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Abstract: Integrating gene-level data is useful for predicting the role of genes in biological processes.
This problem has typically focused on supervised classification, which requires large training sets
of positive and negative examples. However, training data sets that are too small for supervised
approaches can still provide valuable information. We describe a hierarchical mixture model that
uses limited positively labeled gene training data for semi-supervised learning. We focus on the
problem of predicting essential genes, where a gene is required for the survival of an organism under
particular conditions. We applied cross-validation and found that the inclusion of positively labeled
samples in a semi-supervised learning framework with the hierarchical mixture model improves
the detection of essential genes compared to unsupervised, supervised, and other semi-supervised
approaches. There was also improved prediction performance when genes are incorrectly assumed to
be non-essential. Our comparisons indicate that the incorporation of even small amounts of existing
knowledge improves the accuracy of prediction and decreases variability in predictions. Although
we focused on gene essentiality, the hierarchical mixture model and semi-supervised framework is
standard for problems focused on prediction of genes or other features, with multiple data types
characterizing the feature, and a small set of positive labels.

Keywords: semi-supervised; hierarchical mixture models; essential genes; genomic; integration

1. Introduction

Many biomedical investigations now involve the analysis of a large and growing range
of genome scale data types, including DNA sequence-derived variables, gene expression
measurements, and epigenetic information. Each of these data types can provide valuable
information about the complex factors contributing to a biological system, but none by
itself can provide a complete picture. The need for integrative modeling approaches to
realize the full potential of data growing in diversity as well as volume has been widely
recognized over the last several years. Several large consortia, such as ENCODE, have
been formed for the purpose of generating and analyzing multiple data sources and have
also developed analysis tools for specific research domains [1–4].

Here we focus on a gene-centric approach, wherein data from genes and their cis-
regulatory regions are used to identify particular processes and phenotypes in which
that gene plays a role. Although there have been many promising applications for this
approach, such as annotating gene function [5], or predicting genes associated with disease
pathogenesis (e.g., Reference [6]), we focus on predicting gene essentiality. An essential gene
is required for the survival of an organism under a given biological context [7,8]. Because of
this, identifying essential genes is important for understanding the basic principles of
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cellular function. In addition, essential genes can affect how synthetic microorganisms are
engineered, and inform the development of effective antibiotics and other drugs [9,10].
Although often focused on model organisms such as bacteria and yeast, several recent
studies have also sought to catalog gene essentiality in humans [11].

Essential genes can be determined by a variety of experimental methods, and are
reported in several databases [12,13]. Because of the expense and labor involved with the
experimental approaches, computational methods have been developed for the purpose of
predicting essential genes, and machine learning methods that rely on training a classifier
using examples of essential genes have become a common strategy [14,15]. Several features
have been used to predict essential genes including both features of the DNA sequence
such as GC content, and measured or predicted features of the translated proteins such as
hydrophobicity. See Dong et al. [16] for a comprehensive summary of the features most
commonly used for predicting essential features. The authors identify five most common
classes of features: evolutionary conservation, domain information, network topology,
sequence component, and expression level. Another recent review [17] surveys how
network topology is also used for predicting essential genes. All potential features may
be expected to have some predictive value for essentiality, but many are not particularly
strong predictors by themselves. By combining these measures, the hope is to predict
essential genes with a much higher degree of sensitivity and specificity than would be
possible with any one measure alone.

In many studies, genomic data integration has focused on supervised classification
approaches which require high-quality training sets with both positive and negative con-
trols [18–20]. When available training data sets are small, unreliable, or incomplete, unsu-
pervised methods are more commonly used [21–24]. However, even training data whose
labels are too incomplete for supervised approaches can provide valuable information
beyond unsupervised analysis. In this work, we describe the extension of the unsupervised
methods first described in [25] to allow the use of any available positively labeled training
data, even if limited, for semi-supervised learning. Alexandridis et al. [26] describe an
ad hoc method for semi-supervised mixture modeling with incomplete training data. We
build on their work and the more rigorous approach of [27] to develop semi-supervised
hierarchical mixture models for any type of training data, specifically designed to deal with
the case when only positive examples such as known essential genes are available, often
called “positive unlabeled learning” or PUL [28].

Specifically, we describe a mixture model for a single data source, followed by a
hierarchical mixture model for multiple data sources (e.g., sequence based, expression).
Using cross-validation runs to evaluate a real world genomic scenario where an investigator
may only have a small number of known positive labels, we show that the inclusion of
positively labeled samples in a semi-supervised learning framework in addition to the
hierarchical mixture model improves our ability to detect genes of interest when there is
a small training set. Although our case study is on gene essentiality, our framework is
general for any gene-centric problem, or other unit such as a metabolite, with multiple data
types characterizing the gene (or unit), and a small set of positive labels.

2. Methods

We use a generative mixture model approach to represent classes of genes such as
essential vs. nonessential, with a hierarchical structure to represent different types of data
and the relationships between them. Mixture models have a long history and a rigorous
statistical framework for inference and prediction [29]. Hierarchical mixture models have
been applied in other contexts [30] and in a variety of bioinformatic applications [31,32].
In this work, the model can be represented as a graph, where nodes represent random
variables, which may be hidden or observed, and the edges represent the conditional
dependence structure of the variables. This approach allows for simultaneous modeling of
a wide range of data sources (continuous, categorical, etc.), with computationally efficient
model fitting and easily interpretable results. To build up to the hierarchical model, we first
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describe an unsupervised method for single mixture models in Section 2.1, and how that can
be adapted to the semi-supervised method for single mixture models in Section 2.3. Then
we extend these ideas to hierarchical mixture models for data integration, both unsupervised
and semi-supervised in Sections 2.4 and 2.5, with the latter being our final model.

2.1. Single Mixture Model: Unsupervised Method

A generative mixture model arises when we wish to model the distribution of one
random variable X, which depends on the value of another random variable Y, so we
say that Y generates X. We assume Y is a univariate categorical random variable that can
take on one of K categories (1, . . . , K), while X, which may be multivariate, can have any
distribution. For notational compactness, let fy(x) = f (x|Y = y), and f (x) = ∑k pk fk(x),
with k = 1, . . . , K and ∑k pk = 1. We also assume we observe X, but not Y—that is, Y is
hidden. In our examples, typically K = 2, for example “non-essential” versus “essential”.
The model may also be represented graphically, as shown in Figure 1a. Our challenge is
to infer the parameters θ (e.g., Gaussian mean and variance for each mixture component),
which will allow us to calculate expected values for these hidden states. The joint density
of X and Y is therefore f (x, y|θ) = py fy(x|θ).

a) b)

c) d)

Y

X

Y

...

...X1 Xz

Y1 Yz

Y

...

...X1 Xz

Y1 Yz

T

Y

T X

Figure 1. Model Representations. Graphical representation of models for (a) single mixture model, (b) single mixture
model with training labels, (c) hierarchical mixture model, and (d) hierarchical mixture model with training labels.

