.

Table 1. % error by method compared to actual value at tk = 1.00.

α Exact Value EDM CEM MCEM OEM

0.99 0.36 0.00 5.06 1.29 1.30

0.98 0.36 0.00 8.93 1.32 1.38

0.97 0.36 0.00 12.90 1.34 1.46

0.96 0.35 0.00 16.80 1.37 1.54

0.95 0.35 0.00 20.80 1.40 1.62

0.62 0.20 0.00 99.60 4.56 7.31

It is clear from Table 1 that, for this simplest example, the CEM performs poorly
compared to all other methods and yields significantly incorrect approximations for α <
0.98, with relative error reaching almost 100% at α = 0.62. While the OEM is almost
comparable to the MCEM for α close to unity, its relative error is almost double that of the
MCEM for α < 0.62. The EDM, as expected for this example, has the same values as the
analytic solution.

5.2. Graphical Comparisons of Actual and Relative Errors

Comparisons are presented in terms of solution profiles as well as actual and relative
errors for α = 0.95 in Figure 1a–c and for α = 0.5 in Figure 2a–c.

Figure 1. Analytic solution profile of (17) compared on [0, 1] to approximations by the EDM, CEM, MCEM, and OEM
at α = 0.95 with h = 0.025: (a) solution values (yk), (b) absolute errors (|y(tk)− yk|) and (c) relative (percentage) errors
( |yk−y(tk)|

y(tk)
(100)).
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Figure 2. Analytic solution profile of (17) compared on [0, 1] to approximations by the EDM, CEM, MCEM, and OEM
at α = 0.5 with h = 0.025: (a) solution values (yk), (b) absolute errors (|y(tk)− yk|) and (c) relative (percentage) errors
( |yk−y(tk)|

y(tk)
(100)).

6. Conclusions

A discretization method, termed the conformable Euler’s method, for the fractional
initial value problem with the conformable fractional derivative has been considered that
extends the integer Euler method to the conformable derivative. Its justification using a
fractional series expansion is recalled and it is shown that the assumption C

0 Tα
t ( f )(t) =

t1−α d
dt f (t) leads to the conclusion that α = 1 in the method. The ordinary Euler method,

obtained by rewriting the CFD in terms of the integer-ordered derivative, is described and
its main implementation disadvantage briefly discussed. A modified conformable Euler’s
method is proposed that is derived from rewriting the term of the right-hand side of the
equation assumed above as a derivative quotient and then using the integer definition of
the derivative.

To justify the proposed modification of the CEM, the ESDDFD method, wherein
fractionality is determined by wave type behavior of processes under study, of generalized
difference quotient derivative representation is recalled. An alternate definition of the CFD
is presented that is derived from the analytic solution of the CRE, which describes fractional
KWW wave behavior, and it is shown that it has the same basic properties and returns the
same derivative values as the CFD. It is observed that the alternate definition shows that
the CFD is a fractional change of variable rather that a fractional operator. The MCEM
follows as a limit of, and is therefore consistent with, the exact ESDDFD representation of
the CRE, whereas the CEM is not.
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Numerical experiments are then presented to assess the accuracy of the CEM in
approximating the solution of the CRE. The CEM model of the CRE is compared with
three discrete models obtained from the ordinary Euler, modified conformable Euler, and
conformable NSFD (or ESDDFD) methods. Results are presented for several values of
α, 0.62 ≤ α ≤ 0.99, showing errors for the four models relative to the analytic solution,
as well as those of profile and error graphs for α = 0.95, α = 0.5. While comparisons are
presented only for a few values of α, the results displayed are typical and conclusively show
that the CEM yields incorrect approximations, with respective relative errors of 5.06%,
20.80%, and 99.60% for α = 0.99, α = 0.95, and α = 0.62. In comparison, the relative errors
at the same values of for the OEM and MCEM are, respectively, 1.30%, 1.62%, and 7.31%
and 1.29%, 1.40%, and 4.56%; the EDM has no errors for the CRE since it is exact. Based
on these numerical results, and with support of the theoretical arguments presented, it is
concluded that the CEM is not a valid generalization of the standard forward Euler method
to the CFD for 0 < α < 1, and that the MCEM and EDM offer more accurate alternative
generalizations.
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Abbreviations

CFD conformable fractional derivative
CEM conformable Euler method
OEM ordinary Euler method
MCEM modified conformable Euler method
NSFD nonstandard finite difference
ESDDFD exact spectral derivative discretization finite difference
EDM ESDDFD-based, NSFD Euler method, difference quotient representation
CRE conformable relaxation equation
KWW Kohlrausch–Williams–Watts
NID non-integer derivatives
NIRE non-integer relaxation equation
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