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Abstract: The need for comparative backtesting in the Basel III framework presents the challenge
for ranking of internal value-at-risk (VaR) and expected shortfall (ES) models. We use a joint loss
function to score the elicitable joint VaR and ES models to select competing tail risk models for the
top 9 emerging markets equities and the emerging markets composite index. We achieve this with
the model confidence set (MCS) procedure. Our analysis span two sub-sample periods representing
turbulent (Eurozone and Global Financial crises periods) and tranquil (post-Global Financial crisis
period) market conditions. We find that many of the markets risk models are time-invariant and
independent of market conditions. But for China and South Africa this is not true because their risk
models are time-varying, market conditions-dependent, percentile-dependent and heterogeneous.
Tail risk modelling may be difficult compared to other markets. The resemblance between China and
South Africa can stem from the closeness between their equities composition. However, generally,
there is evidence of more homogeneity than heterogeneity in risk models. This is indicated by
a minimum of three models (out of six) per equity in most of the countries. This may ease the
burden for risk managers to find the optimal set of models. Our study is important for internal
risk modelling, regulatory oversight, reduce regulatory arbitrage and may bolster confidence in
international investors with respect to emerging markets equities.

Keywords: elicitability; model confidence set; model homogeneity; time-varying risk

JEL Classification: C10; C14; C8; G1

1. Introduction

Value-at-risk (VaR) and expected shortfall (ES) have been the two main regulatory cap-
ital requirement and portfolio risk measures for a long time. However, both of them suffer
practical and coherent risk weaknesses (Burzoni et al. [1]; Cont et al. [2]; Fissler & Ziegel [3];
Fissler et al. [4]; Nolde & Ziegel [5]). Though, ES may have been espoused as a coherent
measure of risk, it is sensitive to tails and can lead to greater periodic capital charges unlike
VaR (Chang et al. [6]). Large ES values also tend to be more sensitive toward regulatory ar-
bitrage and parameter specification (Kellner and Rösch [7]). But more importantly, it is the
lack of elicitability of the ES that poses concerns (Fissler & Ziegel [3]; Nolde & Ziegel [5]).
Elicitability can be defined as the property that allows competing risk measures to be
comparable (Fissler & Ziegel [3]).

On the other hand, modeling tail risks of financial assets continue to be a daunting
task for risk managers. There are a myriad of distributional innovations to choose from in
the quest to address stylised facts of assets returns. The past decade has seen a proliferation
of competing models (Bernardi & Catania [8]), not only for use by econometricians, but
also for internal risk managers of financial firms. Hence, in recent time, the objective of any
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risk manager has not been to find a single best model but to find a relatively small set of
ordered superior models, at a certain confidence level (Hansen et al. [9]).

Nonetheless, choosing a set of risk models should not only be an internal affair, but it
should be in line with regulatory framework. The Basel III framework is expected to be
fully phased by 1 January 2027 (Patton et al. [10], https://www.bis.org/press/p181004.htm,
accessed on 31 August 2021). The Basel III framework requires VaR and ES models to
be likened to their standardised approach known as comparative backtesting (i.e., where
a bank’s internal risk model is a comparable standardised approach (Fissler, Ziegel, &
Gneiting [4]. The approach involves ranking a set of competing models based on the
forecast ability). While VaR models lend themselves to be ranked, ES lacks this property.
However, at the higher level, the VaR and ES, hereafter referred to as (VaR, ES), is jointly
elicitable. The Fissler & Ziegel [3] Loss (FZL) function is an appropriate associated score.
This property of the (VaR, ES) offers the possibility to rank competing risk models based
on a consistent scoring function. Elicitable risk measures, therefore, serve as the bridge
between internal models of financial institutions and standardised regulatory approaches.
This has opened a fledgling area in financial risk model selection in direct agreement with
regulatory standards.

It is clear that risk modelling of EMs equities abound in the literature. Notable among
them include Bao et al. [11], Del Brio et al. [12], Hwang & Satchell [13], Ji et al. [14], Miletic &
Miletic [15], etc. Risk modelling of EMs equities has become important because the financial
imprudence of both developed markets and EMEs can put the global financial system in
despair. There are undeniable reasons for this assertion. The EMEs have become a large
and important component of international finance since they connected with each other
and with developed markets. For instance, the Organisation for Economic Corporation and
Development Centre indicates that, economic and political power have moved towards
EMEs over the last two decades (Kharas [16]). This indicated by an increasing number
of EMEs becoming strong centres of growth as their share of global income have risen
significantly (Kharas [16]). Further, given the explicit indication in the literature that EMs
equities are high risk despite their high returns, a strong risk management process that
aligns with regulatory framework is desirable. Some episodes of capital flight from EMEs
can be attributed to this feature (see Aizenman et al. [17]; Enginar et al. [18]; Ghosh &
Saggar [19]; Mishra et al. [20]). This risk modelling and management practice for EMs
equities may elicit international investors, motivated not only by high returns, but also
with the knowledge that risks are adequately quantified. It is for these reasons that our
study is focused on EMEs to contribute to the literature on the best practice risk modelling
and management on equities.

Nonetheless, many studies on model ranking and selection that are consistent with
the current regulatory framework are largely missing. In this study, we seek to model and
forecast tail risk of sampled emerging market equities using the (VaR, ES) model in light of
the current regulatory framework. In doing so, we further employ the Hansen et al’s [9]
model confidence set (MCS) procedure in ranking and selection of superior set models
(SSMs) of the forecasted GAS models based on the FZL function. We use the 95% confidence
level in selecting SSMs.