From this, for a sample X = (x1, . . . , xN), we use the EM algorithm [33,34] to estimate
the parameters and find the posterior probabilities ŵn,y = P(yn = y|xn, θ̂). Specifically, the
EM algorithm finds the maximum likelihood estimate θ̂ by iterative maximization of the
“Q-function”, or the conditional expected log-likelihood
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Q(θ|θ(i−1)) = EY

[
∑n log f (xn, yn|θ) | X, θ(i−1)

]
(1)

where θ(i−1) is the previous iteration’s i estimate for the parameters. For the current model,

Q(θ|θ(i−1)) = ∑n,k wn,k{log pk + log fk(xn|θ(i−1))} (2)

where

wn,y = P(yn = y|xn, θ(i−1)) =
p(i−1)

y fy(xn|θ(i−1))

∑k p(i−1)
k fk(xn|θ(i−1))

. (3)

Generally, wn,1 is the posterior probability that yn = 1 given the data. In the problems
at hand, wn,1 is the posterior probability that gene n is essential given the particular data
source being used.

Depending on the data type and the distribution, different functional forms for f
may be appropriate (e.g., discrete, continuous). In addition within a data type, different
alternatives may be available. For example, the Poisson distribution may be compared to
the negative binomial, and the Gaussian distribution may be compared to a longer tailed
distribution like the Pearson Type VII distribution, which is a general class of distributions
and contains the Student’s t distribution. For model selection among forms of f , we use the
integrated complete likelihood Bayesian information criterion (ICL-BIC) [35] described in
the Supplementary Methods.

2.2. Training Data

For the essential gene problem, there may be a set of known essential genes for a
particular organism. In many organisms this set may not be complete. Therefore, it may be
useful to use information from the already identified essential genes to predict additional
essential genes in an informed manner, which would improve prediction compared to a
completely unsupervised approach. Ideally, supervised learning can be used, but in some
cases there may not be both positive and negative examples, or the number of known
essential genes may be small, therefore we focus on the semi-supervised training scenario.
For the essential gene case study, the previously known essential genes are considered to be
‘labeled’ samples in our framework. The authors in [26,36] describe a method for including
labeled data in the standard categorical mixture models, which we refer to here as the
single mixture model: briefly, at the end of each E-step, update the posterior probabilities
for the labeled samples based on their labels. For example, if the nth gene is known to
be in category 1 (yn = 1) then we would set wn,1 = 1 and wn,k = 0 ∀ k 6= 1, regardless
of the values of (wn,1, . . . , wn,K) calculated previously. The work in [27] presents a more
principled approach of incorporating training data into the model as an additional type
of observed data, which they apply in a support vector machine (SVM) context. Here we
apply their approach in a mixture model context to extend both the single and hierarchical
mixture models, with an emphasis on the positive unlabeled learning (PUL) context in
which only positive examples are known.

2.3. Single Mixture Model: Semi-Supervised Method

In the presence of partial training data, such as when only a few positive labels are
known, we define a new random variable, T, to represent the training labels, in addition
to the observed data X and hidden states Y. T is a categorical random variable that can
take on the values from 1, . . . , Ktrn, where Ktrn = K + 1. If the training label is known
for an observation, then T ≤ K. When the training label is unknown for an observation,
then T = Ktrn, which is always the case in the unsupervised model. In other words,
P(Y = T|T ≤ K) = 1 always, while P(Y = y|T = Ktrn) is a free parameter to be estimated.
Let ~Rtrn be the Ktrn × K matrix such that rtrn

t,y = f (y|t) = P(Y = y|T = t), and observe that

the top K rows of ~Rtrn are fixed at~IK, the K× K identity matrix, while the Ktrnth row is free:



Math. Comput. Appl. 2021, 26, 40 5 of 20

~Rtrn =


1 · · · 0
...

. . .
...

0 · · · 1
rtrn

Ktrn ,1 · · · rtrn
Ktrn ,K

 (4)

subject to the constraint ∑k rtrn
Ktrn ,k = 1. In contrast to fully supervised learning methods,

this formulation allows us to estimate parameters using information from both labeled and
unlabeled samples simultaneously, and also to make use of label information when only
positive labels are available.

We incorporate the labels into the model as the sample~t = (t1, . . . , tN). For example,
in our example application (K = 2 for “essential” or “non-essential”), we may have
some genes known to be essential while others are of unknown binding status. Then for
m, n ∈ {1, . . . , N}, tm = 1 when we know that the mth gene is essential, while tn = 3 when
the status of the nth gene is unknown. If we knew the mth gene to be non-essential, we
would have tm = 2, but our analysis here does not consider the case of labeled negative
samples. Conceptually, Y generates both T and X; those samples for which T ≤ K may be
thought of as samples for which Y is observed rather than hidden. We assume the values of
T are accurate, that is, there are no unlabeled samples. The model is illustrated graphically
in Figure 1b.

However, because of the fixed relationship between Y and T ≤ K, it is more practical

to perform most of the calculations on the model as though T generated Y. To obtain ~̂Rtrn,
we need only find the MLE for the Ktrnth row of ~Rtrn, that is, ~̂rtrn

Ktrn = (r̂trn
Ktrn ,1, . . . , r̂trn

Ktrn ,K).
The joint density of all variables in the model is

f (t,~x, y|θ) = p(T = t)p(Y = y|T = t)p(X = x|Y = y, T = t) (5)

or equivalently f (t,~x, y|θ) = ptrn
t rtrn

T,t fy(~x|θ), where ptrn
t = P(T = t), and the Q-function is

Q(θ|θ(i−1)) = ∑n,ktrn t′n,ktrn log ptrn
ktrn

+∑n,ktrn ,k t′n,ktrn wn,k log rtrn
ktrn ,k

+∑n,k wn,k log fk(~xn).
(6)

Here t′n,t = I(tn = t), and after some simplification, the central calculation for the
E-step is

wn,y = P(yn = y|tn,~xn, θ(i−1)) =
rtrn(i−1)

tn ,y fy(~xn|θ(i−1))

∑k rtrn(i−1)
tn ,k fk(~xn|θ(i−1))

. (7)

The modeling of the observed data is the same as in the unsupervised case. By
default, labeled samples are given the same weight as unlabeled samples in the parameter
estimations. However, if we have a small training sample, we may choose to assign a
higher weight wtrn to labeled samples. We provide more information on the selection of
weights in the Supplementary Methods.

2.4. Hierarchical Mixture Model: Unsupervised Method

The previous model describes the case when there is only a single data type (e.g.,
one normally distributed variable) or a multivariate distribution of the same type (e.g.,
multivariate normal). We present a hierarchical mixture model extending the framework
above for any number and types of genomic level data.

At the top of the hierarchies shown in Figure 1c is the hidden categorical random vari-
able Y0, which takes on integer values from 1 to K0 for some integer K0 > 1. In the problem
at hand, we assume K0 = 2 and Y0 = 1 corresponds to essential genes. Next, let Z denote
the number of data sources, and z ∈ {1, . . . , Z} denote the zth data source. The intermedi-
ate hidden categorical random variables Yz take on integer values from 1 to Kz for some
integer Kz > 1. The distributions of the Yz’s depend—directly or indirectly, depending on
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the model topology—on the value of Y0. We also define the observed random variables
X1, . . . , XZ (each Xz may be multivariate) where the distribution of Xz depends only on the
value of Yz. That is, each Xz is generated by Yz. Each Y0 generates Y = (Y1, . . . , YZ). This
model treats all observed variables as equally important to estimating the distribution of
Y0. We have explored alternative conditional relationships among the Y’s in [37].

Given N genes, for n = 1, . . . , N the estimated posterior probability that the nth
gene is of interest is P(y0,n = 1|~x·,n, θ̂). Here y0,n is the nth hidden status variable, that
is, a realization of Y0. Similarly, yz,n is the hidden realization of Yz for the nth gene,
and~x·,n = (~x1,n, . . . ,~xZ,n) is the observed data for the nth gene, with ~xz,n being a realization
of Xz. Finally, θ̂ denotes the estimated parameters of the model. See the Supplementary
Methods for full details of the estimation procedure. Briefly, the first step in the hierarchical
model fitting is to fit a single mixture model to each data source, as described in the previous
section, and choose the number of components Kz and marginal distribution which will be
used for that data source. These steps follow the EM algorithm described above, and are
used for initialization; the individual model fits can be updated in the full algorithm.
Then after the marginal distributions are selected, this is used for initialization of the EM
algorithm for the full model. The E-step consists of finding the posterior probabilities, given
the data and current iteration of θ, for the hidden states Yz for all data sources z, and for the
primary hidden state Y0. The M-step is a straightforward maximum likelihood estimation
for the parameters θ, the marginal distribution of P(Y0 = y0), and conditional relationships
among the hidden variables P(Yz = yz|Y0 = y = 0). More details are provided in the
Supplementary Methods.

2.5. Hierarchical Mixture Model: Semi-Supervised Method

We may add T to the hierarchical models in the same way as to the single mixture
model, producing the hierarchical model topologies seen in Figure 1d. The main difference
between T and the Xz’s in this scenario is that there is no intermediate hidden variable
corresponding to T, but rather T is generated directly by Y0. In the Supplementary Methods
we provide the details on the corresponding EM algorithm. This method constitutes our
final semi-supervised hierarchical method and is abbreviated as Semi-HM.

2.6. Essentiality Application
2.6.1. Feature Description

Multiple data sources have been used to predict essential genes within a species including
both features of the DNA sequence such as GC content, and measured and predicted features
of the proteins translated from the genes, such as hydrophobicity and subcellular localization.
All of the features may be expected to be have predictive value for essentiality, but many
are not particularly strong predictors. By combining these measures, the hope is to predict
essential genes with a much higher degree of sensitivity and specificity than would be possible
with any one measure alone. For example, Liu et al. [38] and Guo et al. [39] have shown the
high accuracy of using sequence features for predicting bacterial and human essential genes,
respectively. To predict essentiality of the genes in S. cerevisiae, our analysis uses features
associated with each gene from two sources: (1) fourteen sequence-derived features from [18]
and (2) eight additional features from the Ensembl website [40]. Feature definitions are listed
in Table 1. A total of 3 of 22 features (vacuole, in how many of five proks blast and intron)
were removed from the analysis due to low content (less than 5% of non-zero values), for a
final number of 19 features.

2.6.2. Cross-Validation Strategy: Unsupervised

First, for the hierarchical mixture model, the semi-supervised version Figure 1, Model
1d was compared to the unsupervised version Figure 1, Model 1c described in Dvorkin et al. [25].
For the semi-supervised method, we started with the set of 769 essential genes (positive
labels) of the total 3500 genes. We performed cross-validation with a range of training set
sizes with minimum training set size of 25, chosen to be greater than the number of features
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to prevent rank deficiency in training sets. For each training set n size, we randomly
sampled n essential genes (n = 25 to 700 in increments of 5). Multiple iterations (I = 30)
were run to average metrics used to evaluate performance. For the unsupervised method,
there is no training set since no information is used to cluster genes. We used k = 2 to
find two clusters, and then the cluster with the highest percentage of essential genes was
considered the set of genes predicted as essential, and the other cluster was considered
the set of genes predicted as non-essential. We then evaluated prediction performance on
the same set of test genes used for the semi-supervised comparison. This procedure was
repeated multiple iterations as described above.

2.6.3. Cross-Validation Strategy: Supervised

Second, the semi-supervised hierarchical mixture model was compared with other
supervised methods. Supervised methods are often used to predict gene essentiality,
and require both positive and negative labels. Because of the extensive experimental
studies in the yeast S. cerevisiae, we have a comprehensive catalog of essentiality in this
model organism. However, in other organisms, we may only have experimental data
on a handful of essential genes, which define our known positive labels to be used to
predict additional essential genes. In many supervised methods for essentiality, all non-
labeled genes are considered to be ‘negatives’ (i.e., non-essential). However, this set
may contain additional essential genes, where genes labeled as non-essential may in
fact be essential, but have not been confirmed for essentiality yet. That is, these are
the yet to be discovered essential genes that are usually considered to be ‘negatives’,
when applying supervised methods. We argue this to be the more probable scenario
in the essentiality classification because the likelihood of yeast surviving with a knock-
out of a truly essential gene regardless of laboratory conditions is nearly zero. Yet, poor
nutrient media, uncontrolled temperature regulation during growth phase, or an unknown,
unintentional intervention may result in the misclassification from essential to non-essential.
Therefore, this results in a situation where essential genes are always labeled positive
but a subset of non-essential genes may change status to essential, so they were initially
incorrectly labeled as negative. For comparisons with the supervised methods, therefore we
introduced this type of contamination, i.e., genes incorrectly labeled as negative, but which
are in fact positive (Figure 2). Contamination only affects the negative labels and therefore
does not play a role in either unsupervised or semi-supervised methods, but may affect
supervised methods.

The cross-validation strategy for the supervised case incorporates an unbalanced strat-
egy to the test set along with a contamination rate, which are described below (Figure 2).
For an unbalanced design, test sets utilize the remaining genes not used in the training
sets rather than a balanced strategy which matches training and testing set sizes. The
unbalanced strategy was chosen because, in practice, an investigator would typically want
to test all the remaining genes for essentiality rather than just a subset of genes.

Semi-supervised was compared against three supervised methods (LASSO, SVM,
and Random Forests [41–43]) at low training set sizes. Performance of these four methods
was compared across training set sizes between 1% (n = 35) and 10% (n = 350) from all
3500 genes. Genes randomly chosen for the supervised training sets reflect the same ratio
of positive and negative labels as seen in the full data set. Among the 3500 yeast genes,
there are 769 essential genes resulting in a 21% ratio. As an example, at 1% training size, 35
randomly chosen genes contained 7 positive labels (21% of 35) and 28 negative labels for
supervised methods, while semi-supervised methods were trained on the same training set
size, which would be 35 positively labeled genes for this example. We also performed a
secondary analysis where the semi-supervised methods had a training set with the same
number of positive labeled genes, which would be seven in this example.
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Training Set Test Set

Simulation

Essential Non-Ess

Contamination of Positive Labels

piness- ncon ncon pinnon ness - piness- ncon nnon - pinnon

+
+

-
+

+
+

-
-

-

-
Essential Non-Essential

Labels
True

Labels

Figure 2. Diagram of training sets for supervised methods, including contamination. The Simulation and True Labels
rows describe the label assignment for the cross-validation analysis, and the true labels for gene essentiality, respectively.
In the top row, ness is the total number of essential genes (769 for our example) and nnon is the total number of non-essential
genes. Of the essential genes, we select a training set percentage pi for training the algorithms. Additional cross-validation
trials were performed where a number of contaminated genes ncon where included in the negative training set (i.e., they
are mis-labeled essential genes, see Methods). The shaded area indicates the contamination of training set essential genes
where assigned and true labels differ. When ncon is set to 0, there is no contamination.