In the emerging market economies (EMEs) literature, several studies have used the
Akaike, Consistent Akaike, Bayesian and Hannan-Quinn Information Criteria; AIC, BIC
and HQIC, respectively, for risk model ranking and selection in the univariate case. Others
also include the Log-likelihood (LogL), root mean squared error (RMSE), mean absolute er-
ror (MAE), etc. (Blazsek & Hernández [21]; Gong et al. [22]; Troster et al. [23]; Owusu Junior
& Alagidede [24]). In light of recent arguments on combined tests, Khalaf et al. [25] and
Kratz et al. [26] introduce multilevel and multinomial backtesting of ES based on series
of VaR forecasts, respectively. Regression-based backtest approach has for both VaR and
ES is also becoming popular in the literature (see Pradhan & Tiwari [27]; Barendse [28];
Dimitriadis & Bayer [29]; Couperier & Leymarie [30]; etc.).

https://www.bis.org/press/p181004.htm
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However, these approaches have important shortcomings. First, they do not rank all
models concurrently as a set. Model criteria values are compared after they have been
estimated independent of each other. This approach plays down on the interdependence
that may exist in the competing risk models (Han & Hausman [31]). Second, the criteria do
not possess any consistent scoring function to allow for model ranking. Ranking based on
only their magnitude may be inadequate.

Testing procedures for “best” fitting models include; Reality Check (White [32]),
Stepwise Multiple Testing (Romano & Wolf [33]), Superior Predictive Ability (Hansen &
Lunde [34]) and Conditional Predictive Ability (Giacomini & White [35]), are among the
recent ones in the literature. These approaches lack a consistent scoring function such as
the FZL function. Even though, the studies of Barendse [28], Dimitriadis & Bayer [29] and
Couperier & Leymarie [30] employ a consistent scoring function, their regressions require
the specification of covariates which may be arbitrary or complicate the models. Lastly,
Taylor’s study [36] is also weak in the sense that it only applies the asymmetric Laplace
distribution. We employ the model confidence set (MCS) technique of Hansen et al. [9]
to construct a ‘superior’ set of competing (VaR, ES) models based on the FZL function
of emerging markets (EMs) equities. To have a complete picture, we also analyse the
Morgan Stanley Capital International (MSCI) emerging markets index (EM index). This is
used in the absence of a portfolio consisting of the top 9 EMs equities. The MCS follows
a sequence of tests to perform the dual task of creating a superior set model (SSM) and
ranking the models therein. The null hypothesis of equal predictive ability (EPA) (Diebold
& Mariano [37]) is used in selecting SSM.

Our study makes important contributions to the literature on EMs equities risk anal-
ysis. First, this is among the first studies to model tail risks in EMs equities with the
joint (VaR, ES) model based on FZL function, hence, conforming to the current regulatory
framework (i.e., Basel III). The number of available risk models has never been greater
and hence intensifies the dilemma of risk managers to ascertain the “best” model while
adhering to regulatory requirements. Moreover, it remains a concern for both internal risk
managers and regulators to quantify tail risks to safeguard financial catastrophes that may
result from inaccurate estimates and forecasts. We offer some novel insights to perform
this task on EMs equities in order to reduce regulatory arbitrage.

Second, we surmise that risk modelling and selection that are consistent with regula-
tory standards may bolster confidence in the vogue international investor concerning EMs
equities. One can imagine the prospects of capital flows into EMEs under the circumstance.
Third, given that EMEs which are prone to episodes of turbulent market dynamics, this
study is particularly useful as we perform analysis across both turbulent and tranquil
market conditions. These are Eurozone crisis and global financial crisis (EC-GFC) and
post-crisis (PC). The EC-GFC period spans between 5 January 2007 and 7 June 2013 and
the PC period spans between 10 June 2012 and 18 January 2019. The selected sub-samples
are supported in the literature (see, Dimitrakopoulos et al. [38]; Mollah & Mobarek [39]).
This provides a time-varying assessment of EMs risk dynamics and mitigates the prob-
lem of model misspecification. Further, we use different distributional innovations to fit
the risk models to sidestep single model misspecification as well as improve forecasting
performance (Bernardi & Catania [8]).

Four, our study provides an opportunity to classify EMs equities portfolios as well
diversified or not. It can be inferred from the MCS procedure that equities which exhibit
a large SSM size are homogeneous and those with small SSM sizes are heterogeneous.
We find that SSMs with at least one half of the initial set of models to be homogeneous.
Similarly, we take SSMs with less than one half of the initial set of models to be heteroge-
neous. Empirically, homogeneity in the SSM is suggestive of well diversified portfolios.
This knowledge is critical to inform international investors in asset selection and risk
management (see Bernardi & Catania [8]).

Our empirical results show that, for many of the equities, most of the six initial
models selected make the SSM. The least number of members in the SSM recorded is three.



Math. Comput. Appl. 2021, 26, 63 4 of 17

However, the EM index has SSM of one across sub-periods and percentiles and hence the
most heterogeneous. We also find that model ranks differ for many markets in the different
sub-periods. This suggests the need to be mindful of market dynamics when modelling
tail risk. Although six may not be a large number, large SSM is important for portfolio
selection under different market conditions.

2. Theoretical Models and Empirical Methodology

This study partly reproduces the methods description of Owusu Junior & Alagidede [24])
since the section uses parts of the methods employed in that paper. The selected tech-
niques appeal to the elicitability of the joint (VaR, ES) model (Gneiting [40]; Weber [41]).
They permit model selection, estimation, forecast comparison and forecast ranking, etc.
(Fissler et al. [4]).

2.1. Univariate GAS Model Specification

The relationship between the FZL function and the generalised autoregressive score
(GAS) models (Creal et al. [42]; Harvey [43]) is exploited as they both use loss function as
an impetus of time-variation in the parameters (Ardia et al. [44]).