In order to mimic contamination, negative labels were reassigned a positive label at
rates of 0%, 20%, and 50%. The 20% contamination would correspond to an organism with
overall essential gene counts like S. cerevisiae, where the 50% contamination is considered
as an extreme example to look at trends in performance due to contamination.

For all results, unique initial seeds were chosen based on the iteration number, training
set size, and contamination (for supervised comparison only). Results were summarized
over 100 iterations of random sampling. Once the cross-validation data were generated by
a seed, the same data were used to compare each method.

2.6.4. Cross-Validation Strategy: Semi-Supervised

As a final comparison, we also evaluated Semi-HM compared to another semi-
supervised PUL approach that does not group variables for data integration. We searched
the CRAN R package repository for alternative semi-supervised approaches. However,
most packages in CRAN are focused on unsupervised or supervised approaches, but there
was a recent package AdaSampling [44,45] focused on the PUL problem and utilizes pre-
diction probabilities from a model to iteratively update the unlabeled training data using
a variety of different learners. For Semi-HM we applied the same training set selection
procedure described above. For AdaSampling, we made adjustments for the training
set selection procedure since it requires additional unlabeled data as part of the iterative
training process. After setting a percentage of genes positive labels were chosen (e.g.,
5% for both Semi-HM and AdaSampling), we randomly selected the same number of
negatively labeled genes to be ‘unlabeled’, in addition to a random set of ‘unlabeled’ genes
from all other genes using different sizes. For example, for 5% training set size, 175 known
positive genes were used for training and the ‘unlabeled’ set consisted of 175 negative
genes, and additional genes selected randomly from all other genes (sizes of 50, 100, 300,
or 600 were chosen). Performance was assessed on all other genes not included in this
process. As classifiers, we tried K Nearest Neighbors (KNN) or logistic regression, which
were built into the package. We ran a single classifier, rather than the ensemble approach
also available in the package, to be more comparable to Semi-HM.
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2.6.5. Algorithms

All cross-validation runs were performed in R version 3.3.3. The semi-supervised and
unsupervised analyses detailed in this work utilized functions from the lcmix package.
The lcmix package developed and implemented in [25] can be downloaded from http://r-
forge.r-project.org/projects/lcmix/ (accessed on 13 May 2021). The other semi-supervised
method was performed using the AdaSampling package in R. LASSO was performed using
the glmnet command in the glmnet package [46]. Using cv.glmnet, k-fold cross validation
optimized the minimum lambda for the LASSO function. SVM analysis used the svm
command under the e1071 package [47]. Various runs using different criteria revealed that
a radial kernel density and C-classification optimized performance. Random Forest was
performed with the randomForest command under the randomForest package [48].

2.6.6. Performance

The area under the curve (AUC) was determined using the ROC curve (1-specificity
by sensitivity). Then the AUC mean, AUC variance, and a robust coefficient of variation
(AUC median absolute deviation/AUC median) of the three supervised methods were
contrasted against the semi-supervised method. Because LASSO outperformed the other
supervised models in AUC across all training set sizes and contamination rates, a closer
evaluation of its performance was compared with the semi-supervised method. In order to
fairly compare LASSO performance to the semi-supervised method, the prediction scores
were re-scaled to be between 0 and 1. Precision, recall, and f-measure further discriminated
the two methods with four rescaled prediction score cutoffs including the median and
prediction scores of 0.5, 0.8, and 0.95. The median cutoff is a relative measure based on
the data while the other three cutoffs are absolute. The f-measure was calculated from the
average precision and recall at each training set size from 1% to 5%.

2.6.7. Gene Enrichment in Saccharomyces cerevisiae

Semi-HM was run using a 10% training size and a posterior probability cutoff of 95%
to identify genes as true positives. Enrichment analysis was performed using the Panther
Pathway Classification System [49].

2.6.8. Discovery of Essential Genes in Saccharomyces mikatae

The Saccharomyces mikatae genome is not as well annotated as the Saccharomyces cere-
visiae genome. Thus, the goal of this application was to show how we can use a more
annotated genome to train the model and then use the trained model to make predictions
of essentiality on a less annotated genome. Therefore, there were no essentiality labels
from the database available, but based on our predictions. Then, we found the orthologs of
the predicted genes in S. cerevisiae, where there is annotation, and performed enrichment
analysis. Fourteen sequence-derived features were downloaded from the Saccharomyces
Genome Database [50] for S. mikatae. One variable, ‘close_stop_ratio’, was removed from
analysis due to collinearity with other features. The fitted model from 3500 S. cerevisiae
genes was applied to 4551 S. mikatae genes to determine essentiality with a posterior
probability cutoff selected visually using the density plot of the posterior probabilities.
The cutoff was selected based on the value that separated the bimodal peaks in the density
plot. A gene enrichment analysis summarized the predicted essential genes for S. mikatae.
To investigate which biological pathways and processes that the S. mikatae open reading
frames (ORF) predicted to be essential are involved in, we performed gene enrichment
analysis. First, we used the data reported in Seringhaus et al. [18] to identify homologs for
each of the ORFs predicted to be essential in our analysis. We used the online Gene On-
tology tool [51] to perform enrichment analysis using the Fisher’s test and false discovery
(FDR) option.

http://r-forge.r-project.org/projects/lcmix/
http://r-forge.r-project.org/projects/lcmix/
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2.6.9. Availability of Data and Material

The datasets analyzed in this current study are available from [18,52] and the following
repositories [40,53].

3. Results

First, we describe each of the features used in the analysis including their data type
(e.g., binary, real valued), and report the optimized number of mixtures K and family
type for predicting essentiality after fitting the single mixture model (Table 1). Based
on the range of univariate estimated AUCs (0.494–0.674), many of the features have low
predictive value on their own but in the following comparisons we will explore their
combined predictive power. We then used cross-validation to compare our hierarchical
mixture model semi-supervised method (Semi-HM) with unsupervised, supervised, and
semi-supervised methods.