Let N × 1 vector yt be the dependent variable, ft the time-varying parameter vector,
xt a vector of covariates, and θ a vector of static parameters; the filtration { ft, Ft} ∈ Ft is
given as

Ft =
{

Yt−1, Ft−1, Xt
}

, f or t = 1, . . . , n (1)

where Yt = {y1, . . . , yt}, Ft = { f0, f1, . . . , ft}, and Xt = {x1, . . . , xt}. Further, yt is
generated by observation density and parameter vector θ driven by

yt ∼ p(yt| ft, Ft; θ) (2)

as the score of the conditional distribution. ft is updated by an autoregressive mechanism
in (3):

ft+1 = ω +
p

∑
i=1

Aist−i+1 +
q

∑
j=1

Bj ft−j+1, i = 1, . . . , p, j = 1, . . . , q, (3)

where Ai and Bj are matrices of requisite dimensions, ω is a vector of constants and
st = st(yt, ft, Ft; θ) is the function of past data. The unknown parameters (p + q + 1) are
all functions of θ (ω = ω(θ), Ai = Ai(θ), Bi = Bi(θ)) evaluated at rt = lnPt − lnPt−1,
log-return in conventional notations). ft is updated to ft+1 in (3) via (4) with a realised yt
where S(.) is a matrix.

st = St∇t, ∇t =
∂lnp(yt| ft, Ft; θ)

∂ ft
, St = S(t, ft, Ft; θ) (4)

The Equations (2)–(4) define the GAS with orders p and q. GAS(p, q) gives dependence
of the driving mechanism in (3) on the scaled score vector in (4). We use GAS(1, 1) in this
study for all estimations (see Creal et al. [42]; Ardia et al. [44]). It may be worthwhile to
compare the GAS models with generalised autoregressive conditional heteroscedasticity
(GARCH) models of various dimensions, however, the outputs from our estimations in
this study are overly voluminous (the tables presented are compressed) for brevity reasons.
Further, we do not want deviate from the focus of the study by over-populating results.
The GARCH models can be explored for further research purposes.

2.2. The FZL Function

For a forecast x ∈ Rk issued in the occurrence of the event y ∈ Rd, the forecasting
model is penalised by the real value S(x, y), and k, d are dimensions. Thus S(.) is a squared
error inversely relating forecast values and their original counterparts. Fissler and Ziegel [3]
vouched for a strictly F -consistent for functional T(F) of a random variable X. This should
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be the unique minimiser of the expected loss EF[S(x, y)] for every F ∈ F if the probability
distribution of F is in the domain of T. Given a non-strictly consistent scoring function
S :→ R2 → R , for any random variable X with finite mean, and for α ∈ (0, 1), ES can be
defined as

ESα(X) =
1
α

∫ α

0
VaRβ(X)dβ, (5)

where VaRα(X) = inf{x ∈ R : P(X ≤ x)}. Unlike ES, VaR at α ∈ (0, 1) has a strictly
consistent scoring function of the form

SV(v, x) = (I{x ≤ v} − α)(G(v)− G(x)), (6)

and thus, elicitable with a unique α-quantile, where G is strictly increasing. Nonetheless,
(VaRα, ESα) is conjointly elicitable as shown in (7)

(VaRα(X), ESα(X)) = argminv,e∈R2E[SV,E(v, e, X)], (7)

with a scoring function, specifically the FZL function given in (8)

SV,E(v, e, x) = (I{x ≤ v} − α)(G1(v)− G1(x)) +
1
α

G2(e)I{x ≤ v}(v− x) + G2(e)(e− v)−G2(e), (8)

where V, E, v and e denote VaRα, ESα and their corresponding estimates.
It is obvious from (7) that G1 and G2 are strictly increasing continuously differentiable

functions such that E[G1(X)] exists, limx→−∞G2(x) = 0, and G′2 = G2 (Fissler et al. [4]).
The second part of SV,E shows the dependence of ESα on VaRα to be elicitable. The FZL
used in the GAS framework is the parameterisation of Patton et al. [10] by specifying
the difference for two forecasts (v1t, e1t) and (v2t, e2t) as LFZ(Xt, v1t, e1t; α, G1, G2) −
LFZ(Xt, v2t, e2t; α, G1, G2). The resulting loss function FZ0 is given as

LFZ0(X, v, e; α) =
1
αe

I{X ≤ v}(v− X) +
v
e
+ log(−e)− 1. (9)

For (9) to be valid the strictly negative and homogeneous loss differences assumptions
must hold for VaR and ES (see, Fissler et al. [4]; Fissler & Ziegel [3]; Patton et al. [10]).

2.3. The MCS Procedure

Because of elicitability of the (VaR, ES) model, the FZL function permits the MCS
procedure to construct a SSM and ranks them based on a loss function that satisfies
generic weak stationarity conditions (Bernardi & Catania [8]). We employ the Mariano
and Preve [45] (MDM) as well as West [46] to examine the equal predictive ability (EPA)
hypothesis. The MDM is the multivariate version of Diebold & Mariano [37] which is only
for the bivariate case. Together with the MCS procedure, these fit well with the multiple
competing models in this models in this study.

In formal terms let rt, r̂i,t denote the log-return at time t and the output of model i at
time t, respectively. Then the loss function

Li,t = L(rt, r̂i,t), (10)

can be defined as the difference between r̂i,t and rt. Following González-Rivera et al. [47]
and Bernardi et al. [48], the FZL loss function (under MCS) can be defined as

`(rt, FZLτ
t ) = (τ − dτ

t )(rt − FZLτ
t ), (11)

where FZLτ
t signifies the τ-level predicted FZL at time t, in the filtration Ft−1, and

dτ
t = I(rt < FZLτ

t ) is the τ-level FZL loss function. The MCS algorithm begins with an
all-encompassing initial set of alternative models of m−dimension, M0 at a confidence level
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α. It then builds m∗ ≤ M0 set models called the superior set model (SSM). The SSM, M̂∗1−α
comprises all models with superior predictive ability as per the selected loss function.

For model selection, let

dij,t = `i,t − `j,t, i, j = 1, . . . , m, t = 1, . . . , n (12)

denote the loss differential between models i and j at time t. Also let

di.,t = (m− 1)−1 ∑
j∈M

dij,t i = 1, . . . , m, (13)

denote the sample loss of model i relative of another model j at time t and M is the number
of models. The hypothesis for EPA can be formulated as

Ho,M = ci,j = 0, ∀ i, j = 1, . . . , m,
HA,M = ci,j 6= 0, f or some i, j = 1, . . . , n,

(14)

where ci,j is the estimated loss of model i relative of other set of models j. The required test
statistic is

ti,j =
dij√

ˆvar
(

dij

) , f or i, j ∈ M, (15)

where dij = m−1 ∑m
t=1 dij,t denotes the relative sample loss between the ith and jth models,

and ˆvar
(

dij

)
is the bootstrapped estimate of var(dij). We use the MCS package in R

(Bernardi & Catania [49]) to perform a block-bootstrap with 5000 re-samples. Significant
parameters are obtained by fitting an autoregressive (AR(p)) process on all di,j terms with
a maximum block length p. Lastly, according to (Hansen et al. [9]), Ho,M naturally fits into
the test statistic:

TR,M = max
i,j∈M

∣∣tij
∣∣ (16)

For a complete description of the MCS procedure one may refer to (Bernardi &
Catania [8,49]; Hansen & Lunde [34]; West [46]; White [32]; etc.).

With support from the literature that financial returns exhibit heavy-tails as well as
volatility clusters (Cajueiro & Tabak [50]; McNeil & Frey [51]; McNeil et al. [52]), we select
distributions that can capture these features. We use six different asymmetric distributions
of fit (VaR, ES) in the GAS model. These are skewed-Gaussian (SNORM), student-t (STD),
skewed-student-t (SSTD) (Fernández & Steel [53]); asymmetric student-t with two tail
decay parameters (AST), asymmetric student-t with one tail decay parameter (AST1)
(Zhu & Galbraith [54,55]); and asymmetric Laplace distribution (ALD) (Kotz et al. [56]).
These distribution have been proven to work in the baseline GAS framework (Benardi &
Catania [49]).

3. Data and Preliminary Analysis

We use the daily log-returns rt = lnPt − lnPt−1, where Pt and Pt−1 are index prices (in
US dollars) at time t and t− 1, respectively. Our data are the top nine (9) emerging markets
(EMs) indices according to Morgan Stanley Capital International (MSCI) classification
from 5 January 2007 to February 18, 2019. The top 9 EMs index country constituents are
China (33%), South Korea (13.02%), Taiwan (11.35%), India (9.16%), Brazil (7.23%), South
Africa (5.89%), Russia (3.77%), Mexico (2.65%) and Thailand (2.34%). All others take up
the remaining 11.59%. The price data were gleaned from the Bloomberg Terminal. Our
analysis span across Eurozone crisis and global financial crisis (EC-GFC) and post-crisis
(PC). The EC-GFC period spans between 5 January 2007 and 7 June 2013 and the PC period
span between 10 June 2012 and 18 January 2019, representing stressed and tranquil market
periods, respectively. Our selection of sub-sample periods are informed by the fact that



Math. Comput. Appl. 2021, 26, 63 7 of 17

both the EZC and GFC affected EMEs alike (Cheung et al. [57]; Crotty [58]; Martin [59];
Mollah et al. [60]; Nguyen & Pontell [61]).

We follow a typical out-of-sample exercise (i.e., estimates are made using in-sample
period of length M, predictions on the conditional distribution in the out-of-sample period
H, and model comparison made according to their out-of-sample performance). Hence
h-step ahead prediction of the return distribution at time M + h along corresponding (VaR,
ES) model level are generated in a recursive manner in line with Marcellino et al. [62] until
the end of the series T. We use h = 1 for one-step ahead daily forecasting.

The estimation and forecasting windows are chosen as follows:
EC-GFC gets M = 1117 (5 January 2007–18 April 2011), H = 559 (19 April 2011–

7 June 2013) and PC has M = 740 (21 November 2014–14 July 2017), H = 368 (22 July 2017–
19 February 2019), where M denotes in-sample (IS) and H denotes out-of-sample (OOS)
forecast lengths. The OOS is chosen such that it is a minimum of one trading year. The loss
functions are also estimated at the 97.5 and 99 percentiles, a standard requirement by the
Bank for International Settlements (BIS [63]).

Descriptive Statistics

In Figures 1 and 2 we show both the price and log-return plots of our two sub-samples.
We see that the fluctuations in the plots are typical of high frequency financial data of daily
periodicity. They exhibit varied levels of volatility across sub-sample periods. Log-returns
also exhibit volatility clusters which conform to the price fluctuations as expected. The
summary statistics in Tables 1 and 2 show skewness and excess kurtosis values. This
validates non-normality and leptokurtic behaviour in the equities. The mixture of positive
(negative) skewness values indicate the possibility of positive (negative) returns are more
than negative (positive) returns for the different equities between the IS and OOS periods.
Leptokurtoses also suggest the presence of extreme returns across the board but of different
magnitudes. These do not only suggest non-normality in the equities, but they also indicate
time-varying dynamics. Further, the Shapiro–Wilk test of normality corroborate these as
it rejects the Gaussian assumption for all significance levels. These support the need to
use time-varying and asymmetric distributional approaches in modelling the tail risks of
equity returns.

Table 1. Summary statistic of top 9 EMs equities.

China S. Korea Taiwan India Brazil S. Africa Russia Mexico Thailand

EC-GFC periods

In-sample: 5 January 2007 to 18 April 2011
Mean 0.0003 0.0003 0.0001 0.0003 0.0005 0.0002 −0.0002 0.0001 0.0006

Variance 0.0005 0.0006 0.0003 0.0005 0.0008 0.0005 0.0009 0.0004 0.0004
Skewness 0.03 −0.13 –0.20 0.19 −0.34 −0.26 −0.40 0.02 −0.59

Excess kurtosis 5.02 17.11 2.40 6.89 7.39 4.31 13.79 6.46 6.17
Normtest.W* 0.94 0.86 0.96 0.94 0.90 0.95 0.85 0.91 0.94
Observations 1117 1117 1117 1117 1117 1117 1117 1117 1117

Out-of-sample: 19 April 2011 to 7 June 2013
Mean −0.0003 −0.0002 −0.0001 −0.0004 −0.0008 −0.0003 −0.0007 0.000 0.0003

Variance 0.0002 0.0003 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002
Skewness −0.077 −0.248 −0.167 0.030 −0.401 −0.082 −0.477 −0.533 0.034

Excess kurtosis 2.896 2.457 1.931 1.334 2.815 1.562 2.642 3.795 2.959
Normtest.W* 0.959 0.965 0.970 0.985 0.971 0.982 0.963 0.961 0.967
Observations 559 559 559 559 559 559 559 559 559

Post-crises period

In-sample: 10 June 2013 to 21 July 2017
Mean 0.0002 0.0001 0.0002 0.0002 −0.0003 0.0001 −0.0002 −0.0002 −0.0001

Variance 0.0002 0.0001 0.0001 0.0001 0.0004 0.0003 0.0004 0.0002 0.0002
Skewness −0.17 −0.16 −0.15 −0.51 0.18 −0.25 −0.03 −0.60 −0.07

Excess kurtosis 3.07 1.45 2.31 4.22 1.82 2.94 7.26 4.97 3.87
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Table 1. Cont.