Table 1. Description of Features. The sequence-derived features were compiled by Seringhaus [18]. Additional data
sources were assembled from the Gerstein labs [53]. Dov expression is the normalized difference between absolute mRNA
expression levels [52]. The form of the feature (real, integers, binary, etc) is described in the “Type” column, and closed and
open brackets indicate closed and open sets, respectively. “Family” describes the distribution the marginal models utilized
in the semi-supervised method. Exploratory data analysis was used to identify appropriate marginal distributions for the
features. “K” is the univariate optimized number of predicted classes for each variable. * A total of 3 of 22 features (vacuole,
in how many of five proks blast, and intron) were removed from the analysis due to low content (less than 5% of non-zero
values). ORF: open reading frame.

Abbreviation Description Type Family K

Se
qu

en
ce

D
er

iv
ed

Fe
at

ur
es

cytoplasm Predicted subcellular location: cytoplasm binary bernoulli 2
er Predicted subcellular location: er binary bernoulli 2

mitochondria Predicted subcellular location: mitochondria binary bernoulli 2
nucleus Predicted subcellular location: nucleus binary bernoulli 2

vacuole * Predicted subcellular location: vacuole binary bernoulli 2
other Predicted subcellular location: other binary bernoulli 2

tm helix Number of predicted transmembrane helices integer neg bin 2
l aa Length of putative protein in amino acid integer neg bin 3
nc Effective number of codons (real) normal 2

gravy Hydrophobicity (real) normal 2
gc % GC content [real] gamma 2

close ratio % codons one-third base pairs from stop codon [real] gamma 2
rare aa ratio % of rare aa in translated ORF [real] gamma 2

cai Codon adaptation index [real] gamma 2

A
dd

it
io

na
lF

ea
tu

re
s intxn partners Number of interaction proteins integer neg bin 3

blast yeast Number of related genes in yeast BLAST integer neg bin 2
6 yeast blast Number of related genes in 6 species of yeast integer poisson 2

5 proks blast * Number of related genes in 5 prokaryotes BLAST integer poisson 2
intron * Contains an intron in DNA/RNA sequence binary bernoulli 2

chromosome Chr number integer poisson 2
dovexpr Dov Expression (real) pearson 3

chr position Chr position as % of chromosome length [real] gamma 2

3.1. Unsupervised Comparison

The complete essentiality data for S. cerevisiae contained n = 769 positive labeled genes.
To explore whether our conclusions were sensitive to the choice of features, we first used
only 14 sequence-derived features from [18] and then added additional features collected
from Ensembl (see Methods). Semi-HM performs better than the unsupervised method for
a gain of up to 0.10 AUC regardless of the feature set and training set size (Figure 3), which
is not unexpected since the latter does not use any training information. The AUC variance
for both methods increased as training size increases when training on all essential genes,
which may due to the test set being relatively larger and more constant with the smaller
training sets. The additional features generally improve AUC performance and decreases
variance for both methods.
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Figure 3. Area Under the Curve (AUC) Comparison of Semi-HM versus Supervised Approach. Boxplots are displayed
for various training set sizes from the 769 essential genes using either (a) sequence derived predictors only or (b) all features
as predictors described in Table 1. Semi-supervised and unsupervised hierarchical mixture model methods are shown in
red and blue, respectively.

3.2. Supervised Comparison

Next, we compared the semi-supervised method with a supervised strategy using
all essential genes for the training set and all 19 features. Supervised algorithms require
both positive and negative labels. Therefore, we picked a random set of the non-essential
genes [54] to be the negative labels (Figure 2), but also included some contamination
(some essential positive genes labeled as negatives in the training set) since in practice,
the complete set of positive labels will not be known in many situations. Even with the
binary outcome, LASSO and Semi-HM outperform the other two supervised methods,
SVM and Random Forest (Figure 4). At low training sizes (i.e., 2%, n = 70), Semi-HM
method has a higher mean AUC than the three supervised methods. LASSO does not
match the stability (lower variance) of Semi-HM until around 5% (n = 175) training set
size. However, for larger training set sizes, the AUC variance of Semi-HM increases while
variance from LASSO slightly decreases.

We also performed a secondary analysis, where we kept the number of positive labels
in the training set for Semi-HM to be the same as the other supervised methods (Supplemen-
tary Figure S1). We see similar patterns, where for smaller training set size, the Semi-HM
method still has a higher mean AUC than the three supervised methods, but now the
training set size where LASSO improves over Semi-HM is smaller than the results in
Figure 4. The variance of the AUC for Semi-HM increases because of the smaller training
set compared to results in Figure 4, but is still smaller than for LASSO. As contamination
increases, all three supervised methods decrease in performance. At 50% contamination,
Semi-HM bests all methods across all training set sizes (up to 10%). The AUC robust
coefficient of variance (CV; AUC median absolute deviance/AUC median) for Semi-HM is
lower than LASSO across all contamination levels and training set sizes up to 5% (Figure 5).
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Figure 4. AUC comparison between Semi-HM and Supervised methods. The final set of 19 features from Table 1 were
used as predictors. A total of 100 iterations were executed at training sets percentages (1, 1.5, 2, ..., 10) for all four methods
and negative contamination levels ((a) 0% , (b) 20% , and (c) 50%). Training set 1% and 10% of the overall number of genes
correspond to n = 35 and n = 350 respectively. Results from Semi-HM are shown in red while the supervised methods
(LASSO, SVM, and Random Forest) are shown in blue, aquamarine, and light blue, respectively.
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Figure 5. Evaluation of Summary Statistics Comparing Semi-HM and Supervised Methods. The final set of 19 features
from Table 1 were used as predictors. A total of 100 iterations were executed at training sets (1%, 1.5%, 2%, . . . , 5%) for all
four methods and negative label contamination levels (0%, 20%, and 50%). Semi-HM is shown in red while the supervised
methods (LASSO, SVM, and Random Forest) are shown in blue, aquamarine, and light blue, respectively. The information
contained here is a summary of Figure 4. The AUC (a) CV, (b) median, and (c) median absolute deviation are shown for the
four methods at each training set size across three contamination rates (rows). CV is calculated as the median absolute
deviation divided by the median.

3.3. Semi-HM Versus LASSO Performance

To compare the best performing supervised method, LASSO, for our data to Semi-HM,
we took the kernel density of the essentiality prediction scores from each method at 1%
training level and rescaled the scores to be between 0 and 1. The solid line in Figure 6
indicates the distribution of scores across genes observed by a user without knowing
the true essential or non-essential status, which are indicated in dashed and dotted lines
respectively. The two methods show right (Semi-HM) or left skewness (LASSO). However,
the more critical issue is whether they show a bimodal pattern. The score from Semi-HM
has more of a bimodal shape, where the lower mode is more likely to represent non-
essential genes and the higher mode is more likely to represent essential genes. In LASSO,
the second mode is much weaker. The uni-modal behavior in LASSO makes it more
difficult to find better separation of gene types (e.g., essential versus non-essential). As the
training level increases, LASSO kernel densities of prediction scores continue to exhibit
unimodal distributions while Semi-HM maintains bi-modal or multi-modal behaviors
(data not shown).