China S. Korea Taiwan India Brazil S. Africa Russia Mexico Thailand

Normtest.W* 0.96 0.98 0.97 0.95 0.98 0.97 0.93 0.96 0.95
Observations 990 990 990 990 990 990 990 990 990

Out-of-sample: 22 July 2017 to 18 February 2019
Mean 0.0003 0.0001 0.0001 0.0001 0.0004 −0.0002 0.0001 −0.0003 0.0004

Variance 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003 0.0002 0.0002 0.0001
Skewness −0.12 −0.36 −0.96 −0.37 −1.26 −0.22 −1.82 −0.57 −0.09

Excess kurtosis 0.57 1.71 6.98 0.87 12.68 1.21 17.03 3.08 2.23
Normtest.W* 0.99 0.98 0.93 0.99 0.92 0.99 0.91 0.97 0.96
Observations 497 497 497 497 497 497 497 497 497

Note: Normtest.W* indicate that normality is rejected at all levels of significance. S. Korea and S. Africa denote South Korea and South
Africa, respectively.
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Table 2. Summary statistic of EM index.

Mean Variance Skewness Excess Kurtosis Normtest.W* Observations

EC-GFC periods

In-sample: 5 January 2007 to 18 April 2011
0.0002 0.0003 −0.4159 6.3206 0.92 1117

Out-of-sample: 19 April 2011 to 7 June 2013
−0.0003 0.0001 −0.3898 3.4102 0.96 559

Post-crises period

In-sample: 10 June 2013 to 21 July 2017
−0.0001 0.0001 −0.2912 1.9301 0.98 990

Out-of-sample: 22 July 2017 to 18 February 2019
0.0002 0.0001 −0.5911 1.0884 0.98 497

Note: Normtest.W* indicate that normality is rejected at all levels of significance.

In Table 3 we present the SSM from MCS algorithm for both 1% and 2.5% (VaR, ES)
forecasts. Individual p-values can be interpreted as the level of belongingness in the SSM.
Similarly, overall p-values indicate that the SSM contains true models with a probability
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no less than 1− α (α = 0.01 for both 1% and 2.5% (VaR, ES) forecasts). All the p-values
support the belongingness of the models in the SSM at all levels of significance. However,
it is interesting to note that the magnitude of p-values do not correspond with the size of
SSMs. It implies that the number of true models (in SSM) does not have to be large for the
respective equity risk to be sufficiently modelled.

Table 3. SSM of univariate GAS (VaR, ES) model forecasts per market.

Model RankR,M ti p-ValueR,M Loss Model RankR,M ti p-ValueR,M Loss

Eurozone and Global Financial Crises (EC-GFC) Periods:19 April 2011 to 7 June 2013

Brazil 1% Brazil 2.5%
SNORM 2 −1.98 1.00 −3.05 SNORM 3 −1.43 1.00 −3.16

STD 3 −1.50 1.00 −2.93 STD 1 −2.56 1.00 −3.16
SSTD 1 −2.23 1.00 −2.97 SSTD 2 −2.49 1.00 −3.13
AST 6 1.81 0.11 −2.51 AST 6 1.95 0.08 −2.89

AST1 5 1.81 0.11 −2.51 AST1 5 1.95 0.08 −2.89
ALD 4 −1.12 1.00 −2.96 ALD 4 −1.15 1.00 −3.13

p-value 0.105 p-value 0.084

Mexico 1% Mexico 2.5%
SNORM 2 −1.32 1.00 −3.17 SNORM 4 −0.77 1.00 −3.32

STD 4 0.13 1.00 −3.05 STD 2 −1.17 1.00 −3.33
SSTD 1 −2.96 1.00 −3.13 SSTD 1 −3.47 1.00 −3.32
AST 6 1.43 0.29 −2.93 AST 6 1.68 0.22 −3.21

AST1 5 1.43 0.29 −2.93 AST1 5 1.68 0.22 −3.21
ALD 3 −0.93 1.00 −3.15 ALD 3 −0.87 1.00 −3.32

p-value 0.292 p-value 0.223

Russia 1% Russia 2.5%
SNORM 2 −1.11 1.00 −2.69 SNORM 2 −0.21 1.00 −2.88

STD 3 1.08 0.44 −2.60 STD 3 0.54 0.83 −2.86
SSTD 4 2.06 0.06 −2.54 SSTD 4 1.89 0.10 −2.82
ALD 1 −1.50 1.00 −2.76 ALD 1 −1.78 1.00 −2.93

p-value 0.059 p-value 0.095

South Africa 1% South Africa
2.5%

SNORM 1 −0.96 1.00 −2.92 SNORM 3 1.54 0.18 −3.03
STD 3 0.56 0.86 −2.86 STD 2 −0.16 1.00 −3.07

SSTD 4 1.19 0.43 −2.85 ALD 1 −1.10 1.00 −3.10
ALD 2 −0.66 1.00 −2.93

p-value 0.425 p-value 0.180

China 1% China 2.5%
SNORM 1 −0.52 1.00 −3.06 SNORM 3 1.03 0.44 −3.21

STD 3 −0.27 1.00 −3.04 STD 2 −0.30 1.00 −3.24
SSTD 4 1.41 0.30 −2.98 ALD 1 −0.57 1.00 −3.25
ALD 2 −0.34 1.00 −3.05

p-value 0.300 p-value 0.443

India 1% India 2.5%
SNORM 4 0.23 0.97 −2.90 SNORM 4 0.86 0.62 −3.08

STD 1 −5.01 1.00 −3.17 STD 1 −5.55 1.00 −3.33
SSTD 2 −3.92 1.00 −3.08 SSTD 2 −4.11 1.00 −3.22
AST 6 2.17 0.06 −2.66 AST 6 2.62 0.02 −2.95

AST1 5 2.17 0.06 −2.66 AST1 5 2.62 0.02 −2.95
ALD 3 −1.31 1.00 −3.06 ALD 3 −2.66 1.00 −3.28

p-value 0.061 p-value 0.016

South Korea 1% South Korea 2.5%
SNORM 4 −0.86 1.00 −2.87 SNORM 4 −0.98 1.00 −3.05

STD 1 −2.95 1.00 −2.99 STD 1 −3.53 1.00 −3.14
SSTD 2 −1.73 1.00 −2.88 SSTD 3 −1.53 1.00 −3.04
AST 6 1.98 0.09 −2.52 AST 6 2.43 0.03 −2.81
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Table 3. Cont.

Model RankR,M ti p-ValueR,M Loss Model RankR,M ti p-ValueR,M Loss

AST1 5 1.98 0.09 −2.52 AST1 5 2.43 0.03 −2.81
ALD 3 −1.26 1.00 −2.95 ALD 2 −1.58 1.00 −3.09

p-value 0.087 p-value 0.031

Taiwan 1% Taiwan 2.5%
SNORM 3 −1.36 1.00 −3.12 SNORM 3 −1.26 1.00 −3.28

STD 1 −3.52 1.00 −3.08 STD 1 −4.68 1.00 −3.31
SSTD 4 −1.31 1.00 −2.89 SSTD 4 −1.21 1.00 −3.16
AST 6 2.03 0.06 −2.25 AST 6 2.50 0.02 −2.78

AST1 5 2.03 0.06 −2.25 AST1 5 2.50 0.02 −2.78
ALD 2 −2.02 1.00 −3.09 ALD 2 −3.08 1.00 −3.32

p-value 0.064 p-value 0.022

Thailand 1% Thailand 2.5%
SNORM 4 0.74 0.80 −2.96 SNORM 6 1.32 0.37 −3.17

STD 1 −4.27 1.00 −3.20 STD 1 −5.55 1.00 −3.41
SSTD 2 −2.49 1.00 −3.13 SSTD 2 −2.87 1.00 −3.34
AST 6 1.08 0.58 −2.93 AST 5 1.02 0.55 −3.20

AST1 5 1.08 0.58 −2.93 AST1 4 1.02 0.55 −3.20
ALD 3 −0.36 1.00 −3.07 ALD 3 −0.28 1.00 −3.28

p-value 0.584 p-value 0.367

Post−crises (PC) period:22 July 2017 to 18 February 2019

Brazil 1% Brazil 2.5%
SNORM 2 −1.62 1.00 −2.59 SNORM 4 −0.85 1.00 −2.95

STD 4 −0.91 1.00 −2.57 STD 1 −3.30 1.00 −3.02
SSTD 1 −1.81 1.00 −2.60 SSTD 3 −1.09 1.00 −2.96
AST 6 2.17 0.06 −2.32 AST 6 2.05 0.06 −2.75

AST1 5 2.17 0.06 −2.32 AST1 5 2.05 0.06 −2.75
ALD 3 −0.93 1.00 −2.64 ALD 2 −1.14 1.00 −2.98

p-value 0.058 p-value 0.062

Mexico 1% Mexico 2.5%
SNORM 4 0.84 0.72 −2.91 SNORM 4 0.84 0.74 −3.26

STD 1 −3.26 1.00 −3.18 STD 1 −3.74 1.00 −3.41
SSTD 3 0.01 1.00 −3.02 SSTD 3 −0.71 1.00 −3.34
AST 6 1.11 0.54 −2.92 AST 6 1.45 0.35 −3.23

AST1 5 1.11 0.54 −2.92 AST1 5 1.45 0.35 −3.23
ALD 2 −1.09 1.00 −3.17 ALD 2 −1.62 1.00 −3.40

p-value 0.536 p-value 0.349

Russia 1% Russia 2.5%
SNORM 4 −0.32 1.00 −2.75 SNORM 4 0.26 0.97 −3.08

STD 2 −2.06 1.00 −2.82 STD 1 −3.94 1.00 −3.22
SSTD 1 −2.99 1.00 −2.82 SSTD 2 −3.24 1.00 −3.20
AST 6 1.20 0.40 −2.48 AST 6 1.03 0.54 −3.01

AST1 5 1.20 0.40 −2.48 AST1 5 1.03 0.54 −3.01
ALD 3 −0.56 1.00 −2.79 ALD 3 −0.61 1.00 −3.16

p-value 0.402 p-value 0.536

South Africa 1% South Africa
2.5%

SNORM 3 −0.77 1.00 −2.72 SNORM 3 0.01 1.00 −2.97
STD 1 −3.82 1.00 −2.81 STD 1 −3.48 1.00 −3.06

SSTD 4 −0.31 1.00 −2.63 SSTD 4 2.19 0.06 −2.87
AST 6 2.16 0.06 −2.37 ALD 2 −0.46 1.00 −2.99

AST1 5 2.16 0.06 −2.37
ALD 2 −1.49 1.00 −2.78

p-value 0.063 p-value 0.059
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Table 3. Cont.