Focusing on 0% contamination, the three absolute cutoffs (50%, 80%, and 95%) reveal
a higher recall across all training set sizes for Semi-HM and the median cutoff shows Semi-
HM outperforming LASSO up to 3% training set size at which they become comparable
(Figure 7). Furthermore, up to 3% training set size, Semi-HM outperforms LASSO in
precision at the median cutoff. Precision generally increases as the absolute cutoff increases
with LASSO besting Semi-HM as training set size increases. Contamination reduces all
three performance measures (precision, recall, f-measure) for LASSO across training set
sizes from 1% to 5% and all four cutoffs. Irrespective of contamination, f-measure for Semi-
HM outperforms LASSO for all training set sizes and cutoffs. Furthermore, the accuracy of
LASSO declines with 20% and 50% contamination (Supplementary Figures S2 and S3).
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a) b) 

Figure 6. Density Plots of Predicted Scores. Kernel densities for all genes, true positive/essential genes (dashed) and
negative/non-essential (dots) labels at the 1% training set level and 0% contamination rate for (a) LASSO and (b) Semi-HM.
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Figure 7. Performance of Semi-HM and LASSO Methods at Different Score Cutoffs. Semi-HM is shown in red while
LASSO is shown in blue. Precision, recall, and f-measures are represented by dotted, dashed, and solid lines, respectively.
The median is a relative cutoff while the other cutoffs (0.50, 0.80, and 0.95) represent absolute cutoffs with re-scaled predicted
probabilities. Only results for 0% contamination are displayed.
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3.4. Semi-Supervised Comparison

One of the main features of Semi-HM is the grouping of genomic variables for an
integrated analysis in a hierarchical mixture model framework. To evaluate the benefits of
this approach compared to other semi-supervised methods, we used our same essential
genes case study and applied the AdaSampling method [44,45], which is another semi-
supervised PUL approach that treats all variables equally. Using the same AUC plots, we
applied two different versions of AdaSampling, k-nearest neighbor (KNN), or a logistic
regression. The KNN version consistently underperformed (data not shown), therefore all
results are reported using the logistic regression. In the results, we find similar pattern as
with the supervised comparison. Although AdaSampling better performs at larger training
set sizes, Semi-HM improves prediction compared to AdaSampling with small training set
size, and has smaller variability (Supplementary Figure S4). This pattern was consistent
regardless of the number of additional randomly selected genes (50 to 600) were used for
training by AdaSampling (data not shown).

3.5. Gene Enrichment in Saccharomyces cerevisiae and Discovery in Saccharomyces mikatae

To demonstrate two applications of the method, first Semi-HM was run using a 10%
training set size. For this run, ∼78% of the genes were correctly classified as essential or
non-essential. We took a subset of the results to identify if there are differences between
the types of genes that are correctly identified as essential (true positives), versus those
that are not correctly identified as essential (false negatives). Both groups are enriched in
similar types of genes such as those involved in RNA metabolic processes (Supplementary
Tables S1 and S2). However, the false negative gene list compared to the true positive gene
list was more enriched in pathways related to protein localization, transport, and targeting,
in addition to cell cycle and mitosis genes (Supplementary Tables S1 and S2). This suggests
further exploration of features that may be discriminating among these gene types.

Second, to demonstrate an application of Semi-HM for discovery, we trained on essential
genes in S. cerevisiae, which is well annotated, to predict genes in another genome which is less
annotated S. mikatae. Of the 1464 ORFs predicted to be essential using a posterior probability
cut-off of 0.70 based on training Semi-HM with all essential genes in S. cerevisiae, 1036 had one
homolog in S. cerevisiae. ORFs with multiple or no homologs in S. cerevisiae were excluded
from the gene enrichment analysis. Two Gene Ontology pathways were significant with FDR
< 0.05: metabolic process (GO:0008152) and catalytic activity (GO:0003824). These results
demonstrate that the S. mikatae genes predicted to be essential have homologs in S. cerevisiae
that participate in critical processes in the cell [9].

4. Discussion

The focus of the cross-validation runs was to evaluate a real world genomic scenario
where an investigator may only have a small number of known positive labels. We com-
pared the semi-supervised hierarchical mixture model to unsupervised, semi-supervised,
and supervised methods with multiple data types. Our results indicate that the combination
of a hierarchical mixture model and a semi-supervised approach (Semi-HM) improves pre-
diction compared to using one or the other (hierarchical mixture model or semi-supervised).
In summary, there were three comparisons. The first comparison (unsupervised method,
Figure 3) focuses on the semi-supervised component by comparing a hierarchical mixture
model with or without semi-supervised learning. The second comparison (supervised
method, Figures 4–7) focuses on both components by comparing the hierarchical mixture
model and semi-supervised method with leading supervised methods that do not rely
on hierarchical mixture models. Although both components are changing, we believe it
is important to include a comparison with supervised methods because they are a stan-
dard in many applications even with small training sets. Finally the third comparison
(semi-supervised, Supplementary Figure S4), focuses on the hierarchical mixture model
component by comparing semi-supervised approaches with or without the hierarchical
mixture model.
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Not unexpectedly because it uses partial information, Semi-HM outperformed the
corresponding unsupervised method across a wide range of training set sizes of the
essential genes, and data sources. Although Semi-HM outperforms the unsupervised
version by utilizing the knowledge of having positive labels, it comes at the cost of some
computational time.

For comparisons with the supervised methods, we introduced contamination, by falsely
labeling positive genes as negative and not the reverse. We argue this to be the more prob-
able scenario in the essentiality classification because in many prediction methods, all
non-known essential genes are treated as negatives (non-essential), but they may in fact
be positives (essential) but have not been confirmed yet. Contamination does not play a
role in either unsupervised or semi-supervised methods, but may affect supervised meth-
ods. Contaminated negative labels causes decreased AUC in the supervised algorithms
(Figure 4). However, regardless of contamination rates, the prediction scores for Semi-HM
outperformed LASSO in AUC and f-measure at training set sizes below 3%. Furthermore,
for these cases, the supervised methods such as LASSO displayed uni-modal distributions
of their predicted probabilities. In contrast, the multi-modality of our semi-supervised
prediction scores provides a more natural cutoff than the uni-modal distribution displayed
by LASSO in Figure 6.

There are alternative semi-supervised methods reviewed in [55]. These methods
typically rely on “self-training”, where a supervised classifier is trained on the limited
available labeled data, then unlabeled observations are classified. The classifier is then
updated based on both the known labels and new predicted labels and this procedure is
repeated iteratively until convergence (e.g., Reference [56]). Other methods designed for
“positive unlabeled learning” (PUL) identify a set of “reliable” negative observations from
the unlabeled data based on features specific to the positive set or other heuristics, and then
iteratively repeat the training and prediction process (e.g., References [57,58]). We applied
a method designed for PUL called AdaSampling [44,45] and found, as with the previous
comparisons, that Semi-HM which relies on hierarchical mixture modeling of predictors
shows advantages over other methods when the training set is small.

In general, predicting gene essentiality is challenging as we only observed up to
0.70 for the largest AUC in any of our results. Each of the individual predictors AUC is
relatively low, but integrating multiple weak predictors helps performance. Performance
for predicting gene essentiality in bacterial species tends to be higher 0.80–0.90 (e.g.,
References [38,59–61]). For yeast, we find that AUC values tend to be lower than for
bacterial species. Values range from 0.55 to 0.69 [62], 0.65 to 0.75 [63], 0.77 [64], 0.75
to 0.79 [54], and 0.82 [65]. We have primarily used sequenced based features, with the
exception of one expression feature. Some of the cited methods with higher observed
AUC use alternative features (e.g., network topology, gene ontology-based features, more
gene expression) and larger training set sizes. Our method can be improved by exploring
some of these alternative features (see recent review [66]), as was seen in Figure 3 where
an expanded feature set provided modest improvement in overall mean and variance
of the AUC. Furthermore, exploration of what types of genes are misclassified (Tables
S1 and S2) may help suggest the types of features that should be included. However,
we specifically focus on the problem of a small positive training set, which occurs in
other types of bioinformatics problems. For example, another motivating problem is the
prediction of transcription factor target genes based on expression data, DNA binding
data and conservation [25]. In that case, there were only 117 known genes regulated in the
relevant pathway out of 13,326 Drosophila melanogaster genes, corresponding to 1%, which
would be considered a relatively small training set, where Semi-HM shows advantages
over other strategies under model misspecification [25].

Finally, we demonstrate an application of Semi-HM where it was trained in a well
annotated genome (S. cerevisiae) and then used to predict essential genes in a less annotated
genome (S. mikatae). There is no gold standard to evaluate performance so we used the
enrichment analysis to explore the results, which indicated genes relevant to essentiality.
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However, most of the genes predicted to be essential in S. mikatae did not have homologs
that were essential genes in S. cerevisiae, which may be explained by a variety of factors
including imperfect homology determination. Without a gold standard we cannot bench-
mark performance but include this analysis as a demonstration, which may be improved
within the Semi-HM framework by using additional variables as discussed above (only
sequence-derived were used for this demonstration), by using ensemble learning as in [45],
and by incorporating imbalanced learning principles [67] since there are fewer essential
genes compared to non-essential genes.

5. Conclusions

In summary, using the gene essentiality problem as a case study, a hierarchical mixture
modeling approach for semi-supervised learning performs well when there is only a small
training set of positive labels. Fully supervised classifiers, and those derived from them
such as the “self-training” semi-supervised iterative classifiers, are highly sensitive to even
a small amount of error in the training set (e.g., positive genes being mislabeled as negative).
The hierarchical mixture model approach may be able to handle such data and extract the
useful information from correctly labeled training data while avoiding the detrimental
effects of mislabeled data. Furthermore, the hierarchical mixture model also provides a
natural framework to integrate any number and type of genomic level data making it
applicable to a variety of bioinformatics problems. The R code for the Semi-HM method is
available at https://r-forge.r-project.org/projects/lcmix/ (accessed on 13 May 2021).

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Supple-
mentary File S1: Supplementary Methods, Supplementary File S2: Supplementary Figures S1–S4,
Supplementary Tables S1 and S2.
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31. Jörnsten, R.; Keleş, S. Mixture models with multiple levels, with application to the analysis of multifactor gene expression data.
Biostatistics 2008, 9, 540–554. [CrossRef]

32. Li, Q.; MacCoss, M.; Stephens, M. A nested mixture model for protein identification using mass spectrometry. Ann. Appl. Stat.
2010, 4, 962–987. [CrossRef]

33. Dempster, A.; Laird, N.; Rubin, D. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B Methodol.
1977, 39, 1–38.

34. McLachlan, G.; Krishnan, T. The EM Algorithm and Extensions, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008.
35. Biernacki, C.; Celeux, G.; Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE

Trans. Pattern Anal. Mach. Intell. 2000, 22, 719–725. [CrossRef]
36. Ward, G.; Hastie, T.; Barry, S.; Elith, J.; Leathwick, J.R. Presence-Only Data and the EM Algorithm. Biometrics 2009, 65, 554–563.

[CrossRef] [PubMed]

http://dx.doi.org/10.1038/nrg.2017.75
http://dx.doi.org/10.15698/mic2015.08.218
http://www.ncbi.nlm.nih.gov/pubmed/28357303
http://dx.doi.org/10.1016/j.tcb.2011.07.005
http://www.ncbi.nlm.nih.gov/pubmed/21889892
http://dx.doi.org/10.1126/science.aac7041
http://www.ncbi.nlm.nih.gov/pubmed/26472758
http://dx.doi.org/10.1093/nar/gkaa917
http://www.ncbi.nlm.nih.gov/pubmed/33095861
http://dx.doi.org/10.1093/nar/gkaa884
http://www.ncbi.nlm.nih.gov/pubmed/33084874
http://dx.doi.org/10.1093/bfgp/elv063
http://dx.doi.org/10.1093/bib/bby116
http://www.ncbi.nlm.nih.gov/pubmed/30496347
http://dx.doi.org/10.1093/bib/bbz017
http://dx.doi.org/10.1101/gr.5144106
http://www.ncbi.nlm.nih.gov/pubmed/16899653
http://dx.doi.org/10.1093/nar/gkp1205
http://dx.doi.org/10.1186/gb-2011-12-10-r105
http://dx.doi.org/10.1186/gb-2006-7-5-r37
http://dx.doi.org/10.1002/sim.3815
http://www.ncbi.nlm.nih.gov/pubmed/20049751
http://dx.doi.org/10.1093/nar/gkr332
http://dx.doi.org/10.1038/nmeth.1937
http://dx.doi.org/10.1515/sagmb-2012-0051
http://dx.doi.org/10.1093/bioinformatics/bth281
http://dx.doi.org/10.1093/biostatistics/kxm051
http://dx.doi.org/10.1214/09-AOAS316
http://dx.doi.org/10.1109/34.865189
http://dx.doi.org/10.1111/j.1541-0420.2008.01116.x
http://www.ncbi.nlm.nih.gov/pubmed/18759851


Math. Comput. Appl. 2021, 26, 40 19 of 20

37. Dvorkin, D. Graphical Model Methods for Integrating Diverse Sources of Genome-Scale Data. Ph.D. Thesis, University of
Colorado, Boulder, CO, USA, 2013.

38. Liu, X.; Wang, B.J.; Xu, L.; Tang, H.L.; Xu, G.Q. Selection of key sequence-based features for prediction of essential genes in 31
diverse bacterial species. PLoS ONE 2017, 12, e0174638. [CrossRef] [PubMed]

39. Guo, F.B.; Dong, C.; Hua, H.L.; Liu, S.; Luo, H.; Zhang, H.W.; Jin, Y.T.; Zhang, K.Y. Accurate prediction of human essential genes
using only nucleotide composition and association information. Bioinformatics 2017, 33, 1758–1764. [CrossRef]

40. Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al.
Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [CrossRef] [PubMed]

41. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. B Methodol. 1996, 58, 267–288. [CrossRef]
42. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
43. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Yang, P.; Liu, W.; Yang, J. Positive unlabeled learning via wrapper-based adaptive sampling. In Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 3273–3279.
[CrossRef]

45. Yang, P.; Ormerod, J.T.; Liu, W.; Ma, C.; Zomaya, A.Y.; Yang, J.Y.H. AdaSampling for Positive-Unlabeled and Label Noise Learning
With Bioinformatics Applications. IEEE Trans. Cybern. 2019, 49, 1932–1943. [CrossRef]

46. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
2010, 33, 1–22. [CrossRef]

47. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8. Available online: https://rdrr.io/rforge/e1071/ (accessed
on 13 May 2021).

48. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22.
49. Mi, H.; Huang, X.; Muruganujan, A.; Tang, H.; Mills, C.; Kang, D.; Thomas, P.D. PANTHER version 11: Expanded annotation

data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017, 45, D183–D189.
[CrossRef]

50. Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R.; Costanzo, M.C.; Dwight,
S.S.; Engel, S.R.; et al. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2011,
40, D700–D705. [CrossRef]

51. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2018,
47, D330–D338,

52. Jansen, R.; Greenbaum, D.; Gerstein, M. Relating Whole-Genome Expression Data with Protein-Protein Interactions. Genom. Res.
2002, 12, 37–46. [CrossRef]

53. Gerstein Lab. Available online: http://www.gersteinlab.org/proj/predess/ (accessed on 13 May 2021).
54. Cheng, J.; Wu, W.; Zhang, Y.; Li, X.; Jiang, X.; Wei, G.; Tao, S. A new computational strategy for predicting essential genes. BMC

Genom. 2013, 14, 910. [CrossRef] [PubMed]
55. Zhu, X.; Goldberg, A. Introduction to Semi-Supervised Learning; Morgan & Claypool: Williston, VT, USA, 2009; Volume 3.
56. Tanha, J.; van Someren, M.; Afsarmanesh, H. Semi-supervised self-training for decision tree classifiers. Int. J. Mach. Learn. Cybern.

2017, 8, 355–370. [CrossRef]
57. Yu, H.; Han, J.; Chang, K.C.C. PEBL: Positive Example Based Learning for Web Page Classification Using SVM. In Proceedings

of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (KDD ’02), Edmonton, AB,
Canada, 23–26 July 2020; ACM: New York, NY, USA, 2002; pp. 239–248.

58. Liu, B.; Lee, W.S.; Yu, P.S.; Li, X. Partially Supervised Classification of Text Documents. In Proceedings of the Nineteenth
International Conference on Machine Learning (ICML-2002), Sydney, Australia, 8–12 July 2002; Morgan Kaufmann Publishers
Inc.: San Francisco, CA, USA, 2002; pp. 387–394.

59. Wei, W.; Ning, L.W.; Ye, Y.N.; Guo, F.B. Geptop: A Gene Essentiality Prediction Tool for Sequenced Bacterial Genomes Based on
Orthology and Phylogeny. PLoS ONE 2013, 8, e72343. [CrossRef] [PubMed]

60. Nigatu, D.; Sobetzko, P.; Yousef, M.; Henkel, W. Sequence-based information-theoretic features for gene essentiality prediction.
BMC Bioinform. 2017, 18, 473. [CrossRef] [PubMed]

61. Li, Y.; Lv, Y.; Li, X.; Xiao, W.; Li, C. Sequence comparison and essential gene identification with new inter-nucleotide distance
sequences. J. Theor. Biol. 2017, 418, 84–93. [CrossRef]

62. Fan, Y.; Tang, X.; Hu, X.; Wu, W.; Ping, Q. Prediction of essential proteins based on subcellular localization and gene expression
correlation. BMC Bioinform. 2017, 18, 470. [CrossRef] [PubMed]

63. Cheng, J.; Xu, Z.; Wu, W.; Zhao, L.; Li, X.; Liu, Y.; Tao, S. Training Set Selection for the Prediction of Essential Genes. PLoS ONE
2014, 9, e86805. [CrossRef]

64. Zhong, J.; Wang, J.; Peng, W.; Zhang, Z.; Pan, Y. Prediction of essential proteins based on gene expression programming. BMC
Genom. 2013, 14, S7. [CrossRef] [PubMed]

65. Saha, S.; Heber, S. In silico prediction of yeast deletion phenotypes. Genet. Mol. Res. 2006, 5, 224–232.

http://dx.doi.org/10.1371/journal.pone.0174638
http://www.ncbi.nlm.nih.gov/pubmed/28358836
http://dx.doi.org/10.1093/bioinformatics/btx055
http://dx.doi.org/10.1093/nar/gkx1098
http://www.ncbi.nlm.nih.gov/pubmed/29155950
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.24963/ijcai.2017/457
http://dx.doi.org/10.1109/TCYB.2018.2816984
http://dx.doi.org/10.18637/jss.v033.i01
https://rdrr.io/rforge/e1071/
http://dx.doi.org/10.1093/nar/gkw1138
http://dx.doi.org/10.1093/nar/gkr1029
http://dx.doi.org/10.1101/gr.205602
http://www.gersteinlab.org/proj/predess/
http://dx.doi.org/10.1186/1471-2164-14-910
http://www.ncbi.nlm.nih.gov/pubmed/24359534
http://dx.doi.org/10.1007/s13042-015-0328-7
http://dx.doi.org/10.1371/journal.pone.0072343
http://www.ncbi.nlm.nih.gov/pubmed/23977285
http://dx.doi.org/10.1186/s12859-017-1884-5
http://www.ncbi.nlm.nih.gov/pubmed/29121868
http://dx.doi.org/10.1016/j.jtbi.2017.01.031
http://dx.doi.org/10.1186/s12859-017-1876-5
http://www.ncbi.nlm.nih.gov/pubmed/29219067
http://dx.doi.org/10.1371/journal.pone.0086805
http://dx.doi.org/10.1186/1471-2164-14-S4-S7
http://www.ncbi.nlm.nih.gov/pubmed/24267033


Math. Comput. Appl. 2021, 26, 40 20 of 20

66. Aromolaran, O.; Aromolaran, D.; Isewon, I.; Oyelade, J. Machine learning approach to gene essentiality prediction: A review.
Brief. Bioinform. 2021. [CrossRef]

67. Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [CrossRef]

http://dx.doi.org/10.1093/bib/bbab128
http://dx.doi.org/10.1186/1471-2105-14-106

	Introduction
	Methods
	Single Mixture Model: Unsupervised Method
	Training Data
	Single Mixture Model: Semi-Supervised Method
	Hierarchical Mixture Model: Unsupervised Method
	Hierarchical Mixture Model: Semi-Supervised Method
	Essentiality Application
	Feature Description
	Cross-Validation Strategy: Unsupervised
	Cross-Validation Strategy: Supervised
	Cross-Validation Strategy: Semi-Supervised
	Algorithms
	Performance
	Gene Enrichment in Saccharomyces cerevisiae
	Discovery of Essential Genes in Saccharomyces mikatae
	Availability of Data and Material


	Results
	Unsupervised Comparison
	Supervised Comparison
	Semi-HM Versus LASSO Performance
	Semi-Supervised Comparison
	Gene Enrichment in Saccharomyces cerevisiae and Discovery in Saccharomyces mikatae

	Discussion
	Conclusions
	References