Model RankR,M ti p-ValueR,M Loss Model RankR,M ti p-ValueR,M Loss

China 1% China 2.5%
SNORM 2 −0.91 1.00 −3.40 SNORM 4 −1.58 1.00 −3.50

STD 3 −0.15 1.00 −3.38 STD 1 −4.80 1.00 −3.55
SSTD 1 −1.12 1.00 −3.41 SSTD 3 −1.58 1.00 −3.50
ALD 4 1.38 0.26 −3.31 AST 6 2.78 0.01 −3.25

AST1 5 2.78 0.01 −3.25
ALD 2 −1.69 1.00 −3.48

p-value 0.264 p-value 0.010

India 1% India 2.5%
SNORM 2 −1.24 1.00 −3.53 SNORM 4 −0.72 1.00 −3.67

STD 1 −3.21 1.00 −3.59 STD 1 −3.11 1.00 −3.75
SSTD 3 −1.21 1.00 −3.52 SSTD 3 −0.80 1.00 −3.67
AST 5 1.92 0.09 −3.18 AST 6 1.95 0.09 −3.47

AST1 6 1.92 0.09 −3.18 AST1 5 1.95 0.09 −3.47
ALD 4 −1.10 1.00 −3.51 ALD 2 −1.95 1.00 −3.71

p-value 0.08 p-value 0.094

South Korea 1% South Korea 2.5%
SNORM 3 −0.40 1.00 −3.18 SNORM 3 −0.78 1.00 −3.42

STD 4 1.92 0.09 −3.02 STD 4 2.08 0.06 −3.30
SSTD 1 −1.77 1.00 −3.21 SSTD 2 −1.22 1.00 −3.42
ALD 2 −1.18 1.00 −3.26 ALD 1 −1.97 1.00 −3.48

p-value 0.093 p-value 0.063

Taiwan 1% Taiwan 2.5%
SNORM 4 −0.94 1.00 −3.04 SNORM 4 −1.42 1.00 −3.44

STD 1 −2.10 1.00 −3.13 STD 1 −2.61 1.00 −3.48
SSTD 3 −1.21 1.00 −3.06 SSTD 3 −1.49 1.00 −3.45
AST 5 1.73 0.14 −2.56 AST 6 2.07 0.06 −3.08

AST1 6 1.73 0.14 −2.56 AST1 5 2.07 0.06 −3.08
ALD 2 −2.06 1.00 −3.15 ALD 2 −1.97 1.00 −3.48

p-value 0.140 p-value 0.065

Thailand 1% Thailand 2.5%
SNORM 4 −0.24 1.00 −3.55 SNORM 4 1.05 0.47 −3.67

STD 1 −4.42 1.00 −3.75 STD 1 −5.34 1.00 −3.95
SSTD 2 −2.80 1.00 −3.64 SSTD 2 −2.61 1.00 −3.83
AST 6 1.52 0.19 −3.26 AST 6 1.44 0.24 −3.63

AST1 5 1.52 0.19 −3.26 AST1 5 1.44 0.24 −3.63
ALD 3 −0.86 1.00 −3.60 ALD 3 −1.06 1.00 −3.81

p-value 0.188 p-value 0.245

Eurozone and Global Financial Crises (EC-GFC) Periods:19 April 2011 to 7 June 2013

EM index 1% EM index 2.5%
ALD 1 −6.03 1.00 −0.02 ALD 1 −5.84 1.00 −0.02

p-value 0.000 p-value 0.000

Post−crises (PC) period:22 July 2017 to 18 February 2019

EM index 1% EM index 2.5%
ALD 1 −6.00 1.00 −0.024 ALD 1 −5.92 1.00 −0.02

p-value 0.000 p-value 0.000

Note: (VaR, ES) models are of the GAS(1,1) specification. SNORM, STD, SSTD, ALD, AST and AST1 denote Skewed Gaussian, Student t,
Skewed Student t, asymmetric Laplace, asymmetric student-t with two tail decay parameters and asymmetric student-t with one tail decay
parameter innovations in the models, respectively. Eliminated models are not listed since they can easily be inferred from the SSM listed. ti
denotes the test statistic derived from sample loss of the ith model relative to the average across models in M∗ (Hansen et al. [9]). Values in
bold print are overall p-value for the respective SSM (selected at the 95% confidence level).

Though the SSM shows ranking of the models, we focus on the number of models
it contains. This provides insight into the extent of heterogeneity and/or homogeneity
among the risk models for a specific equity. If SSM contains a larger portion of M0 then the
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competing models are statistically significant with respect to the forecast capability of (VaR,
ES) for the particular equity, and vice versa (Bernardi & Catania [8]). It is worth noting that
the models in the SSM are those characterised by very strong non-linear dynamics for their
conditional volatility process.

Our SSMs reveal that there seems not to be any general distinct differences in the
model heterogeneity/homogeneity during turbulent market (EC-GFC periods) and tranquil
times (PC period) conditions for both 97.5 and 99 percentiles. The (VaR, ES) model in the
SSM range between six (6) and three (3) for both EC-GFC and PC periods. We note that 6 is
the initial set M0. Thus, for those equities, all the initial models, SSM which suggest a great
deal of model homogeneity. Equities with all six models in the SSM during the turbulent
market (EC-GFC) periods are Brazil, Mexico, India, Korea, Taiwan and Thailand. However,
in the tranquil (PC) period, they are Brazil, Mexico, Russia, India, Taiwan and Thailand.
These drive home the point that, except for Russia and South Korea, tail risk modelling
in the EMs equities may be indifferent to market dynamics and thus time-invariant. They
exhibit homogeneity (with respect to the size of SSMs) between the two market periods. We
find that Russia has SSM of size four (4) in during EC-GFC but 6 in PC period. South Korea
exhibits the exact opposite of Russia (SSM of size 6 in EC-GFC and size 4 in PC period).

China and South Africa also present different patterns. First, in EC-GFC periods
the two markets have smaller SSMs of size 4 (99% level) and 3 (97.5% level). Compared
to M0, these countries show model heterogeneity. In the PC, South Africa has 6 models
(at the 99% level) and 3 models (at the 97.5% level), whereas China has 4 models (at the
99% level) and 6 models (at the 97.5% level). These indicate that in this period, while
South Africa demonstrate model homogeneity at the 99th percentile, but for China it is at
the 97.5th percentile. In essence, during the PC period, China and South Africa portray
percentile-dependent tail risk model dynamics. But we also can confirm time-dependent
tail risk modelling in the two markets because of the difference in SSMs between EC-GFC
and PC periods.

The implications for tail risk modelling in China and South Africa may not be trivial.
We can infer that it is more difficult to model tail risks in these equities as compared to
the other seven markets. This is because, not only should specific market dynamics be
considered, but risk managers may be wary of specific confidence levels. The pattern
between China and South Africa may be explained by the composition of their respective
equity indices. For instance, Tencent Holdings Limited, a Chinese Information Technology
company, is first of the top ten (10) constituents of the MSCI EMs index. The South African
giant, Naspers Limited (5th of the top 10 MSCI EMs index constituents) owns 31.1% of
Tencent Holdings Limited (Morgan [64]). It is, therefore, no surprise that the two markets
exhibit similar tail risk features.

For the EM index, we find only the SSM contains the ALD for both 1% and 2.5% levels
and sub-periods. This confirms the superiority of the ALD as suggested by Taylor [36]. It
also shows that EM index exhibits the most heterogeneous set and thus not a diversified
portfolio. The reason for the glaring difference between the SSMs for EM index and the
individual equities may be attributed to the size of the data. It sends a clear message
that the risk dynamics of the index is different from the constituent equities and portfolio
decisions should take this into account.

We surmise from the results that the ease/difficulty with which to model tail risks
does not depend on the actual conditions of the financial markets for an equity except for
China and South Africa. Bernardi & Catania [8] made similar remarks in using the MCS
algorithm to compare VaR models of four major global stock indices from Asia, North
America and Europe. It follows that risk managers would prefer a SSM with a size closer
to M0 to those that are smaller. The latter shows models are statistically equivalent in
their (VaR, ES) forecasting abilities and thus reduce the task of finding the singular best
model. Moreover, given that SSMs are ranked, risk managers are at the same time, at ease
of choosing the best ranked model for their equities.
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Furthermore, that many of the SSMs are independent of market conditions is instruc-
tive for tail risk modelling for those equities. That is to say each EM equity may have to
be subjected to the rigour of tail risk modelling, irrespective of the market condition. This
brings to the fore an important difference and/or similarity amongst emerging markets. We
evidence that despite the fact that EMEs are bracketed into one market class, the tail risks
in their equities could not be more different. As a consequence, we suggest that portfolio
diversifications benefits involving EMs equities are promising given the right combinations.

Empirically, the homogeneity in the SSM is suggestive of well diversified portfolios for
the respective equity, given that different distributional assumptions are applied to the re-
turns. This applies to all the equities with the exception of China and South Africa. Bernardi
& Catania [8] opine that, the fact that diversified portfolios are characterised by inversely
related risks and returns properties, so does diversification mitigate against negative and
positive tail events that affect conditional distribution and kurtosis of equity returns.

It is worthwhile to note that the specific distributional innovations in each SSMs bear
some important implications. Different distributional innovations are employed to capture
the complex and unpredictable data-generating process in equities. These are reflected in
the tails of distributions and are largely dependent on market dynamics which are also
time-dependent. Hence, fitting a single distribution to the data is at a high risk of model
misspecification as suggested in Bernardi & Catania [8]. It is clear from Table 3 that is it only
the EM index where a single distributions fits that data across the different market periods,
yet at different loss levels. It is almost impossible to hold down the exact reason why the
model fits better with different distributions between the two periods and at what levels of
predictive ability. The important signal is that, like many equities, the EM equities exhibit
varying price and return dynamics which can be captured by using many distributional of
diverse tail properties.

4. Conclusions and Recommendations

In this paper we constructed different sets of models for (VaR, ES) based on the FZL
function to examine the forecast performance of the top 9 EMs equity returns. Our study
period was between 5 January 2007 and 19 February 2019, further split into EC-GFC and
PC periods. The superior set model (SSM) for each equity was constructed using the MCS
procedure of Hansen et al. [9]. Among other things, it is appropriate to quantify, rank and
select competing risks models. In this study, we fit different asymmetric distributional
innovations in the GAS framework to the (VaR, ES) to forecast risks in the EMs equities.
We combine the elicitability the joint (VaR, ES) scored by the FZL function, its richness in
drawing from both VaR and ES and the ability of MCS to rank models to select the superior
set of tail risk models.

Not only does this work contribute to growing need to correctly model and forecast
tail risk for internal risk management purposes, but it also fits well with the Basel III
framework for comparative backtesting. We also use both the 99 and 97.5 percentiles in
the risk forecasting as suggested in the Basel III framework. This is a new study for EMs
equities as far as risk analysis is concerned. The practice of aligning internal models with
standardised approaches improves regulatory oversight and hence may bolter confidence
in international investors about EMs equities.

Our results show that for many of the markets, risk models are time-invariant (with
respect to the number of models in the SSM, but not with the rank of the models) between
turbulent and tranquil market periods. The SSMs are of size 6 which is equal to the original
set of models. This implies homogeneity in risk modelling and hence reduces the burden
of risk managers. We opine that, this hints at usefulness of the MCS procedure in choosing
from a large number of models with ease. This further implies that the MCS procedure
offers more flexibility in modelling, forecasting and comparing competing tail models.
However, for China and South Africa, the risk models are more time-varying, percentile-
dependent and more heterogeneous than homogeneous. We infer that the pattern in China
and South African may be attributed to their respective equity index compositions. We
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find that the largest equity in South Africa Naspers Limited own 31.1% stake in Tencent
Holdings Limited which is the largest Chinese equity and the biggest constituents of the
MSCI EMs index (Morgan [64]).

Empirically, the homogeneity in the SSM is suggestive of well diversified portfolios
for the respective equity, given that different distributional assumptions are applied to the
returns. This applies to all the equities with the exception of Russia (in EC-GFC periods),
South Korea (in PC period) and China and South Africa (in both periods). Bernardi &
Catania [8] opine that, the fact that diversified portfolios are characterised by inversely
related risks and returns properties, so does diversification mitigate against negative and
positive tail events that affect conditional distribution and kurtosis of equity returns.

For further research, GAS volatility models can be compared with GARCH with asym-
metric/leverage effects. Specifically, the robust bootstrap forecast densities for GARCH
returns and volatilities (Trucíos et al. [65]) can be applied on the data. In addition, it would
be interesting to see the dynamics of the data under the semi-nonparametric backtesting
techniques applied with VaR, ES and Median Shortfall (see Jiménez et al. [66]). Finally,
while this study captures two crises periods, it could further be expanded to reflect the
effects of the ongoing COVID-19 pandemic of EMs equities and risks.
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